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Introduction

Let K be a number field with unit group Oj. For fixed a, b, c € K*
consider the unit equation

ax+by=c

to be solved in x,y € Oj. Unit equations frequently show up when
solving Diophantine equations. One well known example of such a
Diophantine equation is the Thue equation

F(x,y)=0inx,y € Z

for a given square-free binary form F(X,Y) € Z[X, Y] of degree n >3
and 6 € Z \ {0}.



History of unit equations

Finiteness results have been proved for the following types of unit
equations:

Siegel (1921): ax + by = cin x,y € Ok,
Mahler (1933): ax+ by = cin x,y € Zs
Zs = Z[(pr---pt) '] (S = {p1,. .., p:} finite set of primes)
Zs = {xpl - pit:e €L},
Lang (1960): ax+ by = cin x,y € A*
A arbitrary finitely generated domain

over Z of characteristic 0.

The above results are all ineffective.



History Il

Mahler and Evertse gave explicit upper bounds for the number of
solutions of unit equations. The best and most general result is due to
Beukers and Schlickewei (1996). They considered

x+y=1 (1)
to be solved in (x,y) € G, where G is a multiplicative subgroup of

C* x C* with dimg(G ®z Q) = r.

Theorem 1
Equation (1) has at most 288 solutions (x,y) € G.



Characteristic p

A natural question is to prove an analogue in positive characteristic. Let
K be a field of characteristic p and let G be a finitely generated
multiplicative subgroup of K* x K* with dimg(G ®z Q) = r. Consider
the equation

x+y=1 (2)

to be solved in (x,y) € G. Can one still hope to show that there are
finitely many solutions?

No, consider for example K =TF,(t) and G = ((t,1 — t)). Then we have
7+ 1- t)Pk =1

for all integers k > 0, leading to infinitely many solutions of (2).



Our result

In view of the previous one can hope to show finiteness “up to
Frobenius”.

Theorem 2 (joint work with Carlo Pagano)

Let K be a field of characteristic p > 0 and let G be a finitely generated
multiplicative subgroup of K* x K* with dimg(G ®z Q) = r. Then the
equation

x+y=1in(x,y)eG (3)

has at most 31 - 19" solutions (x, y) satisfying (x,y) & GP. Equivalently,
there is a set S of cardinality |S| < 31-19" such that any solution of (3)

with x,y & F, is of the shape sP", where s € S and k € Zy.

This answers a conjecture of Voloch (1998), who had previously shown a
bound of the shape p¢" with C an absolute constant.



Proof outline

Our proof is a modified version of the proof due to Beukers and
Schlickewei. Their proof consists of roughly four parts:

1. Reduce to the case that G is a finitely generated subgroup of
Q xQ"

2. Prove several height inequalities for the solutions.

3. Map the solutions to a normed vector space V.

4. Transfer the height inequalities to V and deduce finiteness.

We will first discuss the proof of Beukers and Schlickewei in characteristic
0 and then later on the necessary modifications in characteristic p > 0.



Let K be a number field. Denote by My the set of places of K, i.e. the

equivalence classes of absolute values on K. The height of x € K* is
defined by

Hk(x) == Z max(0, log [x],),

veMy

where we normalize |- |, in a “nice” way. The normalization can be done
in such a way that we have the sum formula

Z log |x|, = 0 for x € K*
ve My

and moreover, Hi(x) does not depend on the number field K containing
x. More generally, we define

Hk(xo, ... xn) = Z max(log |xolv, - - -, log |xal|v).
veMyg

By the sum formula this defines a height on the K-rational points of the
projective space P”.



First height bound for solutions

We start with an easy lemma.

Lemma 3

Let a, b, c be non-zero elements of K, and let (x;,y;, z;) for i = 1,2 be
two K-linearly independent vectors from K3 such that ax; + by; + czj = 0
fori =1,2. Then

Hk(a, b, c) < Hk(x1,y1,21) + Hk(x2, y2, 22) + log 2.

Corollary 4 (Gap principle)

Let u,v € Q" x Q" be two solutions of x + y =1 with u # v. Then we
have Hk (1, uy, up) < Hi(1, v /u1, va/up) + log 2.



Some polynomials from Diophantine approximation

Define for N € Z~ the binary form Wy (X, Y) € Z[X, Y]

Wi (X, Y) = ZN: (iC’_::) (N;m> XN=m(_yym,

m=0

Lemma 5
Put Z := —X — Y. Then we have the following identities in Z[X, Y].
(i) Wa(Y,X)=(=D)"Wn(X,Y);
(i) X2VFLWy(Y, Z) + Y2V Wy (Z, X) + Z2N+H W (X, Y) = 0;
(iii) there exists a non-zero integer cy such that
det ( Z2N+1 WN(X, Y) Y2N+1 WN(Z,X) >
72N+3 WN+1(X, Y) y2N+3 WN+1(Z7 X)
= cn(XYZ)PN (X2 + XY + Y3).



Second height bound for solutions

We can now make good use of the polynomials Wy (X, Y).

Lemma 6

Let u,v € @* X @* be two solutions of x +y = 1 with u # v. Then for
every integer N > 0 there exists M € {N, N + 1} such that

Hk (1, u1, up) < Hi (1, vi/uzM* vo /3 H1) + log 8.

1
M+1
Proof sketch.

Use the identities

MW (2, —1) + B Wi (—1, u1) — Wag(uy, us) = 0

U%M+1(V1U1_2M_1) 4 U§M+1(V2u2—2M—1) —1=0

and apply Lemma 3. O



A normed vector space

Suppose from now on that G is a finitely generated subgroup of Q' xQ"
of rank r. Then there exists an algebraic number field K and a finite set
of places S of K containing all infinite places such that

G C O x O
Let [K : Q] = d, |S| = s. Define a homomorphism ¢ : G — R by
v (x1,x)— (log|xi|, :veS,i=12).

Let V C R be the real vector space spanned by ©(G). Then V has
dimension r. We have

Hi (x1) + Hk (x2) = [[p(x1, %),

where || - || is the norm on R?S defined by

1 2
ol = 5 323" Ju.

veS i=1



Normed vector space Il

Write S for the image under ¢ of the set of (x,y) € G with x+y = 1.
One can show that ¢ is at most two to one when restricted to this set.

Lemma 7
The set S has the following properties:

(i) for any two distinct uy, u» € S we have
|| < 2[[uz = wn] + log 4;

(ii) for any two distinct uy,us € S and any positive integer N, there is
M e {N,N + 1} such that

2
M+1

[lun]] < [|luz = (2M + 1)un || + log 64;

(iii) for any three distinct ug, uy, u» € S we have

[|ur — wol| + ||u2 — wol| > 0.09.



Completing the proof

The three properties on the previous slide are enough to prove finiteness
of S for any r-dimensional normed vector space V. Furthermore, this
upper bound can be made to depend only on r.

The key idea is to subdivide V into C" cones where C is some absolute
constant. Then one can show that there can only be a bounded number
B of points from S inside each cone by using the three properties.

This leads to an upper bound of the shape B - C".



Positive characteristic

Most of the machinery from the Beukers and Schlickewei proof carries
through to positive characteristic. There are two obvious issues:

(i) Recall that there exists a non-zero integer cy such that
det Z2N+1 WN(X, Y) y2N+1 WN(Za X)
2B W (X, Y)Y B W4 (Z,X)
= cn(XYZ)PNTH(X? 4+ XY + Y?).

But now we would like ¢y # 0 mod p, which imposes some
restrictions on N.

(ii) The Beukers and Schlickewei method shows finiteness and this is no
longer true in positive characteristic.



A formula for ¢y

So far no explicit formula was known for ¢y in the literature. We were
able to derive an explicit formula for cy.

Lemma 8

We have
NC/ON =i\ (N+17\_ . 3N
WN(2,—1):Z< N )( N )2-’:4”(2,\/).

i=0

Proof.

This follows from some identities for hypergeometric functions. O
Corollary 9

Let p be an odd prime number and let N be a positive integer with
N < £ —2. Then cy # 0 mod p.

Proof.

Use the previous lemma to give an explicit formula for cy. O



Height bounds for solutions in positive characteristic

Let K be a finitely generated field of characteristic p > 0. We can endow
K with a set of discrete valuations satisfying a sum formula and with this
we can define heights in a similar way as for number fields.

Note that there are no archimedean places in positive characteristic. This
enables us to give slightly better height inequalities.

We get a similar homomorphism ¢ : G — R? from G into a finite
dimensional vector space. Denote by S the image under ¢ of all

(x,y) € G satisfying x+y =1and x,y & ]FT,. In this case the restriction
of ¢ to the set just defined is injective.



Properties of S

In our new setting S has the following properties.
Lemma 10
(i) for any two distinct u,v € S we have

[lull < 2[|v = ulf;

(ii) for any two distinct u,v € S and any positive integer N such that
N < £ —2, there is M € {N,N + 1} such that

2

<
lull € 5

llv = M + 1)ul]

(iii) pS C S.



How to finish the proof

Just as before we divide our vector space into cones. The “gap principle”
still holds, hence two points in S can not be too close inside the same
cone. But how are we going to show that points in § can not be too far
apart?

Idea: we want the RHS of Lemma 10(ii) to be small. In the Beukers and
Schlickewei proof Lemma 10(ii) was true for all integers N > 0, but in
our case it is only true for N < £ —2. So Lemma 10(ii) does not give
much information if ||v|| is much greater than ||ul|.



The solution

Let u and v be distinct points in S lying in the same cone with
[lul] < ||v||- Then we can apply Frobenius a number of times to get a
new point v’ € S such that

< S VR or < i < VB

where v’ = pKu for some integer k > 0. To see this, we can construct k
explicitly as follows: define a € R such that HCH = p®. Then k is an

1
integer such that |a — k| < 3.

Now we are in the position to apply Lemma 10(ii). This implies that

1<
IIUII

<100o0r1<

< 100.



The solution 1l

Conclusion: for every family {pku}kzo of points in S in a given cone we
can pick a special member u’ in such a way that all the v’ chosen this
way are close in the sense that:

vl

1< <
[|u]]

100.

<100o0r1<

Now apply the gap principle to conclude that there are a bounded
number of families in each cone. This completes the proof.



Questions?



