Biostatistics 600

Day 2 Packet Contents

Sept 3, 2009

P2. How to Use a Permanent SAS Data Set
P8. How to Create a Permanent SAS Data Set
P14. Overview of Data Management Tasks
P23. Basic One-Sample and Two-Sample Statistical Tests Using SAS
P39. Statistical Graphics Using SAS 9.2

How to Use a Permanent SAS Data Set
(commands=useperm.sas)

Introduction:

This chapter discusses using permanent SAS data sets from different releases of SAS on Windows. In general, SAS data sets are downwardly compatible across releases (e.g. SAS 9, SAS 8, SAS 7, SAS 6); a later release of SAS can generally read data sets from an earlier release by specifying the correct engine to read the data set.
The SAS data sets discussed in this handout are contained in two Zipped Files: SASDATA1.ZIP (Version 6 SAS data sets) and SASDATA2.ZIP (Version 8/9 SAS data sets). These two zipped files can be found on my web page: http://www.umich.edu/~kwelch. Specific information on the contents of each of these data sets can be obtained in the handout “Data Descriptions.doc”, also on my web page.

SASDATA1.ZIP contains the following version 6 SAS data sets:

· FITNESS.SD2

· GPA.SD2

· MARCH.SD2

· SURVEY.SD2

SASDATA1.ZIP also contains a version 6 formats catalog, FORMATS.SC2, which will not be discussed in this handout.

SASDATA2.ZIP contains the following SAS version 8/9 data sets:

· autism_demo.sas7bdat

· autism_socialization.sas7bdat

· bank.sas7bdat

· baseball.sas7bdat

· business.sas7bdat

· employee.sas7bdat

· iris.sas7bdat

· tecumseh.sas7bdat

· wave1.sas7bdat

· wave2.sas7bdat

· wave3.sas7bdat

· ship.sd7 (version 7/8 short file extension)

Plus, a SAS transport file:

· owen.xpt.

The ship.sd7 data set has what is called a “short file extension”. The name of this file will need to be changed to ship.sas7bdat before it can be read using SAS release 9.

Some definitions:

Library:

A library is a location on your computer (i.e.,. a folder or directory) where SAS data sets are stored. Because a library refers to the entire folder (not to an individual data set), one library can have several data sets stored in it, and it is possible for them to be of mixed types. However, a particular engine assigned to a given folder will only "SEE" files of one type. It is good practice to keep SAS data sets of different types in different folders.

Default Library: Work, the temporary library, is the default library that SAS assumes if no libname is specified for a data set. .
Engine:

An engine tells SAS the type of files it is to read. Some engines that you can use are:

· V9 the default engine for SAS release 9 (.sas7bdat) data sets (the V8 engine works, too)

· V8 the default engine for SAS release 8 (.sas7bdat) data sets

· V6 the engine used to read/write SAS release 6.08 through 6.12 (.sd2) data sets

· V604 to read (but not write) data sets created using PC SAS release 6.04 (.ssd) data sets

Default engine: If you do not assign an engine to a library, the default engine will be the engine corresponding to the release of the data sets found in the folder. If there are no data sets in a folder, the default engine will be the the current version of SAS; i.e., if you are running SAS 9.1 or 9.2, SAS will automatically use the V9 engine, etc.
If there are data sets of mixed types within a folder, SAS will assign the engine corresponding to the highest version compatible with any of the data sets in the folder. So if there are both V6 and V9 data sets in a folder, SAS will assign the V9 engine to read data from that folder. To read V6 data sets from a folder containing both V6 and V9 data sets, the V6 engine must be used explicitly. To avoid confusion, we highly recommend including only one type of data sets within any given folder.

Step-By-Step Instructions for Using a Permanent SAS Data Set:

1. Determine the File type: The first step in using a SAS data set is to determine what type of file it is (i.e. the operating system from which it originated and the SAS release or engine used to create it). The table below shows the file extensions used by SAS to distinguish between data sets created on different operating systems using different releases of SAS.

Operating System
SAS Release
 Extension
Example

Windows V7.0 to V9.0
 .sas7bdat* business.sas7bdat

Windows V7.0 to V8.0
 .sd7** ship.sd7

Windows

V6.08 to V6.12
.sd2

fitness.sd2

Unix

V6.06 to V6.12
.ssd01
mydata.ssd01

Macintosh

V6.10 to V6.12
.ssd01
mydata.ssd01

DOS

V6.04
(PC SAS)
.ssd

mydata.ssd

 * .sas7bdat is the default data set extension for SAS Windows release 7, 8, and 9..

** .sd7 extension files cannnot be read by SAS Windows release 9. If you have SAS data sets that end in the .sd7 file extension, rename them to .sas7bdat before trying to use them in SAS.
(NB: If you cannot see the file extensions of the SAS data sets on your computer: Go to Windows Explorer or My Computer. Select Tools…Folder Options…View. Make sure that “Hide file extensions for known file types” is NOT selected.)
2. Assign a Library Name and Engine, using either a Libname Statement, or the Assign New Libraries Icon:
Assigning a libref using a Libname statement:

The libname statement assigns an alias (called a libref) to a directory that you specify. The directory must already exist The libref name that you assign must be 8 characters or less to be valid in SAS. You can assign any number of libname statements in a given SAS session. Two examples of libname statements are shown below:

libname sasdata2 V9 "c:\sasdata2";

libname sasdata1 V6 "c:\sasdata1";

In the first libname statement, the libref, SASDATA2, and the V9 engine are assigned to the folder: c:\sasdata2. This will allow SAS to read any SAS release 8/9 (.sas7bdat) files included in this folder.

In the second libname statement, the libref, SASDATA1, and the V6 engine are assigned to the folder: c:\sasdata1. This will allow SAS to read any SAS release 6 (.sd2) files included in this folder.

NB: Be sure to highlight and submit the libname statement for it to take effect. The libname statement will remain in effect for your entire SAS session. If you restart SAS, you will need to resubmit the libname statement. The libname does not have to be the same as the folder where you have stored your dataset, although it is helpful to remember it that way.
Assigning a library using the New Library icon:

Click on the New Library icon, and in the Name: Dialog box, specify the name of the library you wish to assign. Choose the appropriate Engine from the drop-down menu. Then browse to the location of the folder you wish to assign. To make sure a library will still be assigned in a later session, select “Enable at startup”. This option will work on your personal computer, but will not take effect at the Public Computing Sites.

3. Specify a two-level name for the permanent SAS data sets you wish to use in any Proc Steps or Data Steps, as shown in the examples below. The two-level name is of the form libname.datasetname. Note that there are no spaces between the libname and the dataset name.
Examples:

Suppose you have unzipped the data sets in SASDATA2.ZIP to the folder c:\sasdata2. Here is how you can submit a libname statement so you can utilize the datasets in this folder.
libname sasdata2 V9 "c:\sasdata2";

SAS will not produce any output in the output window as a result of submitting these commands, but you will see the following note in the SAS Log.

libname sasdata2 V9 "c:\sasdata2";

NOTE: Libref SASDATA2 was successfully assigned as follows:

 Engine: V9

 Physical Name: c:\sasdata2

Once the libname statement has been submitted (no run statement is necessary), you will be able to use any of the SAS release 9 data sets in the c:\sasdata2 folder. You will need to specify the data set to use with the data= option for each procedure. The libname statement will be in effect for the entire SAS session, and so it only needs to be submitted once.

title "Business data set";

proc means data=sasdata2.business;

run;

title "Iris data set";

proc means data=sasdata2.iris;

run;

If you wish to use the version 6 (.sd2) data sets that have been unzipped into the c:\sasdata1 folder, you will need to submit another libname statement, and then use the two-level name of any data set you wish to use.

libname sasdata1 V6 "c:\sasdata1";

title "GPA data set";

proc means data=sasdata1.gpa;

run;

title "Fitness data set";

proc means data=sasdata1.fitness;

run;

To get the contents of all version 9 SAS data sets in the sasdata2 library.:
proc contents data=sasdata2._all_ ;

run;

Make sure there are no blanks in the sasdata._all_ portion of your command. You can use similar commands to view the contents of the sasdata1 library.

Assigning a Default Data Set:
A default data set can be assigned with an options _last_= statement after a libname statement. (Be sure you have no blanks in _last_.) This allows you to utilize the same data set without having to specify it for each procedure. In the example below, sasdata1.fitness will be used for all procedures.

options _last_=sasdata2.baseball;

title "SASDATA2.BASEBALL Data Set";
proc means;

run;

proc freq;

 tables team;

run;

proc reg;

 model salary = cr_home;

run;

quit;

The default data set will be in effect until a new one is specified with another options statement, or until another new data set is created.

Note on Using Permanent Data Sets in SAS Release 8 and 9:

You can specify permanent SAS data sets to use by giving the complete path and file name in quotes, starting with SAS release 8. This avoids the libname statement, but does not allow a default data set to be specified. Data set options (e.g., obs=) can still be specified in parentheses after the quoted file name.

title "SASDATA2.IRIS Data Set";

proc freq data="c:\sasdata2\iris.sas7bdat";

 tables species;

run;
proc print data="c:\sasdata2\iris.sas7bdat"(obs=10);

run;

How to Open a Permanent SAS Data set in SAS/INSIGHT:

Activate SAS/INSIGHT. In the dialog box that appears choose the library that you wish to use (e.g. SASDATA2), then double-click on the data set that you wish to open (e.g. BUSINESS). To open another data set, simply go to File…Open…and choose the data set to open.

How to create a temporary SAS data set from a permanent one:

Many SAS users simply create a temporary SAS data set to use in a given session. This temporary data set becomes the default automatically.

data business;

 set sasdata2.business;

run;

title "Business data set";

proc means data=business;

run;

This method has the advantage of allowing you to work with a temporary SAS data set, which is often simpler than working with a permanent one. But it can be cumbersome if you have a large data set, because it creates a whole new copy of the data in the WORK library.

How to de-assign a library:

Use the libname statement with the option clear to de-assign a library. The library assignment will be cleared, but the data sets in the library will not be affected. Do not specify an engine here.
libname sasdata1 clear;

Automatically assign libnames using the Autoexec.sas file:

The library or libraries that you wish to use must be re-assigned for each session, if you assign them using a libname statement. To have SAS remember your libraries from one run to another, you can create a file called autoexec.sas, and place the libname statements in it, as shown below. Each time SAS starts up, it will read the autoexec.sas file, and assign the appropriate libraries.

libname sasdata1 V6 "c:\sasdata1";

libname sasdata2 v9 "c:\sasdata2";

If you place the autoexec.sas file in the directory from which SAS is running, SAS will read it and execute the commands it contains each time it starts up. However, if you save the autoexec.sas file in another location, you can specify it as an option in the SAS shortcut. An example SAS shortcut is shown below, followed by the notes in the SAS Log.

"C:\Program Files\SAS\SAS 9.1\sas.exe" -CONFIG "C:\Program Files\SAS\SAS 9.1\nls\en\SASV9.CFG" –AUTOEXEC “c:\temp\autoexec.sas”

NOTE: AUTOEXEC processing beginning; file is c:\temp\autoexec.sas.

NOTE: Libref SASDATA1 was successfully assigned as follows:

 Engine: V6

 Physical Name: c:\temp\sasdata1

NOTE: Libref SASDATA2 was successfully assigned as follows:

 Engine: V9

 Physical Name: c:\temp\sasdata2

NOTE: AUTOEXEC processing completed
 How to Create a Permanent SAS Data Set

(commands=saveperm.sas)

Introduction:

A permanent SAS data set is saved to a location where it can be retrieved and used later, without having to recreate it each time you restart SAS. In addition, transformations, recodes and other data manipulations are saved and do not need to be re-run every time the data set is used. Several people can share the same permanent data set over a network.

There are two steps necessary to create a permanent SAS data set:

· Assign a library and engine.

· Create the data. Be sure to assign both a library (other than WORK) and data set name to make the data set permanent.

A library is a location on your computer (e.g. a folder or directory) where SAS data sets and other SAS files are stored. A library usually refers to the entire folder and not to individual data sets. One library can have several data sets stored in it. The libname statement is used to define a library. An engine tells SAS the type of files that it is to write. See Chapter 8 for more information about libraries and engines.

It is highly recommended that you store only one type of SAS data set in a given folder.

Create a Permanent SAS data set using a Data Step:

Suppose you wish to store your SAS data sets in the c:\temp\sasdata2 directory. First submit a libname statement from the program editor. The libname statement assigns a name (called a libref) to the directory that you specify.

Note: the libname statement must point to a folder that already exists. Be sure to create the folder if it does not already exist.

libname sasdata2 V9 "c:\sasdata2";

data sasdata2.pulse;

 infile "pulse.dat";

 input pulse1 pulse2 ran smokes sex height weight activity;

run;

Sasdata2.pulse, will contain all variables originally read into SAS using the input statement, plus any new variables that you create. It will now be the default dataset.
Create a Permanent SAS data set using the Import Wizard:
To make a permanent SAS data set using the Import Wizard, you must first submit a libname statement from the Program Editor Window (see discussion of the libname statement above). The data set can then be saved in the (pre-defined) library in the “Select library and member” window of the Import Wizard. For example, the libname statement below can be submitted from the Program Editor Window to define the sasdata2 library.

libname sasdata2 V9 "c:\sasdata2";

From the pull-down menu in the Library box, choose SASDATA2 as the library. Then type the data set name, PULSE, in the Member dialog box:

[image: image1.png]SAS - [Import Wizard - Select library and membe;

B4 File View Tools Solutions Window Help

vl]

=Y By DB 4208

[P Resuilts -
() Univariate: The Sa¢
5 Univariate: The Sa¢
%@ Print: Flights to Los.
(@9 Print: Missing Desti
w) Print: Flights Less t
(@9 Print: Flights Betwe
w5 Print: Flights to Dal
g9 Means: Flights to D
(@ Contents: Flights to,
@ Contents: Flights to
@ Print: Flights on Ma
(@9 Print: Flights Betwe
2 (@9 Print: Missing Date
(&3 Means: Missing Dat
(&3 Means: Missing Dat
(&3 Means: Missing Dat
(&3 Means: Missing Dat
(2 (@9 Print; Missing Date
(@3 Freq: Missing Date
(&5 Means: Missing Dat
(&3 Means: Missing Dat
(2 (@9 Print; Missing Date
(@3 Freq: Missing Date
(&3 Means: Missing Dat
(&9 Contents: Cantents
(&9 Contents: Contents
(@3 Means: SASDATAZ
(&5 Freq: SASDATAZE.
(&5 Reg: SASDATAZBA
% 89 Means: SASDATAZ v
< | >

sa5
Ipott/E spott
Facily

545 Destination

Chase the SAS destinaton

Libary:

[<aspaTaz

Member

Help

| Comcel | <Back | [[Hews

Eiish_|

& rnis [Eroer

Output ...

) Log - ...

1§ GRAPHI....

@ useper...

[Exit the wizard|

@ saveper...

mport

S C:Documents and Settings'athy

The data set sasdata2.pulse will now be the default, because it was the most recent one created by SAS in this current session. It can be used without referring to its name in the current session.

proc means;

run;

proc freq;

 tables sex ran smokes;

run;

Or you can refer to the data set using its two-level name by specifying a data= option.
proc means data=sasdata2.pulse;

run;

proc freq data=sasdata2.pulse;

 tables sex ran smokes;

run;

Create a Permanent SAS data set using Proc Import:
You can also import an Excel file using Proc Import syntax. Type the two-level name as the value for the out= keyword, as shown below. (The syntax below was saved from importing the file PULSE.XLS using the Import Wizard.)

libname sasdata2 V9 "c:\sasdata2";
PROC IMPORT OUT= SASDATA2.PULSE

 DATAFILE= "c:\temp\labdata\PULSE.XLS"

 DBMS=EXCEL REPLACE;

 SHEET="pulse$";

 GETNAMES=YES;

 MIXED=NO;

 SCANTEXT=YES;

 USEDATE=YES;

 SCANTIME=YES;

RUN;

Create a Permanent SAS Data Set as Output from Another Procedure:
Many SAS procedures can create output data sets to be used later. For example, when running Proc Reg, an output data set can be created containing the predicted values and residuals from a fitted model. The commands below show how to create a permanent SAS data set, named sasdata2.resids, as output from Proc Reg. Note that the libname statement must be submitted first:

libname sasdata2 V9 "c:\temp\labdata";

proc reg data=sasdata2.pulse;

 model pulse2 = pulse1 ;

 output out = sasdata2.resids p=predict r=resid rstudent=rstudent;

run;

quit;

The following note is produced in the SAS Log:

180 proc reg data=sasdata2.pulse;

181 model pulse2 = pulse1 ran;

182 output out = sasdata2.resids p=predict r=resid rstudent=rstudent;

183 run;

183 quit;

NOTE: The data set SASDATA2.RESIDS has 92 observations and 15 variables.

NOTE: PROCEDURE REG used (Total process time):

 real time 0.06 seconds

 cpu time 0.06 seconds
The sasdata2.resids data set can now be used to check the distribution of the residuals, using Proc Univariate, as shown below:

proc univariate data=sasdata2.resids;

 var resid;

 histogram;

 qqplot / normal (mu=est sigma=est);

run;

Note that the data set, sasdata2.resids will now be the default data set, because it was the most recently created data set in the current session of SAS.
How to Use a Permanent SAS Data Set in Later Runs of SAS:
To use a permanent SAS data set in later runs of SAS, you must submit a libname statement, and refer to the data set by its two-level name:

libname sasdata2 V9 "c:\sasdata2";

proc means data=sasdata2.pulse;

run;

proc freq data=sasdata2.pulse;

 tables ran smokes;

run;
How to delete a permanent SAS data set:

There are 3 basic ways to do delete a permanent SAS data set. 1) Go to the SAS Explorer and delete the files by right-clicking a file name and choosing delete. 2) Go to the Windows Explorer and delete the SAS data sets. 3) Use Proc Datasets, as shown in the example below:

libname sasdata2 V9 "c:\sasdata2";
proc datasets library=sasdata2;

 delete pulse;

 delete resids;

run;

quit;

This procedure does not produce any output, but generates the following information in the SAS Log:

217 proc datasets library=sasdata2;

 Directory

 Libref SASDATA2

 Engine V9

 Physical Name c:\temp\sasdata2

 File Name c:\temp\sasdata2

 Member File

 # Name Type Size Last Modified

 1 BASEBALL DATA 82944 20Jun02:07:12:32

 2 BUSINESS DATA 17408 20Jun02:07:12:32

 3 IRIS DATA 13312 20Jun02:07:12:32

 4 PULSE DATA 17408 14Aug06:16:00:17

 5 RESIDS DATA 25600 14Aug06:16:00:25

 6 TECUMSEH DATA 1147904 02Jun05:00:00:04

218 delete pulse;

219 delete resids;

220 run;

NOTE: Deleting SASDATA2.PULSE (memtype=DATA).

NOTE: Deleting SASDATA2.RESIDS (memtype=DATA).

221 quit;

NOTE: Deleting SASDATA2.PULSE (memtype=DATA).

198 quit;

NOTE: PROCEDURE DATASETS used (Total process time):

 real time 0.11 seconds

 cpu time 0.01 seconds
These data sets will be permanently deleted from the folder. To get them back, you must explicitly re-create them.

You can also delete data sets interactively by going to the libraries window and right-clicking on the file, and then selecting delete. This will also permanently delete a data set.

Overview of Data Management Tasks

(command file=datamgt.sas)
Create the March data set:
To create the March data set, you can read it from the MARCH.DAT raw data file, using a data step, as shown below.

data march;

 infile "marflt.dat";

 input flight 1-3
 @4 date mmddyy6.

@10 time time5.

orig $ 15-17

dest $ 18-20

@21 miles comma5.

mail 26-29

freight 30-33

boarded 34-36

transfer 37-39

nonrev 40-42

deplane 43-45

capacity 46-48;

format date mmddyy10. time time5. miles comma5.;

run;

Or, you can import the March.xls file from Excel, using the Import Wizard (commands not shown)..

Make a copy of a SAS data set:

You can use a set statement to make a copy of a data set. In the commands below, NEWMARCH is created by making an exact copy of MARCH (which we assume was created as a temporary data set in the current SAS session).

data newmarch;

 set march;

run;

A set statement can also be used to make a copy of a permanent SAS data set:

libname sasdata2 "c:\sasdata2";

data sasdata2.business2;

 set sasdata2.business;

run;

Additional commands can be added to the data step to create new variables, or to modify the data set in other ways.

data newmarch;

 set march;

 /*additional SAS statements*/

run;

NB: be sure all changes that you wish to make to your new data set are included before the run statement! After the run statement, the data set will be closed, and no additional variables can be added, or changes made to the data set.
Create a subset of data:
You can easily create a subset of your data by using the set statement along with a subsetting if statement. The subsetting if statement acts as a gateway for allowing observations to be written to a data set. In the examples below, the data set named MARCH15 will contain information on flights only on March 15th, 1990, while the data set named LONDON will contain information on all flights to London, and the data set named LONGFLT will contain information on all flights of 1000 miles or more..

data march15;

 set march;

 if date = "15MAR1990"D;

run;

data london;

 set march;

 if dest="LON";

run;

data longflt;

 set march;

 if miles >=1000;

run;

NB: The subsetting if can be used at any place in your data step code. It will only take effect when the data set is written out.

Another way to select cases to be included in a data set is to use an output statement. It is important to note that the output statement takes effect immediately (at the point in your code where it is included). Any commands that are added after the output statement will not affect the cases that were output earlier.

WRONG:

data london_latemarch;

 set march;

 if dest="LON" and date >="15MAR1990"D then output;

 totpassngrs = boarded + transfer + nonrev;

 pctfull = (totpassngrs/capacity)*100;

run;

The data set LONDON_LATEMARCH will contain flights to London on or after March 15th, the new variables TOTPASSNGRS and PCTFULL will be included in the new data set, but they will not have any values in them, because they were defined after the output statement. To correct this problem, make the output statement the last statement in the data step.
RIGHT:

data london_latemarch2;

 set march;
 totpassngrs = boarded + transfer + nonrev;

 pctfull = (totpassngrs/capacity)*100;

 if dest="LON" and date >="15MAR1990"D then output;

run;

Delete CASES from a data set:
A delete statement can be used to remove a case or cases from a data set. When the case is deleted, it is permanently removed from the data set. The delete statement takes effect immediately when it is specified, so deleted cases will not be available for any later programming statements.

data shortflt;

 set march;

 if miles >=1000 then delete;

 if date=. then delete;

run;
Similar to the output statement, the delete statement takes effect at the point in the data step where it is placed.

Keep or Drop VARIABLES:
You can control the variables that are included in a SAS data set by using keep and drop statements as part of the data step. The keep and drop statements may be given at any point in the data step, and only take effect at the time the data set is written.

data march_passngrs;

 set march;

 keep date time orig dest miles boarded transfer nonrev deplane capacity;

run;
data march_passngrs2;

 set march;

 drop mail freight;

run;
Create new variables using transformations and recodes:

New variables can be created using transformations and recodes of variables in the data step using assignment statements with SAS functions, or if…then statements. Assignment statements (shown below) are used to create new variables based on the value of previously defined variables, expressions, or constants, and are of the form:

newvar = expression;

Example:

data march_recode;

 set march;

 totpassngrs = boarded + transfer + nonrev;

 empty_seats = capacity – totpassngrs;

 totnonpass = mail + freight;

 pctfull = (totpassngrs/capacity)*100;

 logpassngrs = log(totpassngrs);

 totpassngrs2 = sum(boarded,transfer,nonrev);

 int_pctfull = int(totpassngrs/capacity)*100;

 rnd_pctfull = round(pctfull,.1);

 if pctfull = 100 then full_flight = 1;

 else full_flight = 0;

 if pctfull = . then full_flight = .;

 if pctfull not=. then do;

 if pctfull < 25 then full_cat = 1;

 if pctfull >=25 and pctfull <50 then full_cat=2;

 if pctfull >=50 and pctfull <75 then full_cat=3;

 if pctfull >=75 then full_cat=4;

 end;

 if dest = "CPH" or dest="FRA" or dest = "LON"

 or dest = "PAR" or dest = "YYZ" then USA = 0;

 if dest in("DFW", "LAX", "ORD", "WAS") then USA = 1;

run;

Check the new variables using Proc Means and Proc Freq:

title "Check New Variables";

proc means data=march_recode;run;

proc freq data=march_recode;

 tables full_flight full_cat dest USA;

run;

 Check New Variables

 The MEANS Procedure

 Variable Label N Mean Std Dev Minimum Maximum

 --

 flight Flight number 635 447.9086614 275.3102085 114.0000000 982.0000000

 date 634 11031.98 8.9801263 11017.00 11047.00

 time 635 47952.47 14707.08 24960.00 75960.00

 miles 635 1615.25 1338.47 229.0000000 3857.00

 mail 634 381.0031546 74.6288128 195.0000000 622.0000000

 freight 634 333.9511041 98.1122248 21.0000000 631.0000000

 boarded 633 132.3570300 43.4883098 13.0000000 241.0000000

 transfer 635 14.4062992 5.3362008 0 29.0000000

 nonrev 635 4.1133858 1.9243731 0 9.0000000

 deplane 635 146.7842520 45.4289656 18.0000000 250.0000000

 capacity 635 205.3795276 27.1585929 178.0000000 250.0000000

 totpassngrs 633 150.8878357 43.0930520 31.0000000 250.0000000

 empty_seats 633 54.5244866 34.9192529 0 151.0000000

 totnonpass 633 715.1927330 124.8981261 341.0000000 1085.00

 pctfull 633 73.0774908 17.7696598 17.2222222 100.0000000

 logpassngrs 633 4.9681880 0.3292127 3.4339872 5.5214609

 totpassngrs2 635 150.4598425 43.6959260 9.0000000 250.0000000

 int_pctfull 633 8.3728278 27.7198922 0 100.0000000

 rnd_pctfull 633 73.0764613 17.7693610 17.2000000 100.0000000

 full_flight 633 0.0837283 0.2771989 0 1.0000000

 full_cat 633 3.3791469 0.6785651 1.0000000 4.0000000

 USA 632 0.6819620 0.4660832 0 1.0000000

 --
The two variables, TOTPASSNGRS (n=633) and TOTPASSNGRS2(n=635) have different numbers of cases, because they were created in different ways. TOTPASSNGRS is created using the mathematical operators (+), so the resulting variable is missing if the value of any of the variables in the expression is missing. TOTPASSNGRS2 returns the sum of the non-missing argument variables, so it produces the sum of any non-missing argument variables.

Also note the syntax used to create the new variables, FULL_FLIGHT and FULL_CAT. When using “Else” with SAS, all other values, including missing will be included in the Else category. We get around this by setting cases with a missing value for PCTFULL to missing in the resulting variable. We use an If…then statement when creating FULL_CAT to be sure this new variable is only created if PCTFULL is not missing (if pctfull not=. then do;). If you use an if…statement, it must be followed by an end statement.

The new variable USA is created from the character variable, DEST. The in operator is used to shorten the syntax for setting up the value of USA=1.
Sort Cases:
Use Proc Sort to sort a data set. Once sorted, a data set remains sorted, and any later analyses can be done either for the entire data set, or for subgroups by including a by statement in a procedure. A separate analysis will be done for each of the "by" groups.

proc sort data=march_recode;

 by USA; run;
title “Descriptive Statistics by US vs Non-US Destinations”;

proc means data=march_recode;

 by USA; run;
Sorting by more than one variable:

You can sort by several variables, as shown in the example below. Proc sort organizes the data so that the first variable represents the slowest changing index (i.e., cases will be sorted first by DATE, and then by levels of DEST within DATE).

proc sort data=march_recode;

 by date USA;

run;
title “Descriptive Statistics by Date and Destination”;

proc means data=march_recode;

 by date USA;

run;
Using the Tagsort Option:

Sorting is one of the more computationally intensive operations. It requires a lot of hard drive space, which can be a problem, especially for data sets with many observations and a large number of variables. You can be more efficient in sorting if you use the tagsort option. This method sorts only the key variables and then rebuilds the dataset by pulling up the appropriate observation and attaching all the rest of the variables. The tagsort method often takes longer to sort a data set, but uses less hard drive space.

proc sort data=march_recode tagsort;

 by date dest;

run;

Creating a New Sorted Data Set:

If you wish to create a new data set, and maintain the input data set in its original order, you can use the out= option on the Proc Sort statement, as shown below:

proc sort data=march_recode out=sortdat;

 by totpassngrs;

run;

Getting Rid of Duplicate Cases for the Same ID – Using the Nodupkey Option:

Proc Sort provides an easy way to get rid of duplicate cases having the same values of the key variables. Use the nodupkey option on the Proc Sort statement, as shown below. Check the log to see how many duplicates were deleted. The original data set will not be affected.

proc sort data=march_recode out=sortdat2 nodupkey;

 by date dest;

run;

Getting Rid of Duplicate Records for the Same ID – Using the Noduprec Option:

You can also ask SAS to eliminate any cases that are duplicates for all variables using the noduprec option, as shown in the code below.

proc sort data=march_recode out=sortdat3 noduprec;

 by date dest;

run;
Selecting cases for analysis:
Cases can be selected for a given analysis by using a where statement.

Selecting cases based on values of a character variable:

When selecting cases based on the value of a character variable, be sure to enclose the value or values in quotes, as shown below:

title "Flights to Los Angeles";

proc print data=march_recode;

 where dest = "LAX";

 var flight dest totpassngrs;

run;

If you wish to select the observations based on a missing value for a character variable, use quotes around a blank " " (the missing value for character variables).

title "Missing Destination";

proc print data=march_recode;

 where dest = " ";

 var flight dest totpassngrs; run;

Selecting cases based on values of a numeric variable:

Cases used in an analysis may be selected based on the values of a numeric variable. The Boolean operators (<, >, <=, >=, =, ~=) may be used to get the desired case selection, as shown below. Do not use quotes when specifying the value of a numeric variable.

title "Flights Less than 30 Percent Full";

proc print data=march_recode;

 where pctfull < 30;

 var dest date pctfull;run;

Those with PCTFULL missing are also included in this case selection, because missing is evaluated as less than any numeric value.

 Flights Less than 30 Percent Full

 Obs dest date pctfull

 99 ORD 03/05/1990 28.0952

 102 WAS 03/05/1990 17.2222

 235 DFW 03/12/1990 27.2222

 390 WAS 03/19/1990 29.4444

 421 LAX 03/21/1990 .

 451 WAS 03/22/1990 18.3333

 512 WAS 03/25/1990 23.8889

The syntax below can be used to exclude the missing values from those cases printed:

title "Flights Less than 30 Percent Full";

proc print data=march_recode;

 where pctfull not=. and pctfull < 30;

 var dest date pctfull;

run;

The where statement can also be used with “between” to restrict cases used in an analysis. The example below will print those cases with percent full from 25 to 35:

title "Flights Between 25 and 35 Percent Full";

proc print data=march_recode;

 where pctfull between 25 and 35;run;

If you wish to select observations based on a missing value for a numeric variable, use a period to indicate missing, as shown in the example below.

title "Cases Where Number of Passengers is Missing";

proc print data=march_recode;

 where totpassngrs = .;

 var flight dest totpassngrs;run;

You can also select cases using a combination of character and numeric variables in the where statement:

title "Flights less than 60 percent full to London";
proc print data=march_recode;

 where (pctfull < 60) and (dest="LON") ;

 var flight dest totpassngrs capacity pctfull;run;

Selecting cases based on dates:

You can select cases for a procedure based on dates, by using a SAS date constant. Note that the date constant is specified in quotes with the day as a two-digit number, followed by a three-letter abbreviation for the month, followed by a 2 or 4-digit number for the year. A letter D (either upper or lower case) must appear after the quote to let SAS know that this is a date.

title "Flights on March 7th, 1990";

proc print data=march_recode;

 where date = "07MAR90"D;run;

You can also use "where … between" with dates to specify a range of dates:

title "Flights March 7th to March 9th , 1990";

proc print data=march_recode;

 where date between "07MAR90"D and "14MAR90"D;

run;

You can use the same method for selecting observations based on missing values for a date variable as for a numeric variable, because dates are stored as numeric values in SAS.

title "Cases with Missing Date";

proc print data=march_recode;

 where date = .;

 var flight dest date;

run;

Basic One-Sample and Two-Sample Statistical Tests Using SAS
(commands=basic_stat.sas)
The examples in this handout use the PULSE data, which is available in the labdata folder as an Excel file (PULSE.XLS), as a raw data file (PULSE.DAT), and as a CSV file (PULSE.CSV). Information on the variables in the PULSE data is included in the data set descriptions.
Read in the raw data for PULSE:
data pulse;

 infile "pulse.csv" firstobs=2 delimiter="," missover;

 input pulse1 pulse2 ran smokes sex height weight activity;

 label pulse1 = "Resting pulse, rate per minute"

 pulse2 = "Second pulse, rate per minute";

run;

/*Print out the first 25 cases*/

proc print data=pulse (obs=25);

run;

Create and assign formats to variables:
proc format;

value sexfmt 1="Male" 2="Female";

value yesnofmt 1="Yes" 2="No";

value actfmt 1="Low" 2="Medium" 3="High";

run;

proc print data=pulse (obs=25) label;

format sex sexfmt. ran smokes yesnofmt. activity actfmt.;

run;

Output from these commands is shown below:
 Resting Second

 pulse, rate pulse, rate

 Obs per minute per minute ran smokes sex height weight activity

 1 64 88 Yes No Male 66 140 Medium

 2 58 70 Yes No Male 72 145 Medium

 3 62 76 Yes Yes Male 73 160 High

 4 66 78 Yes Yes Male 73 190 Low

 5 64 80 Yes No Male 69 155 Medium

 6 74 84 Yes No Male 73 165 Low

 7 84 84 Yes No Male 72 150 High

 8 68 72 Yes No Male 74 190 Medium

 9 62 75 Yes No Male 72 195 Medium
/*Display data file information and variable lists */
proc contents data=pulse varnum;

run;

 The CONTENTS Procedure

 Data Set Name WORK.PULSE Observations 92

 Member Type DATA Variables 8

 Engine V9 Indexes 0

 Created Tue, Sep 12, 2006 02:54:34 PM Observation Length 64

 Last Modified Tue, Sep 12, 2006 02:54:34 PM Deleted Observations 0

 Protection Compressed NO

 Data Set Type Sorted NO

 Label

 Data Representation WINDOWS_32

 Encoding wlatin1 Western (Windows)

 Engine/Host Dependent Information

Data Set Page Size 8192

Number of Data Set Pages 1

First Data Page 1

Max Obs per Page 127

Obs in First Data Page 92

Number of Data Set Repairs 0

File Name C:\DOCUME~1\kwelch\LOCALS~1\Temp\SAS Temporary

 Files_TD1744\pulse.sas7bdat

Release Created 9.0101M3

Host Created XP_PRO

 Variables in Creation Order

 # Variable Type Len Label

 1 pulse1 Num 8 Resting pulse, rate per minute

 2 pulse2 Num 8 Second pulse, rate per minute

 3 ran Num 8

 4 smokes Num 8

 5 sex Num 8

 6 height Num 8

 7 weight Num 8

 8 activity Num 8
proc means data=pulse;

run;

 The MEANS Procedure

 Variable Label N Mean Std Dev Minimum Maximum

 --

 pulse1 Resting pulse, rate per minute 92 72.8695652 11.0087052 48.0000000 100.0000000

 pulse2 Second pulse, rate per minute 92 80.0000000 17.0937943 50.0000000 140.0000000

 ran 92 1.6195652 0.4881540 1.0000000 2.0000000

 smokes 92 1.6956522 0.4626519 1.0000000 2.0000000

 sex 92 1.3804348 0.4881540 1.0000000 2.0000000

 height 92 68.7391304 3.6520943 61.0000000 75.0000000

 weight 92 145.1521739 23.7393978 95.0000000 215.0000000

 activity 92 2.1195652 0.5711448 1.0000000 3.0000000

 --
One-Sample Tests:

Binomial Confidence Intervals and Tests for Binary Variables:

If you have a categorical variable with only two levels, you can use the binomial option to request a 95% confidence interval for the proportion in the first level of the variable. In the PULSE data set, SMOKES=1 indicates those who were smokers, and SMOKES=2 indicates non-smokers. Use the (p=) option to specify the null hypothesis proportion that you wish to test for the first level of the variable. In the commands below, we test hypotheses for the proportion of SMOKES=1 (i.e., proportion of smokers) in the population. By default SAS produces an asymptotic test of the null hypothesis:

H0: proportion of smokers = 0.25
HA: proportion of smokers (0.25
proc freq data = pulse;

 tables smokes / binomial(p=.25);

run;
 smokes
 Cumulative Cumulative

 smokes Frequency Percent Frequency Percent

 1 28 30.43 28 30.43

 2 64 69.57 92 100.00

 Binomial Proportion

 for smokes = 1

 Proportion 0.3043

 ASE 0.0480

 95% Lower Conf Limit 0.2103

 95% Upper Conf Limit 0.3984

 Exact Conf Limits

 95% Lower Conf Limit 0.2127

 95% Upper Conf Limit 0.4090

 Test of H0: Proportion = 0.25

 ASE under H0 0.0451

 Z 1.2039

 One-sided Pr > Z 0.1143

 Two-sided Pr > |Z| 0.2286

 Sample Size = 92

If you wish to obtain an exact binomial test of the null hypothesis, use the exact statement.

proc freq data = pulse;

 tables smokes / binomial(p=.25);

 exact binomial;

run;

This results in an exact test of the null hypothesis, in addition to the default asymptotic test.

 Exact Test

 One-sided Pr >= P 0.1399

 Two-sided = 2 * One-sided 0.2797
Chi-square Goodness of Fit Tests for Categorical Variables:

Use the chisq option in the tables statement to get a chi-square goodness of fit test, which can be used for categorical variables with two or more levels. By default SAS assumes that you wish to test the null hypothesis that the proportion of cases is equal in all categories. In the variable ACTIVITY, a value of 1 indicates a low level of activity, a value of 2 is a medium level of activity, and a value of 3 indicates a high level of activity.

proc freq data = pulse;

 tables activity / chisq;

run;

 activity

 Cumulative Cumulative

 activity Frequency Percent Frequency Percent

 1 10 10.87 10 10.87

 2 61 66.30 71 77.17

 3 21 22.83 92 100.00

 Chi-Square Test

 for Equal Proportions

 Chi-Square 46.9783

 DF 2

 Pr > ChiSq <.0001

 Sample Size = 92
If you wish to specify your own proportions, use the testp = option in the tables statement. This option allows you to specify any proportions that you wish to test for each level of the variable in the tables statement, as long as the sum of the proportions equals 1.0. In the example below we test the null hypothesis:

H0: P1 = 0.20, P2=.50, P3=.30
proc freq data = pulse;

 tables activity /chisq testp = (.20 , .50, .30);

run;

 The FREQ Procedure

 activity

 Test Cumulative Cumulative

 activity Frequency Percent Percent Frequency Percent

 1 10 10.87 20.00 10 10.87

 2 61 66.30 50.00 71 77.17

 3 21 22.83 30.00 92 100.00

 Chi-Square Test

 for Specified Proportions

 Chi-Square 10.3043

 DF 2

 Pr > ChiSq 0.0058

 Sample Size = 92

You may also specify percentages to test, as long as they add up to 100 percent:

proc freq data = pulse;

 tables activity /chisq testp = (20 , 50, 30);

run;
One-Sample test for a continuous variable:
You can use Proc Univariate to carry out a one-sample t-test to test the population mean against any null hypothesis value you specify by using mu0= option. The default, if no value of mu0 is specified is that mu0 = 0. In the commands below, we test:

H0: (0=72

HA: (0(72

Note that SAS also provides the non-parametric Sign test and Wilcoxon signed rank test.

proc univariate data=pulse mu0=72;

var pulse1;

histogram / normal (mu=est sigma=est);

qqplot /normal (mu=est sigma=est);

run;
Selected output from Proc Univariate:

 Proc Univariate

 Tests for Location: Mu0=72

 Test -Statistic- -----p Value------

 Student's t t 0.757635 Pr > |t| 0.4506

 Sign M -3 Pr >= |M| 0.5900

 Signed Rank S 96.5 Pr >= |S| 0.6797
[image: image2.emf]52 60 68 76 84 92 100

0

5

10

15

20

25

30

P

e

r

c

e

n

t

Resting pulse, rate per minute

 [image: image3.emf]-3 -2 -1 0 1 2 3

40

50

60

70

80

90

100

R

e

s

t

i

n

g

p

u

l

s

e

,

r

a

t

e

p

e

r

m

i

n

u

t

e

Normal Quantiles

Equivalently, we can carry out a one-sample t-test in Proc Ttest by specifying the H0= option.:

proc ttest data=pulse H0=72 ;

 var pulse1;

run;
 Variable: pulse1 (Resting pulse, rate per minute

 N Mean Std Dev Std Err Minimum Maximum

 92 72.8696 11.0087 1.1477 48.0000 100.0

 Mean 95% CL Mean Std Dev 95% CL Std Dev

 72.8696 70.5897 75.1494 11.0087 9.6155 12.8779

 DF t Value Pr > |t|

 91 0.76 0.4506
Chi-Square Tests of Independence:

Two by Two Table:

If you wish to examine the relationship between two categorical variables, you can use Proc Freq. Use the chisq option to obtain the Pearson chi-square test of independence (or of homogeneity), and use the expected option to get the expected value in each cell. The commands below can be used to get a cross-tabulation. In this case, we have a 2 by 2 table, because each categorical variable has two levels. We test:

H0: SEX is independent of SMOKING STATUS
HA: SEX is not independent of SMOKING STATUS

proc freq data=pulse;

 tables sex*smokes / chisq;

run;

Note that Fisher’s exact test is produced by default for a 2 x 2 table, when the chisq option is specified. Read either the one-sided or two-sided p-value for the Fisher’s exact test:

 The FREQ Procedure

 Table of sex by smokes

 sex smokes

 Frequency|

 Expected |

 Percent |

 Row Pct |

 Col Pct | 1| 2| Total

 ---------+--------+--------+

 1 | 20 | 37 | 57

 | 17.348 | 39.652 |

 | 21.74 | 40.22 | 61.96

 | 35.09 | 64.91 |

 | 71.43 | 57.81 |

 ---------+--------+--------+

 2 | 8 | 27 | 35

 | 10.652 | 24.348 |

 | 8.70 | 29.35 | 38.04

 | 22.86 | 77.14 |

 | 28.57 | 42.19 |

 ---------+--------+--------+

 Total 28 64 92

 30.43 69.57 100.00

 Statistics for Table of sex by smokes

 Statistic DF Value Prob

 --

 Chi-Square 1 1.5321 0.2158

 Likelihood Ratio Chi-Square 1 1.5699 0.2102

 Continuity Adj. Chi-Square 1 1.0089 0.3152

 Mantel-Haenszel Chi-Square 1 1.5154 0.2183

 Phi Coefficient 0.1290

 Contingency Coefficient 0.1280

 Cramer's V 0.1290

 Fisher's Exact Test

 Cell (1,1) Frequency (F) 20

 Left-sided Pr <= F 0.9310

 Right-sided Pr >= F 0.1576

 Table Probability (P) 0.0886

 Two-sided Pr <= P 0.2502

 Sample Size = 92
R by C Table:

If you have a table with more than two rows, and/or more than two columns, you can still specify chi-square test of independence by using the chisq option. In this example, we have a 2 by 3 table.

proc freq data = pulse;

 tables sex * activity / chisq expected nocol nopercent;

run;

 The FREQ Procedure

 Table of sex by activity

 sex activity

 Frequency|

 Expected |

 Row Pct | 1| 2| 3| Total

 ---------+--------+--------+--------+

 1 | 6 | 35 | 16 | 57

 | 6.1957 | 37.793 | 13.011 |

 | 10.53 | 61.40 | 28.07 |

 ---------+--------+--------+--------+

 2 | 4 | 26 | 5 | 35

 | 3.8043 | 23.207 | 7.9891 |

 | 11.43 | 74.29 | 14.29 |

 ---------+--------+--------+--------+

 Total 10 61 21 92

 Statistics for Table of sex by activity

 Statistic DF Value Prob

 --

 Chi-Square 2 2.3641 0.3067

 Likelihood Ratio Chi-Square 2 2.4827 0.2890

 Mantel-Haenszel Chi-Square 1 1.4339 0.2311

 Phi Coefficient 0.1603

 Contingency Coefficient 0.1583

 Cramer's V 0.1603

/*SAME TEST, BUT for non-smokers only*/

proc freq data=pulse;

tables sex * activity /nopercent nocol expected chisq;

where smokes=2;run;

 The FREQ Procedure

 Table of sex by activity

 sex activity

 Frequency|

 Expected |

 Row Pct |Low |Medium |High | Total

 ---------+--------+--------+--------+

 Male | 3 | 22 | 12 | 37

 | 3.4688 | 24.281 | 9.25 |

 | 8.11 | 59.46 | 32.43 |

 ---------+--------+--------+--------+

 Female | 3 | 20 | 4 | 27

 | 2.5313 | 17.719 | 6.75 |

 | 11.11 | 74.07 | 14.81 |

 ---------+--------+--------+--------+

 Total 6 42 16 64

 Statistics for Table of sex by activity

 Statistic DF Value Prob

 --

 Chi-Square 2 2.5961 0.2731

 WARNING: 33% of the cells have expected counts less

 than 5. Chi-Square may not be a valid test.
Note the warning message in the output above, indicating that the chi-square test may not be appropriate, due to small expected counts in 33% of the cells of the table. In this case, you can use a Fisher’s exact test, by specifying the exact statement, as shown below:
/*For tables containing sparse cells, Fisher's exact test can be performed */

proc freq data=pulse;

tables sex * activity /nopercent nocol;

exact fisher;

where smokes=2;

run;
Note: read the p-value for Fisher’s exact test from the output labeled Pr <=P, at the bottom of the output, as shown in the selected output below.

 Fisher's Exact Test

 Table Probability (P) 0.0221

 Pr <= P 0.2568

If your variables have a large number of categories, or if your data set is large, you may want to use a Monte Carlo simulation to get the p-value for the Fisher’s exact test, rather than take the time and resources to calculate the exact p-value. To do this, use the mc option in the exact statement. Specify the random seed (which needs to be a positive integer <=32767) using the seed= option. Note: read the p-value from the line that says Pr <= P, not the Table Probability, which is actually the hypergeometric probability for the sample data table only.
proc freq data = pulse;
 where smokes=2;
 tables sex * activity / chisq expected;

 exact fisher / mc seed=1234;

run;
 Statistics for Table of sex by activity

 Fisher's Exact Test

 Table Probability (P) 0.0221

 Monte Carlo Estimate for the Exact Test

 Pr <= P 0.2594

 99% Lower Conf Limit 0.2481

 99% Upper Conf Limit 0.2707

 Number of Samples 10000

 Initial Seed 1234

 Sample Size = 64

Cross-Tabulations for Two Categorical Variables, Stratified by Another Variable:

To get a cross-tabulation of three variables (i.e., two variables stratified by a third variable) use syntax similar to that shown below. This syntax will produce two separate tables of SEX by ACTIVITY, one for each level of RAN. This type of syntax can be extended to produce higher-way cross-tabulations. The table produced by SAS will always be formed by the last two variables listed. All prior variables will be used to form the strata.

proc freq data = pulse;

 tables ran*sex*activity / chisq;

run;

Two-Sample Tests for a Continuous Variable:

Independent Samples t-test:

If you wish to compare the means of a continuous variable for two independent groups, you can carry out an independent samples t test. Some of the assumptions for this test are:
1) The two groups are independent.

2) The variable whose means we are interested in should be roughly normally distributed within each group. You can do a Q-Q plot to check normality for each group.

3) The variability of the observations in each of the groups should be similar. A side-by-side boxplot is helpful to check the equal variance assumption.

/*Q-Q plot can be used to check normality assumption of test variables, at each level of the grouping variable */

proc sort data=pulse;

by ran;

run;

proc univariate data=pulse;

by ran;

var pulse2;

histogram / normal;

qqplot /normal (mu=est sigma=est);

run;
[image: image4.png]®30035070

a0

£

20

25

20

15

10

60

T
s

T T
%0 108

Second pulse, rate per minute

T
120

138

[image: image5.png]Normal Quantiles

2 2 2

140]
120 1
100 1

[image: image6.png]®30035070

£

20

25

20

15

10

ran=2

52

T
60

T T
68 76

Second pulse, rate per minute

84

%2

[image: image7.png]-2

100
90 1
80 1
704
60 1
50 1

Normal Quantiles

/*Boxplot allows you to compare the test variables VISUALLY between two groups, for both location and spread */
proc sort data=pulse;

 by ran;

proc boxplot data=pulse;

plot (pulse1 pulse2) * ran;

run;
[image: image8.png]

[image: image9.png]

/*Independent samples t test*/

proc ttest data=pulse;

var pulse1 pulse2;

class ran;

run;
 The TTEST Procedure

 Statistics

 Lower CL Upper CL Lower CL Upper CL

 Variable ran N Mean Mean Mean Std Dev Std Dev Std Dev Std Err

 pulse1 Yes 35 69.672 73.6 77.528 9.2501 11.436 14.983 1.933

 pulse1 No 57 69.551 72.421 75.291 9.1319 10.817 13.269 1.4327

 pulse1 Diff (1-2) -3.537 1.1789 5.8951 9.6488 11.055 12.944 2.3739

 pulse2 Yes 35 86.007 92.514 99.022 15.323 18.943 24.819 3.202

 pulse2 No 57 69.676 72.316 74.955 8.399 9.9484 12.204 1.3177

 pulse2 Diff (1-2) 14.208 20.198 26.189 12.255 14.041 16.44 3.0152

 T-Tests

 Variable Method Variances DF t Value Pr > |t|

 pulse1 Pooled Equal 90 0.50 0.6207

 pulse1 Satterthwaite Unequal 69 0.49 0.6257

 pulse2 Pooled Equal 90 6.70 <.0001

 pulse2 Satterthwaite Unequal 45.7 5.83 <.0001

 Equality of Variances

 Variable Method Num DF Den DF F Value Pr > F

 pulse1 Folded F 34 56 1.12 0.6990

 pulse2 Folded F 34 56 3.63 <.0001
Wilcoxon rank sum test:

If you are unwilling to assume normality for your test variable or the sample size is too small for you to appeal to the central-limit-theorem, you may want to use non-parametric tests. The Wilcoxon rank sum test (also known as the Mann-Whitney test) is the non-parametric analog of the independent sample t test.

/*Non-parametric test: Wilcoxon/Mann-whitney test*/

proc npar1way data=pulse wilcoxon;

class ran;

var pulse1 pulse2;

run;
Output for PULSE2 is shown below:

 The NPAR1WAY Procedure

 Wilcoxon Scores (Rank Sums) for Variable pulse2

 Classified by Variable ran

 Sum of Expected Std Dev Mean

 ran N Scores Under H0 Under H0 Score

 Yes 35 2292.0 1627.50 124.056919 65.485714

 No 57 1986.0 2650.50 124.056919 34.842105

 Average scores were used for ties.

 Wilcoxon Two-Sample Test

 Statistic 2292.0000

 Normal Approximation

 Z 5.3524

 One-Sided Pr > Z <.0001

 Two-Sided Pr > |Z| <.0001

 t Approximation

 One-Sided Pr > Z <.0001

 Two-Sided Pr > |Z| <.0001

 Z includes a continuity correction of 0.5.
A Monte-Carlo approximation of the exact p-value can be obtained for the Wilcoxon test by using an exact statement, as shown below:

proc npar1way data=pulse wilcoxon;

class ran;

var pulse1 pulse2;

 exact wilcoxon / mc;

run;
This results I the following additional output for PULSE2. Note that if no seed is given, a seed based on the clock is used.

 Monte Carlo Estimates for the Exact Test

 One-Sided Pr >= S

 Estimate 0.0000

 99% Lower Conf Limit 0.0000

 99% Upper Conf Limit 4.604E-04

 Two-Sided Pr >= |S - Mean|

 Estimate 0.0000

 99% Lower Conf Limit 0.0000

 99% Upper Conf Limit 4.604E-04

 Number of Samples 10000

 Initial Seed 297742738
Paired Samples t-test:

If you wish to compare the means of two variables that are paired (i.e. correlated), you can use a paired sample t-test for continuous variables. You may first wish to test to see if the variables are in fact correlated.

/*PAIRED SAMPLES TESTS*/

proc corr data=pulse;

 var pulse1 pulse2;

run;

 The CORR Procedure

 2 Variables: pulse1 pulse2

 Simple Statistics

 Variable N Mean Std Dev Sum Minimum Maximum

 pulse1 92 72.86957 11.00871 6704 48.00000 100.00000

 pulse2 92 80.00000 17.09379 7360 50.00000 140.00000

 Simple Statistics

 Variable Label

 pulse1 Resting pulse, rate per minute

 pulse2 Second pulse, rate per minute

 Pearson Correlation Coefficients, N = 92

 Prob > |r| under H0: Rho=0

 pulse1 pulse2

 pulse1 1.00000 0.61620

 Resting pulse, rate per minute <.0001

 pulse2 0.61620 1.00000

 Second pulse, rate per minute <.0001

Proc ttest can be used with a paired statement, to get a paired samples t-test:

proc ttest data=pulse;

 paired pulse2*pulse1;

run;

 The TTEST Procedure

 Statistics

 Lower CL Upper CL Lower CL Upper CL

 Difference N Mean Mean Mean Std Dev Std Dev Std Dev Std Err

 pulse2 - pulse1 92 4.3406 7.1304 9.9203 11.766 13.471 15.759 1.4045

 T-Tests

 Difference DF t Value Pr > |t|

 pulse2 - pulse1 91 5.08 <.0001

The paired t-test can be carried out for each level of RAN. The commands and results of these commands are shown below:

proc sort data=pulse;

 by ran;

run;

proc ttest data=pulse;

 paired pulse2*pulse1;

 by ran;

run;
 -- ran=1 ---

 The TTEST Procedure

 Statistics

 Lower CL Upper CL Lower CL Upper CL

 Difference N Mean Mean Mean Std Dev Std Dev Std Dev Std Err

 pulse2 - pulse1 35 13.745 18.914 24.084 12.173 15.05 19.718 2.5439

 T-Tests

 Difference DF t Value Pr > |t|

 pulse2 - pulse1 34 7.44 <.0001

--- ran=2 ---

 The TTEST Procedure

 Statistics

 Lower CL Upper CL Lower CL Upper CL

 Difference N Mean Mean Mean Std Dev Std Dev Std Dev Std Err

 pulse2 - pulse1 57 -1.209 -0.105 0.9987 3.5126 4.1605 5.1039 0.5511

 T-Tests

 Difference DF t Value Pr > |t|

 pulse2 - pulse1 56 -0.19 0.8492

McNemar’s test for paired categorical data:

If you wish to compare the proportions in a 2 by 2 table for paired data, you can use McNemar’s test, by specifying the agree option in Proc Freq. Before running the McNemar’s test, we recode PULSE1 and PULSE2 into two categorical variables HIPULSE1 and HIPULSE2, as shown below:

data newpulse;

 set pulse;

 if pulse1 > 80 then hipulse1 = 1;

 if pulse1 > 0 and pulse1 <=89 then hipulse1=0;

 if pulse2 > 80 then hipulse2 = 1;

 if pulse2 > 0 and pulse2 <=89 then hipulse2=0;

run;

proc freq data=newpulse;

 tables hipulse1 hipulse2;

run;
 The FREQ Procedure

 Cumulative Cumulative

 hipulse1 Frequency Percent Frequency Percent

 0 82 89.13 82 89.13

 1 10 10.87 92 100.00

 Cumulative Cumulative

 hipulse2 Frequency Percent Frequency Percent

 0 71 77.17 71 77.17

 1 21 22.83 92 100.00

We can now carry out McNemar’s test of symmetry to see if the proportion of participants with a high value of PULSE1 is different than the proportion of participants with a high value of PULSE2.

proc freq data=newpulse;

 tables hipulse1*hipulse2/ agree;

run;
 Table of hipulse1 by hipulse2

 hipulse1 hipulse2

 Frequency|

 Percent |

 Row Pct |

 Col Pct | 0| 1| Total

 ---------+--------+--------+

 0 | 69 | 13 | 82

 | 75.00 | 14.13 | 89.13

 | 84.15 | 15.85 |

 | 97.18 | 61.90 |

 ---------+--------+--------+

 1 | 2 | 8 | 10

 | 2.17 | 8.70 | 10.87

 | 20.00 | 80.00 |

 | 2.82 | 38.10 |

 ---------+--------+--------+

 Total 71 21 92

 77.17 22.83 100.00

 Statistics for Table of hipulse1 by hipulse2

 McNemar's Test

 Statistic (S) 8.0667

 DF 1

 Pr > S 0.0045

 Sample Size = 92

Statistical Graphics
Using SAS 9.2

This handout describes the use of SAS procedures to create basic statistical graphs. The procedures introduced are:

· Proc Sgplot

· Proc Sgpanel

· Proc Sgscatter

These procedures are new to SAS 9.2. Check the SAS online documentation for more information. The files produced are .png (portable network graphics) files, which can be easily imported into other applications. Examples using traditional SAS Graphics are also included for comparison and to illustrate different methods of creating/saving the files.

Using the Employee Data Set

The permanent SAS dataset employee.sas7bdat, is used for these examples, and can be downloaded from the web site:

http://www.umich.edu/~kwelch/
· Save this data set in a folder on your desktop (or any other location you choose). Do not double-click to open it.

· Submit a libname statement to point to the folder (not the actual file) where you have saved the data set. The libname statement only needs to be submitted once when you start SAS. Be sure to change the path to the directory you want to use.

libname mylib "c:\" ;
· Check the log to see that the library (libref) was successfully assigned.

 libname mylib "c:\" ;

NOTE: Libref WORKSHOP was successfully assigned as follows:

 Engine: V9

 Physical Name: c:\

Statistical Graphics Examples
Boxplots

title "Boxplot";

title2 "No Categories";

proc sgplot data=mylib.employee;

 vbox salary;

run;
[image: image10.png]Current Salary

Boxplot
No Categories

125000

100000

75000

50000

25000

B

°

°

3

3

]

o

E
1

title "Boxplot";

title2 "Category=Gender";

proc sgplot data=mylib.employee;

 vbox salary/ category=gender;

run;

[image: image11.png]Current Salary

Boxplot
Category=Gender

25000

100000

75000

50000 {

25000

% o

Gender

m

Paneled Boxplots

title "Boxplot with Panels";

proc sgpanel data=mylib.employee;

 panelby jobcat / rows=1 columns=3 ;

 vbox salary / category= gender;

run;
[image: image12.png]Current Salary

Boxplot with Panels

Employment Categor

Employment Categony = 2

Employment Categony = 3

1250004
100000
750004
° °
. -
50000 ° 8
25000 4 %; T o
T T T T T T
' m ' m ' m

Gender

Barcharts

title "Vertical Bar Chart";

proc sgplot data=mylib.employee;

 vbar jobcat ;

run;
[image: image13.png]Frequency

Vertical Bar Chart

2

Employment Category

Stacked Bar Charts

title "Vertical Bar Chart";

title2 "Grouped by Gender";

proc sgplot data=mylib.employee;

 vbar jobcat /group=Gender;

run;

[image: image14.png]Frequency

Vertical Bar Chart
Grouped by Gender

2

Employment Category

Bar Chart with Mean and Error Bars

title "BarChart with Mean and Standard Deviation";

proc sgplot data=mylib.employee;

 vbar jobcat / response=salary limitstat = stddev

 limits = upper stat=mean;

run;

[image: image15.png]Current Salary

BarChart with Mean and Standard Deviation

80000

60000

400004

200004

Employment Category

[0 Current Salary, 1 Standard Devalion

Bar Charts for Proportions of a Binary Variable
/*Bar chart with Mean of Indicator Variable*/

data afifi;

 set mylib.afifi;

 if survive=1 then died=0;

 if survive=3 then died=1;

run;

proc format;

 value shokfmt 2="Non-Shock"

 3="Hypovolemic"

 4="Cardiogenic"

 5="Bacterial"

 6="Neurogenic"

 7="Other";

run;

title "Barchart of Proportion Died for each Shock Type";

proc sgplot data=afifi;

 vbar shoktype / response=died stat=mean;

 format shoktype shokfmt.;

run;
[image: image16.png]died (Mean)

04

00

Barchart of Proportion Died for each Shock Type

Non-Shock

Hypovolemic Cardiogenic Bacterial Neurogsnic
SHOKTYPE

Other

Paneled Bar Charts
title "BarChart Paneled by Gender";

proc sgpanel data=mylib.employee;

 panelby gender ;

 vbar jobcat / response=salary limitstat = stddev

 limits = upper stat=mean;

run;

[image: image17.png]Current Salary

BarChart Paneled by Gender

[.
:

[0 Current Salary, 1 Standard Devalion

T
3

T
1

Employment Category

Histograms

title "Histogram";

proc sgplot data=mylib.employee;

 histogram salary ;

run;
[image: image18.png]Percent

Histogram

40

30

104

25000

50000

75000
Curtent Salary

100000

125000

Histogram with Density Overlaid

title "Histogram With Density Overlaid";

proc sgplot data=mylib.employee;

 histogram salary ;

 density salary;

 density salary / type=kernel;
 keylegend / location = inside position = topright; run;
[image: image19.png]Histogram With Density Overlaid
1 A
Iy
]
]
404 1]
]
i
(.
4 1
o w 1
H 1
g \
B 1 AN
20| [\
1/
o
\
\
=3
- -
50000 Ja0000

150000
Curtent Salary

Paneled Histograms

title "Histogram with Panels";

title2 "Exclude Custodial";

proc sgpanel data=mylib.employee;

 where jobcat not=2;

 panelby gender jobcat/ rows=2 columns = 2;

 histogram salary / scale=proportion; run;
/*use scale=proportion, count, or percent(default)*/

[image: image20.png]Proportion

Histogram with Panels
Exclude Custodial

Gander=1 Gander=1
Ermployment Gategor =1 Employment Categor=3

05-]

04-]

02-]

oo Gender=m Gender=m
Employment Category=1 Employment Gategor =3

05-]

04-]

02-]

00 i T T T T T AT
50000 75000 100000 12000 25000 50000 75000 100000 125000

Curtent Salary

Overlaid Histograms

title "Overlay different variables";

proc sgplot data=mylib.employee;

 histogram salbegin ;

 histogram salary / transparency = .5;

run;

[image: image21.png]Percent

504

Overlay different variables

40

30

20

104

50000 75000 100000
Beginning Salary
Beginning Salary O Current Safary

125000

/*Create New Variables for Overlay*/
data employee2;

 set mylib.employee;

 if gender = "m" then salary_m = salary;

 if gender = "f" then salary_f = salary;

run;

title "Overlaid histograms";

title2 "Same variable, but two groups ";

proc sgplot data=employee2;

 histogram salary_m;

 histogram salary_f / transparency=0;

run;
Note: Transparency = 0 is opaque. Transparency = 1.0 is fully transparent.

[image: image22.png]Proportion

Overlaid histograms
Same variable, but two groups

75000 100000
salary_m

125000

title "Overlaid histograms";

title2 "Logarithmic Scale for X";

proc sgplot data=employee2;

 histogram salary_m / scale=proportion ;

 histogram salary_f / scale=proportion transparency=0;

 Xaxis type=log logbase=10 logstyle=linear;run;
[image: image23.png]Proportion

Overlaid histograms
Logarithmic Scale for X

60000

salary_m

sala_m B sala

100000

140000

Scatterplots

title "Scatterplot";

proc sgplot data=mylib.employee;

 scatter x=salbegin y=salary / group=gender ;

run;
[image: image24.png]Current Salary

Scatterplot

3
125000
°
°
100000 { °
°
°
75000 { °
©
o o o
50000
25000
40000 60000 80000

Beginning Salary
Gender _om + 1

Scatterplot with Confidence Ellipse

title "Scatterplot";

proc sgplot data=mylib.employee;

 scatter x=salbegin y=salary / group=gender ;
 ellipse x=salbegin y=salary / type=predicted alpha=.10;
run;
[image: image25.png]Current Salary

Scatterplot with Confidence ellipse

150000
3
3
100000 °
o o
50000 -
o
20000 40000 60000 80000

Beginning Salary
Gender _Om ¥ 1

Scatterplot with Regression Line

title "Scatterplot with Regression Line";
title2 "Clerical Only";
proc sgplot data=mylib.employee;
 where jobcat=1;
 scatter x=prevexp y=salary / group=gender ;
 reg x=prevexp y=salary / cli clm;
run;
[image: image26.png]Current Salary

Scatterplot with Regression Line
Clerical Only

80000

60000 {

40000

20000

200 300 400
Previous Experience (months)
Gender _om + 1

Scatterplot with Separate Regression Lines for Subgroups

title "Scatterplot with Regression Line";
title2 "Separate Lines for Females and Males";
proc sgplot data=mylib.employee;
 where jobcat=1;
 reg x=prevexp y=salary / group=gender;
run;
[image: image27.png]Current Salary

Scatterplot with Separate Regression Lines
For Males and Females

50000 5
o
50000
R
o
o o o °
s, L e o g
> B
0 0 0078 S
éti Prot 5 + g0t O %, ©
SR GO IO K
MoaAe e oot
znnnn—{ P E +
.

0 60
Previous Experience (months)

Paneled Scatterplots with Loess Fit

title "Scatterplot Panels";
title2 "Loess Fit";
proc sgpanel data=mylib.employee;

 panelby jobcat;

 scatter x=jobtime y=salary / group=gender;

 loess x=jobtime y=salary ;

run;
[image: image28.png]Current Salary

Scatterplot Panels
Loess Fit

Employment Category

Employment Category = 2

Employment Category = 3

1250004
100000 o °
750004
50000
© o
e
250004 o
— T T T T
10060 70 80 90 10060 70 80 %0 100
Months since Hire
Gender o m T 7

Scatterplot Matrix
title "Scatterplot Matrix";

title2 "Clerical Employees";

proc sgscatter data=mylib.employee;

 where jobcat=1;

 matrix salbegin salary jobtime prevexp / group=gender
 diagonal=(histogram kernel);

run;
[image: image29.png]Beginning Salary

Current Salary

Months since Hire

Previous Experience.

Beginning Salary

Scatterplot Matrix
Clerical Employees

Current Salary

Months since Hire

Previous Experience (

tap
.

% e

Gender

om 1

Series plots

The next plot uses the autism dataset (Oti, Anderson, and Lord, 2007). We first import the .csv file using Proc Import.

/*Series Plots*/

PROC IMPORT OUT= WORK.autism

 DATAFILE= "autism.csv"

 DBMS=CSV REPLACE;

 GETNAMES=YES;

 DATAROW=2;

RUN;

title "Spaghetti Plots for Each Child";

proc sgpanel data=autism;

 panelby sicdegp /columns=3;

 series x=age y=vsae / group=Childid

 markers legendlabel=" " lineattrs=(pattern=1 color=black); run;
[image: image30.png]vsae

Spaghetti Plots for Each Child

sicdegp=1

Sicdegp= 2.

sicdegp=3

Overlay Means on Plots
We can calculate the means by SICDEGP and AGE and overlay these means on a dot plot of the raw data using the commands below.

proc sort data=autism;

by sicdegp age;

run;

proc means data=autism noprint;

 by sicdegp age;

 output out=meandat mean(VSAE)=mean_VSAE;

run;

data autism2;

 merge autism meandat(drop=_type_ _freq_);

 by sicdegp age;

run;

title "Means Plots Overlaid on Data";

proc sgplot data=autism2;

 series x=age y=mean_VSAE / group=SICDEGP;

 scatter x=age y=VSAE ;

run;

[image: image31.png]vsae

Means Plots Overlaid on Data

200

1504

1004

000

o0

oo

Using formats to make graphs more readable

This example creates two formats, the first one is numeric (i.e. it can be used to format a numeric variable), and the second one is character (i.e., it can be used to format a character variable). These are temporary formats and must be submitted each time you run SAS. Use a format statement to apply the formats for each proc that you run, where appropriate.

proc format;

 value jobcat 1="Clerical"

 2="Custodial"

3="Manager";

 value $Gender "f"="Female"

 "m"="Male";

run;

title "Boxplot with Panels";

proc sgpanel data=mylib.employee;

 panelby jobcat / rows=1 columns=3 novarname;

 vbox salary / category= gender ;

 format gender $gender.;

 format jobcat jobcat.;

run;
[image: image32.png]Current Salary

Boxplot with Panels

Clercal Custodial Manager
1250004
100000
750004
° °
. -
50000 ° 8
25000 4 %; T o
T T T T T T
Female Male Female Male Female Male

Gender

Editing ODS Graphs

You can edit graphs by going to the command dialog box and typing sgedit on. This will allow you to right-click on a given graph, and then select EDIT. From the edit window that is opened, you can modify the Style of the graph, insert text, insert rows, etc. You can only edit graphs that were submitted after the sgedit on command.

Creating pdf output

You may wish to create pdf output. This can be accomplished by setting up the ODS environment, so the output goes directly into a .pdf file. The Journal2 style is a grayscale type of output. Other styles are available. If you use: ods listing close; SAS will not produce a .png file. If you omit that statement, both a .png and a .pdf file will be created. To be sure the .png output is created again after the graph is completed, use: ods listing.

ods pdf style=journal2;

ods pdf file = "testing.pdf";

ods listing close;

title "PDF Output";

proc sgpanel data=mylib.employee;

 panelby jobcat;

 scatter x=jobtime y=salary / group=gender;

 loess x=jobtime y=salary ;

run;

ods pdf close;

ods listing;
Saving Statistical Graphics plots from Sgplot, Sgscatter, and Sgpanel

Graphs generated using Statistical Graphics procedures (Proc Sgplot, Proc Sgscatter, Proc Sgpanel) will show up in your SAS Current Folder in Windows, and will automatically be .png files. These graphics files are very compact, because they use raster graphics, and can be easily imported into windows applications, such as Microsoft Word, or PowerPoint.

You do not need to export graphs created using Statistical Graphics procedures. They will automatically be saved to your Current Folder in Windows as .png files. You can double-click on the .png files to view them, or you can view them as thumbnails. They will be given names such as SGPlot.png, or SGPlot1.png, etc.

To set the Current Folder, double-click on the location listed at the bottom of your SAS desktop and browse to the folder you wish to use. Make sure you have double-clicked on the name of the folder. Do this before you submit the SAS commands to create the Statistical Graphs.

Within SAS, graphs created using Statistical Graphics procedures will not go to your SAS/Graph window, but instead will be in the Results window. Double-click on the procedure name and then double-click on the individual graphs. You can browse forward and backward through the graphs once you have created them.

[image: image33.png]~: SAS - [save_sasgraphs_9_2.sas]
[Fie Edt Vew Took Run Solutions Window Help Bl

2

vV DEH S8R B0 DA £ X0&

Results.

& res

= (@9 oo Distrbution o Sl
3] The SGPlo Procedure

= (@9 Saplok Regresson lt
0] The 5GPl Procedure.

libname mylib "c:\documents and settings\kwelch\des

title "Distribution of salary”:

=proc sgplot data=mylib.basebal!
histogram salary:

run;

=data baseball2;
set mylib.baseballs
log_salary = log(salary):
run;

title "Regression Plot with Log salary”:
=proc sgplot data=baseballZ:

reg x=no_hits y=log_salary / cli clm:
run; quit;

|
Output - (Untitled] |] Log - {untitled) | [# save_sasgraphs_9...

autosave complete

3 C:iDocuments and SettingsikwelchiDesktopimylb n17, Col1

[image: image34]
[image: image35.png]Fle Edt View Favortes Took Help

Qs - © -] Do iy ros |-

adress | C:\Dosuments and SettingsikwelchiDesktoplworkshop

File and Folder Tasks (%

) Rename tis e
5 Move tis e
) copy tisfie

@ Fubishthis e o the ~ employeesas7hdat
web

) Emaiths e

& Printthis fie
X Delete tisile

Other Places
SGPlt13.ng SGPanelt.prg

Details

5GPanel3.prg

testing pof

SGPlt12png

Traditional Graphics Examples

The following instructions show how to create traditional graphics in the SAS/Graph window using Proc Univariate and Proc Gplot. These graphs can be produced using either SAS 9.1 or 9.2.

Creating a Histogram Using Proc Univariate

title "Distribution of Salary";

proc univariate data=mylib.employee noprint;

 var salary;

 histogram;

run;
[image: image36.emf]Distribution of Salary

15000 35000 55000 75000 95000 115000 135000

0

10

20

30

40

50

Percent

Current Salary

Creating a Regression Plot Using Proc Gplot

symbol1 value=dot height=.5 interpol=rl ;

title "Regression Plot for Salary";

proc gplot data=mylib.employee;

 plot salary * prevexp ;

run; quit;

[image: image37.emf]Current Salary

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

Previous Experience (months)

0 100 200 300 400 500

Regression Plot for Salary

Saving Traditional graphs from the Graph Window

Graphs generated using Proc Gplot or Proc Univariate will appear in the SAS/Graph window. You can Export these graphs to a file format that can be read by any windows applications that can read graphics files. You can save SAS graphs from the graphics window using any of the commonly used formats for graphs supported by SAS (.bmp, .gif, .tif). You can also save graphics files from the SAS/Graph window using a .png (portable network graphics) format.

Go to the SAS/Graph window. With the appropriate graph open in the Graph Window, Go to File...Export as Image....Select the File type you want (e.g. .png), Browse to the location where you wish to save the graphics file, and type the file name, e.g.
 histogram_salary.png

Bringing graphics files into a Word document
You can simply drag and drop a graphics file into word, or you can import it using the steps shown below:

Make sure you are not at the beginning or end of a document, or it will be difficult to work with the graph. Place your mouse somewhere in the middle of several blank lines in the document. Go to Insert…Picture from file… Browse until you get to your graph (e.g., histogram_salary.png).

You can resize the graph by clicking your mouse anywhere in the graph to get the outline. Then grab the lower right corner with your mouse (you should see an arrow going northwest to southeast) and move it up and to the left to make it smaller, or down and to the right to make it larger. You can't easily edit the graph in Word. If you're using a .png file, you can simply drag and drop it into Word.

Bringing graphics files into PowerPoint

You can drag and drop a graphics file into PowerPoint, or you can import it using the steps shown below:

Insert a new slide. Go to File...Insert...Picture. Browse until you get to your graph,

histogram_salary.png

Click on Insert.

Note: any titles you used in SAS will appear on your graph.

You can resize the graph by clicking your mouse anywhere in the graph to get the outline. Then grab the lower right corner with your mouse (you should see an arrow going northwest to southeast) and move it up and to the left to make it smaller, or down and to the right to make it larger. You can't easily edit the graph in Power Point.

Have fun!!

Double-click here in the Results window to view the graph.

Set the current folder by double-clicking here. Graphs created by Statistical Graphics procedures will automatically be saved here.

1

