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Arithmetic statistics

The area of arithmetic statistics focuses on the behavior of arithmetic
objects in families. Typical questions are:

I How many number fields are there with given Galois group G and
discriminant bounded by some real number X > 0?

I What is the average (analytic/algebraic/Selmer) rank of elliptic
curves when ordered by discriminant?

I How does Cl(K ) behave in a family of number fields K ordered by
discriminant (for example quadratic number fields)?

In this talk we shall mostly focus on the third question.
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Reminder: class groups

Let K be a number field. Then every (fractional) ideal I can be factored
uniquely as

I = pa11 · . . . · p
ar
r ,

where a1, . . . , ar ∈ Z and p1, . . . , pr are prime ideals of the ring of
integers OK .

Define IK to be the set of fractional ideals and let PK be the set of
fractional ideals I of the shape I = xOK for some x ∈ K∗.

The elements of PK are called principal ideals. Define the class group

Cl(K ) = IK/PK

and the narrow class group as

Cl(K ) = IK/P
+
K ,

where P+
K is the set of fractional ideals I of the shape I = xOK with x

totally positive.
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The Cohen-Lenstra heuristics

Let p be an odd prime. The group Cl(K )[p∞] is believed to behave as a
random finite, abelian p-group.

More formally, Cohen and Lenstra conjectured that

lim
X→∞

|{K im. quadr. : |DK | < X and Cl(K )[p∞] ∼= A}|
|{K im. quadr. : |DK | < X}|

=

∏∞
i=1

(
1− 1

pi

)
|Aut(A)|

for every finite, abelian p-group A.

For real quadratic fields

lim
X→∞

∣∣{K re. quadr. : |DK | < X and Cl+(K )[p∞] ∼= A
}∣∣

|{K re. quadr. : |DK | < X}|
=

∏∞
i=2

(
1− 1

pi

)
|A||Aut(A)|

,

where Cl+(K )[p∞] is now the quotient of a random abelian group.
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Genus theory

Recall that p = 2 is excluded from the Cohen–Lenstra conjectures. The
reason for this is that the group Cl+(K )[2] has a very predictable
behavior unlike Cl+(K )[p] for p odd.

The description of Cl+(K )[2] is due to Gauss and is known as genus
theory. We have that

|Cl+(K )[2]| = 2ω(DK )−1

and Cl+(K )[2] is generated by the ramified prime ideals of OK .

If p divides the discriminant of Q(
√
d), then p ramifies, so

Q(
√
d) p p2 = (p).

Q p

There is precisely one relation between the ramified primes.
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Gerth’s modification

Instead of Cl(K )[2∞], it is the group (2Cl(K ))[2∞] that behaves
randomly.

To be precise, Gerth conjectured the following

lim
X→∞

|{K im. quadr. : |DK | < X , (2Cl(K ))[2∞] ∼= A}|
|{K im. quadr. : |DK | < X}|

=

∏∞
i=1

(
1− 1

2i

)
|Aut(A)|

for every finite, abelian 2-group A, and similarly for real quadratics.

This is referred to as the n = p case (n standing for the degree of the
number fields, p for the torsion we are studying in the class group).
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Known results in the n = p case

Fouvry and Klüners dealt with the distribution of (2Cl(K ))[2].

The full Gerth conjecture was recently proven by Alexander Smith (2017)
for imaginary quadratics.

In the same paper Smith proved that for an elliptic curve
E/Q : y2 = x3 + ax + b satisfying some technical assumptions that

I 50% of the quadratic twists E (d) : dy2 = x3 + ax + b have
2∞-Selmer rank 0,

I 50% of the quadratic twists E (d) : dy2 = x3 + ax + b have
2∞-Selmer rank 1.

In particular this implies that the set set of congruent numbers equal to
1, 2 or 3 modulo 8 have zero natural density.
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Fouvry and Klüners dealt with the distribution of (2Cl(K ))[2].

The full Gerth conjecture was recently proven by Alexander Smith (2017)
for imaginary quadratics.

In the same paper Smith proved that for an elliptic curve
E/Q : y2 = x3 + ax + b satisfying some technical assumptions that

I 50% of the quadratic twists E (d) : dy2 = x3 + ax + b have
2∞-Selmer rank 0,

I 50% of the quadratic twists E (d) : dy2 = x3 + ax + b have
2∞-Selmer rank 1.

In particular this implies that the set set of congruent numbers equal to
1, 2 or 3 modulo 8 have zero natural density.



22/72

Known results in the n = p case
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More results in the n = p case

There is a natural analogue of Smith’s results for cyclic field extensions of
prime degree. If K/Q is cyclic of degree `, then Cl(K )[`∞] is a
Z`[Gal(K/Q)]-module killed by the norm, i.e. a Z`[ζ`]-module.

Theorem 1 (Gerth’s conjecture, K.-Pagano 2018)

Assume GRH and let ` be an odd prime. Then for all finitely generated,
torsion Z`[ζ`]-modules A the limit

lim
X→∞

|{K/Q cyc. deg. ` : |DK | < X , ((1− ζ`)Cl(K ))[`∞] ∼= A}|
|{K/Q cyc. deg. ` : |DK | < X}|

exists, and is equal to ∏∞
i=2

(
1− 1

`i

)
|A||AutZ`[ζ`](A)|

.

The proof can easily be adapted to also handle real quadratic fields.

Smith generalized this to arbitrary base fields.
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The negative Pell equation

Another classical problem is the negative Pell equation

x2 − dy2 = −1 to be solved in x , y ∈ Z. (1)

The negative Pell equation is soluble iff Cl(Q(
√
d))[2∞] and

Cl+(Q(
√
d))[2∞] coincide iff (

√
d) is trivial in Cl+(Q(

√
d))[2].

How often is the above equation soluble as one varies over squarefree
integers d?

The answer is 0% of the time, since solubility with x , y ∈ Q is equivalent
to every prime divisor p of d satisfying p ≡ 1, 2 mod 4.
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Current results on negative Pell

Define D to be the set of squarefree integers d with p | d implies
p ≡ 1, 2 mod 4 and D− ⊆ D the subset for which negative Pell is soluble.

Theorem 2 (Fouvry-Klüners, 2010)

We have

0.52475 ≈ 5

4

∞∏
j=1

(1 + 2−j)−1 ≤ lim inf
X→∞

|D−(X )|
|D(X )|

≤ lim sup
X→∞

|D−(X )|
|D(X )|

≤ 2

3
.

The lower bound was improved by Chan–K.–Milovic–Pagano (2019).

Theorem 3 (K.-Pagano, 2020)

We have

0.54302 ≤ lim inf
X→∞

|D−(X )|
|D(X )|

≤ lim sup
X→∞

|D−(X )|
|D(X )|

≤ 0.59944.
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We have

0.52475 ≈ 5

4

∞∏
j=1

(1 + 2−j)−1 ≤ lim inf
X→∞

|D−(X )|
|D(X )|

≤ lim sup
X→∞

|D−(X )|
|D(X )|

≤ 2

3
.

The lower bound was improved by Chan–K.–Milovic–Pagano (2019).

Theorem 3 (K.-Pagano, 2020)

We have

0.54302 ≤ lim inf
X→∞

|D−(X )|
|D(X )|

≤ lim sup
X→∞

|D−(X )|
|D(X )|

≤ 0.59944.



33/72

Current results on negative Pell

Define D to be the set of squarefree integers d with p | d implies
p ≡ 1, 2 mod 4 and D− ⊆ D the subset for which negative Pell is soluble.

Theorem 2 (Fouvry-Klüners, 2010)
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A variant of the negative Pell equation

Fix a prime number ` ≡ 3 mod 4. Define for squarefree d > 0

Nd(x , y) =

{
x2 + xy − d−1

4 y2 if d ≡ 1 mod 4
x2 − dy2 otherwise.

We now consider the equation

Nd(x , y) = ` in x , y ∈ Z, (2)

where d only varies over squarefree integers divisible by `. Equation (2) is
soluble iff the unique ideal l above ` is trivial in Cl+(Q(

√
d))[2].

For a ring R, write SR,X ,` for the set of squarefree integers 0 < d < X
that are divisibly by ` and equation (2) is soluble with x , y ∈ R.

Theorem 4 (K.-Pagano, 2020)

There exists 0 < C < 1 such that

lim
X→∞

|SZ,X ,`|
|SQ,X ,`|

= C .
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soluble iff the unique ideal l above ` is trivial in Cl+(Q(

√
d))[2].

For a ring R, write SR,X ,` for the set of squarefree integers 0 < d < X
that are divisibly by ` and equation (2) is soluble with x , y ∈ R.

Theorem 4 (K.-Pagano, 2020)

There exists 0 < C < 1 such that

lim
X→∞

|SZ,X ,`|
|SQ,X ,`|

= C .
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An application to the Hasse Unit Index

For a biquadratic field Q(
√
a,
√
b), the Hasse Unit Index is defined to be

Ha,b :=
[
O∗Q(

√
a,
√
b)

: O∗Q(
√
a)O
∗
Q(
√
b)
O∗Q(

√
ab)

]
.

If the biquadratic field is totally complex, then Ha,b ∈ {1, 2}.

Corollary 5 (K.-Pagano)

Let ` > 3 be a prime 3 modulo 4. Then there is C > 0 such that

|{0 < d < X squarefree : H−`,d = 2}| ∼ C
X√

logX
.
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Governing fields

Arithmetic statistics in the n = p case has traditionally been studied
through the viewpoint of governing fields.

Example 1

Let q be an odd prime number and write hq for the class number of
Q(
√
−q). Then

2 | hq ⇐⇒ q splits in Q(i)

4 | hq ⇐⇒ q splits in Q(ζ8)

8 | hq ⇐⇒ q splits in Q(ζ8,
√

1 + i).

Chebotarev Density Theorem then implies density results for the 2, 4 and
8-torsion of Cl(Q(

√
−q)).
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Governing fields: formal definition

For a finite abelian group A, we define rk2k (A) := dimF2 2k−1A/2kA.

Example 2

Take
A = Z/3Z⊕ Z/2Z⊕ Z/2Z⊕ Z/8Z.

Then we have rk2(A) = 3, rk4(A) = rk8(A) = 1 and rk2k (A) = 0 for every
integer k ≥ 4.

Conjecture 1 (Cohn–Lagarias, 1980’s)

For each integer k ≥ 1 and each integer d 6≡ 2 mod 4, there exists a
normal field extension Md,k over Q and a class function
φd,k : Gal(Md,k/Q)→ Z≥0 such that

φd,k(FrobMd,k/Q(p)) = rk2k Cl(Q(
√
dp))

for all primes p coprime with 2d.
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The Cohn and Lagarias conjecture

Theorem 6 (Stevenhagen, 1989)

The Cohn and Lagarias conjecture is true for all values of d and all
values of 1 ≤ k ≤ 3.

No progress since then! It is still an open problem if Md,k exists for any
value of k with k > 3. However, we have the following.

Theorem 7 (K.-Milovic, 2018)

Assume a short character sum conjecture. Then M−4,4 does not exist.

Theorem 8 (K., 2018)

The density of prime numbers p for which 16 | Cl(Q(
√
−p)) is 1

16 .
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Reflection principles

What to do in absence of governing fields?

Compare different class groups. Such results are known as reflection
principles.

Theorem 9 (Scholz, 1930’s)

We have for d > 1

dimF3Cl(Q(
√
d))[3] ≤ dimF3Cl(Q(

√
−3d))[3] ≤ 1 + dimF3Cl(Q(

√
d))[3].

This was one of the key ingredients in giving pointwise upper bounds for
Cl(Q(

√
d))[3] (Ellenberg–Venkatesh).
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Reflection principles for the 8-rank

Let hn be the class number of Q(
√
n), and h+n the narrow class number.

Theorem 10 (Stevenhagen, 1993)

Let p ≡ 1 mod 8 be a prime. Then

8 | h−p ⇐⇒ p splits in Q(ζ8,
√

1 + i)

8 | h−2p ⇐⇒ p splits in Q(ζ8,
4
√
−2)

8 | h+2p ⇐⇒ p splits in Q(ζ8,
√

1 + i , 4
√
−2) = Q(ζ16,

4
√

2).

Unsurprising part: 8-rank is given by splitting conditions (recall that
governing fields exist for the 8-rank).

Surprising part: Q(ζ16,
4
√

2) is the compositum of Q(ζ8,
√

1 + i) and
Q(ζ8,

4
√
−2). The various governing fields are related!
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Reflection principles for the 16-rank

How does a reflection principle for the 16-rank look like? Recall that we
do not expect there to be a governing field in this case.

Theorem 11 (Stevenhagen, 1993)

Let p be a prime that splits completely in Q(ζ16,
4
√

2), so that
8 | h−p, h−2p, h+2p. Then one has

16 | h+2p ⇐⇒ 16 | h−2p and 16 | h−p

if p splits completely in Q(ζ16,
4
√

2,
√

1 + ζ8), and

16 | h+2p ⇐⇒ 16 | h−2p and 8 ‖ h−p

if p does not split completely in Q(ζ16,
4
√

2,
√

1 + ζ8).

The relation between different class groups is now governed by a splitting
condition.
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Proof sketch of Smith’s result

Smith’s main algebraic result is a reflection principle in the style of
Stevenhagen.

For a finite abelian 2-group A, there is for every integer k ≥ 1 a natural
pairing

Art : 2k−1A[2k ]× 2k−1A∨[2k ]→ F2, (a, χ) 7→ ψ(a), 2k−1ψ = χ

with left kernel 2kA[2k+1] and right kernel 2k+1A∨[2k+1].

Under favorable circumstances, the sum of 2k Artin pairings (of class
groups of different fields) is given by the splitting of an auxiliary prime in
a number field.
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Proof sketch of Smith’s result II

Smith’s reflection principle gives many linear equations for the Artin
pairings.

However, the system of linear equations is underdetermined, but only
barely.

But the Chebotarev Density Theorem shows that every RHS occurs
roughly equally often.

For some choices of RHS we will not be able to deduce equidistribution
of Art, but for most choices we can.

Hence we get equidistribution of the Artin pairing, and this implies
Gerth’s conjecture.
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Questions?

Thank you for your attention!
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