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ABSTRACT

We present the problem of click-through prediction for advertis-
ing in Twitter timeline, which displays a stream of Tweets from
accounts a user choose to follow. Traditional computational adver-
tising usually appears in two forms: sponsored search that places
ads onto the search result page when a query is issued to a search
engine, and contextual advertising that places ads onto a regular,
usually static Web page. Compared with these two paradigms,
placing ads into a Tweet stream is particularly challenging given
the nature of the data stream: the context into which an ad can
be placed updates dynamically and never replicates. Every ad is
therefore placed into a unique context. This makes the information
available for training a machine learning model extremely sparse.
In this study, we propose a learning-to-rank method which not only
addresses the sparsity of training signals but also can be trained
and updated online. The proposed method is evaluated using both
offline experiments and online A/B tests, which involve very large
collections of Twitter data and real Twitter users. Results of the
experiments prove the effectiveness and efficiency of our solution,
and its superiority over the current production model adopted by
Twitter.
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1. INTRODUCTION

Users at Twitter could subscribe to other accounts, commonly re-
ferred to as followees. These followees continuously produce mes-
sages (“Tweets"), corresponding in general to the follower’s long
term interest. Once posted, Tweets are pushed into the follower’s
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timeline, a continuous stream of Tweets from one’s followees. To
facilitate the consumption of the large amount of real time informa-
tion, each user’s timeline is displayed in a way that new arrivals are
presented on the top of the screen, replacing the older ones. When
a user refreshes her timeline, only limited number of Tweets are
pushed to the user’s device. This leads to the concept of session,
which consists of all the Tweets sent to one user at the same time.

In this paper, we present the problem of click-through prediction
for advertising in Twitter timeline, an essential problem in deter-
mining ads to be presented and appropriate payments [[11]]. Stating
the problem more specifically, given a user’s timeline, the session
pushed to this user at a particular time, and a set of ads, we predict
the probability that a particular ad will be clicked on if it is dis-
played at a particular position of this user’s timeline. Traditional
online advertising usually appears in two forms: sponsored search
and contextual advertising. Sponsored search is designed for web
search engines. It is concerned with placing ads onto a search result
page of a particular query. In contrast, contextual advertising stud-
ies how to display ads on a regular, usually static Web page. Com-
pared with these two traditional paradigms, placing ads into a Twit-
ter user’s timeline is particularly challenging given its streamed na-
ture. First, the stream of Tweets are emitted from accounts the user
follows, which usually correspond to her long term interest but do
not reflect her current status. However, whether the user clicks on
an ad or not depends more on her current information need (a.k.a.,
intent) when the ad is viewed [30]. For example, a user following
@Microsoft on Twitter is not necessarily looking for a Microsoft
product right now. A user who is inquiring about the most recent
version of iPhone may not necessarily subscribe to Apple’s feeds.
Second, every user receives a unique stream of Tweets which up-
date continuously. Compared with sponsored search where an ad
can be placed whenever the same query is issued, and to contex-
tual advertising where an ad can be placed whenever a user vis-
its the same Web page, in a Tweet stream few ads are placed in
the same session. Moreover, every user has a different timeline
which is updated dynamically. This means that we have a unique
“page” (i.e., session) for every user at any given time point. As a
result, ads inserted at different time points are actually displayed
in completely different “pages” (sessions). These factors make it
difficult to gather enough user behavioral signals for training a ma-
chine learning model and non-trivial to utilize historical clicks on
an ad for predicting how likely it will be clicked on in the future.
These unique challenges call for a reevaluation of the techniques
employed in traditional online advertising scenarios, and for new
approaches that could specifically address the unique properties of
Tweet streams.

In this paper, We investigate how learning-to-rank and online
learning techniques can be utilized and customized to address these



challenges. We examine our solutions by conducting both offline
experiments and online experiments (a.k.a., A/B tests), which in-
volve very large collections of Twitter data and real Twitter users.
The results prove the efficiency and effectiveness of the proposed

method, and its improvement over Twitter’s current production model.

The rest of the paper is organized as follows. We discuss related
work in Section [2| Section [3| gives an overview of the procedure
for advertising in stream. Sectionfd]describes methods to tackle the
challenges, followed by description of infrastructure implementa-
tion to conduct online experiments in Section[5} Section[f]describes
setup of offline experiments and results, while the report of online
experiments is present in Section[/} Finally, we conclude the paper
in Section[8]

2. RELATED WORK

The task of click-through prediction for online advertising at
Twitter is related to the practice in social media industry, includ-
ing online advertising in Facebook, LinkedIn, etc. The most rel-
evant work in literature is a recent study of predicting clicks on
Facebook ads by He et al. [[16]. Their study did not fully address
the unique properties of data streams and the challenges of adver-
tising in streams. As a result, they treated the prediction for ev-
ery ad as a classification problem, a formulation commonly used
in conventional online advertising scenarios. We show in this pa-
per that a significant improvement can be obtained by considering
the unique properties of data streams and utilizing learning-to-rank
techniques. Researchers at Google [ 1] developed a system that pro-
cesses training data in a streamed fashion, which was applied to
sponsored search. The problem we present is quite different from
and arguably much more challenging than theirs, in which an ad is
not triggered by a query but by a unique, fast evolving context in
the social media stream.

Aside from studies on advertising in streams, we consider three
lines of researches that are related to our work: learning to rank,
online advertising, and ranking streaming data. Due to the large
body of work on learning to rank [21]] and online advertising [|12],
we constrain our focus to predicting click-through rate (CTR) for
online advertising through a machine learning approach. That is,
we aim at training CTR prediction models using either historical
click logs or human annotated examples.

Traditionally, online advertising falls into two categories: spon-
sored search [[18]] and contextual advertising [27]. Sponsored search
advertising displays advertisements onto the result page of a par-
ticular query submitted to a search engine. Google is the first to
incorporate click feedback into the model [3|]. In order to estimate
CTR for new ads, Richardson et al. [28]] explored different types of
features (ads, terms, and advertisers) to train a logistic regression
model. Considering the rapid growth of data volume, Ciaramita
et al. [9] employed online learning using the perceptron algorithm.
Graepel et al. [|15] addressed the same problem by using a scalable
Bayesian algorithm.

Contextual advertising refers to ads placement within the content
of regular web pages. A large body of work is devoted to learning
the relevance of the displayed ads to the page content. Features
identifying both semantic and syntactic relationship of words be-
tween the Web page and ads are included in [6]]. Semantic relation-
ships of words between Web pages and ads are modeled by hidden
classes in [26]]. Murdock et al. [23|] developed a system that uses
features derived from statistical machine translation models, aim-
ing to learn a “translation"” of vocabularies between ads and target
pages. Chakrabarti et al. [8] applied logistic regression to learn
the match between ads and Web pages. Bai et al. [2] proposed a
supervised version of latent semantic indexing to map the query-

document pair to a ranking score. In order to learn the ranking
function, genetic programming is adopted by Lacerda et al. [20].
Karimzadehgan et al. [|19] proposed a stochastic algorithm to learn
a ranking function that directly optimizes IR evaluation metrics,
which are usually not differentiable.

Ranking streaming data, such as Tweets, has been widely stud-
ied in literature. Duan et al. [[10|] presented an empirical study on
learning to rank of Tweets by considering features like content rel-
evance, account authority and Tweet-specific features such as pres-
ence of a URL. Zhang et al. [31]] exploited transductive learning,
of which the idea is similar to pseudo relevance feedback, to alle-
viate the problem of few training data in learning to rank. To find
out the semantics of Tweet content, Nguyen et al. [24] incorpo-
rated topic modeling features into the learning-to-rank procedure.
Hong et al. [[17] studied ranking LinkedIn social updates by uti-
lizing learning to rank, collaborative filtering, and click-through
modeling. Our work is different from these studies as our target
is not ranking organic feeds in the stream, but the ads to be inserted
into the stream. The organic feeds in the stream instead defines
the context of ads. Our study also goes beyond finding the relative
order of candidate ads and targets an accurate estimation of click
probability.

3. ADVERTISING IN TWITTER TIMELINE

3.1 System overview

We first give an overview of the advertising system designed for
Twitter. This system overview could help the readers better under-
stand how advertising in a message stream functions.

The nature of Twitter encourages various forms of advertise-
ments. For instance, advertisers could invite users to follow their
Twitter accounts, enhance the popularity of a particular hashtag,
and distribute product information via Tweets|| Among them, a
large proportion of user targeting takes the form of Tweets, which
we call promoted Tweets. When inserted in user’s timeline, pro-
moted Tweets are like regular Tweets: they scroll through the time-
line, appear in the timeline just once, and users can engage with
the Tweets by a variety of forms. For example, users can click on
URLs, retweet, reply to, or favorite the promoted Tweet, just as
they do to any other regular Tweets. The only difference is that a
user could perform a negative engagement with a promoted Tweet
by hitting a “dismiss" button associated with the promoted Tweets.

Figure[T]summarizes the interactions between the client side and
the ad server. When a Twitter user refreshes her home timeline, the
client side issues an ad display request to the ad server. We refer
to this time stamp as request time. An initial set of ad candidates
are formed according to the information of the user. To decide the
winner from these candidates, an auction is run based on two major
factors. The first is the bid price, the amount of money advertisers
are willing to pay if users engage with their ads. The second factor
is the predicted click probability — the target of our prediction task.
We call this task the click-through rate (CTR) prediction, following
the literature of online advertising. By clicks, we mean any type of
engagements with the Tweets. In this paper, we focus on predicting
the probability of any positive engagements, e.g., retweet, reply,
and click a URL. Described methods could be easily generalized
to prediction of a specific user action, e.g., dismissing a promoted
Tweet. Positive engagements are shortened as engagements in the
rest of the paper if no ambiguity arises. At the end of the auction,
there could be zero to K winning ads. No ad will be placed if
the system cannot find a good match to the context. Showing ads
anyway in this case would hurt user experience in the long run.

"https://business.twitter.com/ad-products
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Figure 1: The process of displaying an ad in Twitter timeline.
Numbers indicate the order of events.

Due to the same reason, the maximum number of selected ads K is
usually set to a very small number.

One thing worth noting is that there are essentially two aspects
in the CTR prediction task. On the one hand, we should give a
correct estimation of click probability, especially for the winners in
the auction. An underestimation could result in no winners while an
overestimation incurs user frustration. In addition, inaccurate pre-
diction leads to complications in charging, due to Twitter’s adop-
tion of second-price auction [[11]. On the other hand, a ranking of
the ads are more critical than the actual values of CTR when choos-
ing the best ads to show to every user. This is especially important
as there is a very limited number of spots to display ads. A model
achieving reasonable CTR estimation does not necessarily output
good ranking, and vice versa.

Having chosen the ads to display, the server expects an impres-
sion callback from the client, indicating the successful appearance
of ads in user’s device screen. This time stamp is recorded as
impression callback time. This callback is necessary given the
streamed nature of user’s timeline: promoted Tweets might have
already been scrolled over before users ever see it. Admittedly, im-
pression callbacks only indicate that promoted Tweets have been
displayed in user’s screen. It is very possible that the user fails to
notice them. However, this is the best signal we can collect that in-
dicates the impression. If, by any chance, the user engages with the
promoted Tweet, an engagement callback will be triggered. This
point of time is called engagement callback time.

4. METHODS

Challenges of CTR prediction at Twitter call for special treat-
ments to the machine learning techniques used in conventional sce-
narios that could at least address some aspects of these challenges.
To this end, our approach in general is to employ learning-to-rank
techniques in an online fashion, with careful design of features that
addresses the unique properties of data streams. We first introduce a
straightforward classification framework, employed as current pro-
duction model at Twitter, and then investigate possible improve-
ment based on it.

4.1 Pointwise approach

Following the typical machine learning approach to CTR pre-
diction problem, we use a pointwise learning-to-rank approach as
our baseline, a method applied as the production model of Twitter.
In our particular application, we try to train a probabilistic classi-
fier that assigns a posterior click-through probability to an ad, if
it is displayed in user’s current session of her timeline. The train-
ing data are made up of all historical impressions shown across all
users. These data are treated as i.i.d. and the learning algorithm
optimizes for the global loss. An instance is represented as (y, X),
where y € {£1} is the ground-truth binary label, with value 1
being the presence of clicks. Feature vector x is extracted from
the ad, user, timeline, current session, and possible interactions be-

tween any two of the entities. These features should be general
enough because no session repeats. Let D = {(y,x)} be the set
of all instances. The loss function for the pointwise learning can be
formulated as [4]

L(w,D) = Z é(y,f(va))

(y,x)€D

where f is a hypothesis function, w is function parameters, and ¢
is a loss function for a single instance. In order to quickly capture
user’s change of information need, and enable large-scale online
learning on the huge amount of click data, we use logistic regres-
sion to instantiate this learning framework with stochastic gradient
descent (SGD) [4] as the optimization algorithm, a strategy also
employed by Facebook [16]]. Specifically, we have

£(y, f(w,x)) = log(1 + exp(—yf(w,x)))

where f(w,x) = w’x,and y € {£1}.
4.2 Pairwise approach

In pointwise approaches, the learner takes as input a single in-
stance one at a time, with presence of engagement as target value.
Despite its advantage of directly minimizing prediction error, point-
wise learning does not take into account the relative order of ads in
terms of a particular user’s preference, externalized by this user’s
click probability on each ad. However, as we know, ranking is crit-
ical in the auction of determining the winning ads — only top few
candidates can be finally displayed, as we discussed as the second
aspect of CTR prediction in Section[3.1]

Another significant advantage of directly learning user’s relative
ads preference is that we can address the training data sparsity chal-
lenge if we choose preference data wisely. It is natural that user’s
interest on ads can change over time. If a user clicked an ad a4
one year ago, and ignored an ad ap today, it is doubtful to draw the
conclusion that this user prefers a4 to ap, due to a possible shift
of interest of this user over a year. However, it is reasonable to as-
sume that user preference is steady during a short time period. For
example, two ads are more comparable if they are presented to the
same user in one session. Two ads in the same session have almost
the exact context, thus directly optimizing the perference order be-
tween them can address the sparsity challenge that ads are shown
in different unique contexts.

In order to optimize for the relative user preference, we em-
ploy a pairwise learning approach [14], which attempts to incur
less ranking loss. In particular, we train a pairwise model on ad
pairs that are shown to one user in the same session. Let P =
{((ya,xa), (yB,xB)) |ya # yp} be the set of all pairs. The loss
function is defined as

Lw,P)= > L(g(ya —ys), f(W,xa) — f(w,x5))

((ya,xa),(yg,xB))EP

where g(ya — yg) transforms the difference of two individual in-
stance labels into the label for pairwise learning. We use g(y) =
y/2 to ensure that g(ya — yp) € {£1}. For logistic regression,
fw,xa) — f(w,xB) = wlixs —wlixpg = WT(XA —xpB) =
f(w,x4 —xp). Therefore, the logistic loss listed in classification
section can still be used with no change [[7], bringing the advantage
that pairwise learning can be conducted in an online and scalable
manner, just as pointwise learning.

4.2.1 Calibration

As stated above, pairwise approaches try to minimize ranking
loss. Accordingly, the output of pairwise model is interpreted as
preference score, rather than predicted click probability. However,
estimation of click probability is indispensable for ad auctions, as



described in Section[3.1] This means calibration is needed to trans-
form score to click probability. A common practice is to use a
sigmoid function [25], where the coefficients are learned through
maximizing likelihood on the training set. An advantage of this
transformation is that the relative order of instances ranked by score
of the original model is preserved.

4.3 pombining pointwise and pairwise learn-
ing

Pointwise approaches try to obtain good estimate of click prob-
ability, while pairwise approaches aim to learn the ranking of im-
pressions ordered by click probability. This brings their respec-
tive downside: pointwise methods are performing poorly on rank-
ing, whereas pairwise methods tend to have the problem of inac-
curate CTR estimation. Another practical problem could possi-
bly arise if we resort to pairwise learning: not all sessions have
more than one ad. This is especially true for Twitter, where the
majority of auctions output no more than one winning ad. Conse-
quently, a large proportion of instances would be wasted at training
stage. The above analysis suggests that a combination of two ap-
proaches might be a good solution to simultaneously achieve good
click probability estimation and ranking. Therefore, we propose
an online algorithm, based on a combined optimization framework
developed by Sculley [29]]:

min aL(w, D) + (1 — a)L(w, P) @))

with « being a trade-off parameter between optimizing towards
classification and ranking. In [29], this trade-off is implemented
by sampling an instance from D with probability v and a pair from
P with probability 1 — «. The sampling practice is perfect for of-
fline static learning. For real online learning, the model receives
training data in the form of ad stream, and ads of one session could
return at different time points. Therefore, an algorithm adapted to
the online setting has to be developed for the combined learning.
We defer the description of the new algorithm to Section [5] where
we introduce the infrastructure to support this learning approach.

One thing worth noting is that no calibration is necessary for
combined learning, attributed to the classification component in the
objective function.

4.3.1 Acquisition of more pairs

In practice, multiple ads shown in the same user session is still
the minority case, because of the need to protect user experience
by controlling the ads load. This is especially true for promoted
Tweets, which are inserted into the main stream that users con-
sume information from, unlike search ads or contextual ads dis-
played on the sidebar. As a result, only a small percentage of
training instances fed to the model are from a pair of ads. Con-
sequently, the learned model would be biased towards minimiz-
ing classification loss, failing to obtain enough pairs to induce a
good ranker and mitigate the sparsity issue. To combat this prob-
lem, one strategy is to form more pairs artificially by grouping im-
pressions from distinct requests. There are two grouping choices:
across different users and within one user. Comparing impressions
across users is to compare clicks collected from disparate prefer-
ences. It is possible to pair impressions from users sharing similar
interests, borrowing the idea of collaborative filtering. For simplic-
ity, in this work we only consider within-user grouping. Though
a user’s interest shifts over the course of time, it is reasonable
to assume that each user’s preference is stable within a short pe-
riod of time. This makes it plausible to form “pseudo-pairs" by
grouping impressions shown in different sessions but to the same
user. To emphasize the time information, we attach importance
weight to formed pairs based on time difference. Mathematically,

let § = {((ya,xa,ta),(ys,xB,tB))|lya # yp,ta # tp} be
the set of all pseudo-pairs, where t4, tp are the request time of
impression A and B respectively. The loss function is defined as

. N
L(w,S) = Z max (mln(log A —tol 1), 0)

((ya,xa,ta),(yp,xp,tB))ES
L(g(ya —ys), f(w,xa) — f(w,xB))

where N is acting as the size of a sliding window — the weight of a
paired instance is 0 if [t 4 —tg| > N. The optimization framework
incorporating pseudo-pairs can be formulated as:

min a1 L(w, D) + azL(w, P) + (1 — a1 — a2)L(w,S) (2)

4.4 Summary of methods
We give a summary of methods for future references.

1. Pointwise learning, which considers each ad as an individual
training instance. This is the production model currently de-
ployed at Twitter.

2. Pairwise learning. This method essentially refers to pairwise
learning with calibration. Since the performance of pairwise
approach before calibration is extremely poor in our empirical
studies, we only report results on the calibrated version, which
preserves the original ranking performance.

3. Combined learning, which takes into account classification and
ranking under one framework.

4. Pseudo. Based on combined learning, we artificially create
more pairwise training instances called pseudo-pairs.

S. ONLINE LEARNING INFRASTRUCTURE

In this section, we introduce the infrastructure at Twitter, an im-
plementation used to conduct live experiments on the learning tech-
niques described in Section i} Considering the massive behavior
data collected from each user’s timeline, models that could be up-
dated online are strongly necessary. In this section, we introduce
how pointwise and combined learning could be conducted in an on-
line manner, so that large-scale online A/B tests can be performed.
Due to its poor estimation of CTR in offline study, we exclude pair-
wise learning in online experiments. Launching the method pseudo
requires a significant change to Twitter’s production system, which
is unrealistic for this study. Therefore, pseudo is excluded as well.
More detailed behavior analysis across all methods are performed
via offline experiments.

5.1 Pointwise learning

Online learning requires we obtain new clicks and non-clicks in
real-time so that new training instances could be formed to update
the model. However, some difficulties surface due to the nature of
stream.

The first issue has already been stated in Section [3:1] which is
related to deciding whether users have seen the promoted Tweets.
Since it is possible that users do not click ads simply because they
fail to see it, only ads with impression callbacks will be considered
as training examples.

There is yet another problem: the length of time varies for dif-
ferent users to finally see and engage with the promoted Tweets.
This leads to a time difference for servers to receive engagement
callbacks. The worst case is that users simply ignore these Tweets
and servers can never obtain engagement callbacks. Hence comes
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Figure 2: Online pointwise learning process

the problem of deciding the length of time the server should wait
for user clicks. Because a training instance is not complete until
its label is decided, this waiting time directly determines the lag of
online learning. One solution to this problem is to cache impres-
sions, and judge them as negative if no engagement callbacks are
returned in a predefined amount of time, as did by Facebook [16].
That is to say, our judgment of labels could be wrong — engage-
ment callbacks could return after the predefined time. The longer
we cache ads, the more likely we obtain the ground-truth labels.
However, trade-off exists — longer cache time leads to larger cache
size and bigger delay of training. Our choice is not to cache at all
— impressions are always set as negative and are added to the train-
ing set immediately when impression callback is received. If ever
engagement callback returns, this impression is reset as positive
to update the model again. This solution saves the large amount
of cache space we have to offer and ensures no delay of training.
Additionally, considering the rarity of clicking events, only a small
percentage of examples need correction. Furthermore, preliminary
work showed marginal improvement through caching. A summary
of the online learning process is shown in Figure[2]

5.2 Combined learning

Combined learning requires training instances formed from both
a single ad and a pair of ads. The procedure of obtaining single ads
is identical to the one for pointwise learning. However two prob-
lems remain to be solved. First, we need to find a way to collect
a pair of ads with click information. For simplicity, in the setting
of online tests we only consider ads belonging to one session (re-
quest). Second, we have to decide how to trade-off between clas-
sification and ranking. That is, how to combine pointwise learning
and pairwise learning.

The label for a pair can be decided only if we have click labels
for both impressions in the pair. However, engagement callbacks
return separately and the time of which varies a lot. To wait for
the labels for both impressions, we have no choice this time but
to cache them. The cache is accessed by using request id as the
key. The cache value is a set of impressions with labels initialized
to null. Each cache entry is guaranteed to be alive for 15 minutes.
When an impression call back arrives, the label of the correspon-
dent impression is set to negative. Whereas when an engagement
call back returns, the label for the associated impression is turned
to positive. Update of the model is only necessary when one im-
pression’s label changes from negative to positive, namely the mo-
ment when an engagement call back occurs. The positive instance
is then paired with all negative instances belonging to one session.
Chances are that some of the negative instances are clicked later,
leading to input of false information to the model. In practice, we
ignore such situations as we do not observe much performance loss,
possibly due to the rarity of these circumstances.

With regard to the second problem, we assume a simple strategy
— always apply pointwise learning for each individual impression,
and do both pointwise and pairwise learning when there are more

than one impression with differing labels. In this case, the trade-off
parameter « in Equation [I] depends on the percentage of requests
with a single ad and the number of clicked ads in requests with
more than one ad.

Algorithm 1 Update w using combined learning

Input: cache, request ID req_id, call back impression ID
imp_id, call back type type, current model parameter w ,
weight w,, for paired instance

Output: Updated model parameter w

1: imp_map < cache.get(req_id)

2: (y,x) « imp_map.get(imp_id) // get impression

3: if type = impression_call_back then

4:  imp_map.set(imp_id, (—1,x)) // set label to negative
5 update w using (—1,x) by SGD // pointwise learning
6: else // handle engagement call back

7. imp_map.set(imp_id, (+1,x)) // set label to positive
8:  update w using (+1,x) by SGD // pointwise learning
9: P < extract_pairs(imp_map, (+1,x))

10:  if P.length > 0 then // pairwise learning

11: for Each pair ((ya,x4), (yB,x5)) in P do

12: X « (x4 —xB)

13: y < 9(ya —yB)

14: update w using (y, x) and weight w, by SGD
15: end for

16:  endif

17: end if

Therefore we would like to adjust o by changing the percent-
age of requests with more than one ad. Unfortunately decision of
this percentage is complicated, and we have no direct control over
it. However, we can still approximately change « by varying the
weight w,, of instances formed by a pair of ads.

Note that paired instances are only used at training stage, and are
excluded for prediction. In fact, for all approaches, prediction stage
stays the same — we predict the click probability of each individual
ad candidate at ad request time while running auctions.

Algorithm([I]gives a detailed description of the training procedure
for combined learning. Algorithm [2]shows how pairs are extracted
from a request. Line [3|to[8] guarantee that we generate positive and
negative instances with equal probability.

Algorithm 2 extract_pairs (Extract pairs for a particular request)

Input: Impression map imp_map, call back impression (y, x)
Output: An  array of paired instances P =
{((ya,x4), (yB,xB))lya # y5}

1I: P« {}

2: for Each negative instance (y~,x~ ) in imp_map do

3:  Draw z uniformly at random from [0, 1)

4 if z < 0.5 then

S: Formapairp < ((3,%), (v, x"))

6 else

7: Form a pair p < ((y~,x" ), (y,x))

8 end if

9: P+ PU{p}
10: end for

6. OFFLINE EXPERIMENT

We evaluate the methods using both offline and online experi-
ments. Online experiments are used to verify the true effectiveness
of methods in real setting, while more detailed analysis is done



through offline simulation. We introduce the offline experiments in
this section, and describe the online tests in Section [7}

6.1 Metrics

6.1.1 NRIG

In order to quantify the accuracy of predicted click probability,
we use normalized relative information gain (NRIG), based on rel-
ative information gain (RIG) [15]. Given test set 7, the empiri-
cal CTR of the data is defined as 5 = >, y¢/|T|, where y; €
{0, 1} is the ground-truth label. The entropy is referred as H (p) =
—(plogp + (1 — p) log(1 — p)). The empirical cross entropy for
amodel is CE = — ST (yelogpe + (1 — ye) log(1 — py)),
where p; is the model predicted click probability for ¢-th impres-
sion. Then relative information gain could be computed as RIG =
(H(p) — CE)/H(p). To normalize RIG, we compute normalized

p
> pi/IT
of the normalized prediction equals to p, the empirical CTR. The
subsequent computation of NRIG is almost identical to RIG, with
the exception that p; is replaced by p; when computing CE.

6.1.2 AUC

To measure ranking quality, we compute the area under receiver
operator curve (AUC) [13] for the subset of requests containing
more than one ad. For each of such requests, we calculate AUC us-
ing (1) predicted ranking, formed by the estimated click probability
output by the model, and (2) ground-truth, which is the presence or
absence of engagements for each ad in the request. We report final
AUC as an average over requests with more than one ad.

6.2 Procedure

Instead of k-fold cross-validation, we use an evaluation proce-
dure based on progressive validation [S]]. This procedure works in
a streamed fashion, simulating the online setting described in Sec-
tion[5} both test and training data come in a stream, and instances
are first used for testing at request time, and are later used for train-
ing.

With regard to pseudo, a method not covered in Section[5] we do
offline simulation using the following process. Cache time is set
to N, the sliding window size. Impressions displayed to the same
user that coincide in the same window can form pairs. Similar to
combined learning, a positive ad is paired with each of all negative
ones.

6.3 Dataset

To conduct offline experiments, we collected data from a random
week of year 2014. Given that progressive validation is employed,
there is no need to partition the data into training and testing. To
give readers a sense of the scale of the dataset, in the third quarter
of 2014, there are 181 billion timeline views on TwitterE] approxi-
mating the number of ad requests.

6.4 Parameters

All parameters, including learning rate of stochastic gradient, pa-
rameter controlling regularization, coefficients of calibration model,
and the weight w,, of instances formed by a pair of ads, are tuned
using the first day’s data. This period is excluded in the reports of
experiment results. In addition to parameter tuning, the first day
training allows the models to warm up.

In combined learning, we have a parameter « to control the im-
portance of classification error against ranking error. As stated
in Section ] we adjust it by varying the weight w, of instances
formed by a pair of ads. In pseudo, we have parameter [V, the size

prediction p; = p; X This ensures that the average

Zhttps://investor.twitterinc.com/releasedetail.cfm?releaseid=878170

of sliding window to form pseudo pairs. Both w;, and /N are tuned
to optimum using the data of first day, equaling to 20 and 8 hours
respectively. Actually in pseudo, we have another two parameters
a1 and a2 in Equation 2} controlling the importance of single ads,
paired ads, and pseudo-pairs. Like «, the importance of pseudo-
pairs could be approximated by the maximum possible weight of
pseudo-pairs. Due to its similarity to o, we omit the study of it
by simply setting the maximum possible weight to 1. A sensitivity
study of parameter o and w,, will be performed later in the experi-
ment result section.

6.5 Features

In order to better catch user’s information need, deal with train-
ing sparsity problem and capture the unique properties of ads in
streams, we design features from four perspectives: ad, user, ad-
user interaction, and context of the stream. Unfortunately, we can
only give a brief description of features in each category, without
disclosing the specific features to be used.

e Ad. Features related to an ad can be further divided into three
subcategories. 1) Advertiser profile, such as a set of topics per-
tinent to an advertiser. 2) Meta information, including ID of an
advertiser, type of ad, etc. 3) Click history, an example is past
clicks of an ad on the population level.

e User. Analogous to ad, user related features also fall into three
subcategories. 1) User profile, such as user related topics. 2)
Meta information, including gender and device information. 3)
Click history, such as advertisers engaged by a user in the past.

e Ad-user interaction. The interactions can be characterized by
ad-user similarity and user click history of ads belonging to the
same advertiser. Multiple similarity measures are included, e.g.,
similarity between user and advertiser’s profile, and whether the
user is related to certain keywords specified by the advertiser.

e Context of the stream. The context refers to features available
within a session, which enables us to find out interactions be-
tween ads and organic messages. Because no sessions repeat,
these contextual features have to be general enough. Specifically,
we include positions of the promoted Tweets, used to correct po-
sition bias at training time, and similarity between the promoted
Tweets and organic Tweets in one session. To compute the sim-
ilarity, we consider two forms of text representations: bag of
words and word vectors calculated by word2vec [22].

Continuous features are transformed to categorical ones using boosted
decision trees, a similar discretization technique reported by Face-
book [16].

6.6 Experiment results
6.6.1 Overall performance

Table [I] summarizes performance of different approaches, aver-
aged over one week but excluding the first day. The result is re-
ported based on percentage of improvement using pointwise learn-
ing, our production model, as the reference. Though we are not
aware of any statistic tests designed for NRIG, empirical studies
show that the improvement listed in Table[I]is strongly significant.

Consistent with our expectation, pairwise learning scores rela-
tively high in terms of AUC, but does poorly on NRIG, even with
calibration. Therefore, pairwise learning indeed gives a good rank-
ing of ads, but fail at estimating the click probability. This is due
to its objective of incurring less ranking loss by attempting to give
a correct order of ads, however without taking into any account of
the accurate estimation of click probability.



Method Pairwise | Combined Pseudo
Relative NRIG (%) | —75.90 +9.44 +10.25
Relative AUC (%) | +1.76**" | +1.91*"* | +2.11***

Table 1: Summary of performance relative to pointwise learn-
ing method. *** indicates the improvement over Pointwise
method is statistically significant according to Wilcoxon signed
rank test at the significance level of 0.001
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Figure 3: Relative NRIG of one week excluding the first day.
The pairwise method is excluded due to its extremely low score.

In contrast, the pointwise model achieves reasonable result on
NRIG, but is inferior to all the other methods on ranking. This
behavior can be explained by its optimization purely towards mini-
mizing errors of CTR prediction, while ignoring relative ranking of
ads.

Combining pointwise and pairwise methods brings a huge per-
formance gain on both CTR estimation and ranking. We suspect the
reason behind it is that learning two tasks simultaneously requires
the model to put more weight on features that could achieve good
CTR prediction as well as good ranking. The enhancement of both
NRIG and AUC indicate that combining pointwise and pairwise
learning-to-rank techniques indeed helps us better capture user’s
current interest, and alleviates the training sparsity problem by in-
corporating relative preference information.

The last column of Table[I|shows the results after adding pseudo-
pairs to the combined model. We could find a further improve-
ment over the original combined model. This indicates that these
pseudo-pairs could contribute positively, which is good news if we
are concerned that showing too many ads in one request could hurt
user experience. Pseudo-pairs alleviate this problem and corrobo-
rate the assumption that user preference are stable in a short period
of time, and can be utilized to capture user’s short-term interest.

6.6.2 Learning behavior

In addition to the average performance, we are also interested in
how different methods behave over the course of time. Figures [3]
and [4] show such behavior changes in terms of relative NRIG and
AUC. The relative value is computed as the improvement over the
performance of pointwise learning at the end of the first day. The
pairwise method is excluded in Figure 3] due to its extremely low
score and resemblance to other methods in terms of the learning
curve.

For both metrics, all the methods exhibit similar patterns: an evi-
dent rise of performance in the first day, followed by small, gradual
but continual improvement. Though not completely stabilized at
last, the increase shows a tendency to level off. This common pat-
tern depicts the learning behaviors of the online models: the effec-
tiveness of the model keeps improving as more and more training
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Figure 4: Relative AUC of one week excluding the first day.
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Figure 6: Change of performance against N.

examples are revealed. The improvement starts to diminish as the
model saturates.

Consistent with our findings from the average performance, pseudo
is the winner on both CTR prediction and ranking — it persistently
performs better than all other methods across the entire learning
process. Pairwise learning achieves reasonable results on AUC, but
is way behind other methods on NRIG.

6.6.3 Parameter sensitivity

We study two parameters offline: the weight w,, of instances
formed by a pair of ads and sliding window size N to form pseudo
pairs. The performance changes are plotted in Figures[5|and|[6]

Intuitively, the higher the value of w),, the more likely the model
would be optimized towards ranking. This intuition is supported
by the experiment result: we observe improved AUC as paired in-
stance weight w,, increases. This improvement flattens out finally.
In contrast, The change of NRIG resembles a right-skewed bell
shape — an initial increase to a certain point, followed by a decline
when weight w,, gets too large. The increase at the beginning might
be due to that information brought in by ranking is beneficial to es-
timation of CTR as well. However, as the model keeps shifting its
focus on optimizing towards ranking, the classification quality is
finally undermined.

When we vary the size of sliding window NN, the performance
of classification and ranking exhibit similar patterns. At the begin-
ning, there is an increase of performance resulting from the inclu-
sion of more pairs. However, as the size of sliding window becomes



even larger, the model degenerates, likely caused by the formation
of training instances from two ads with a bigger time difference.
User preference might have changed as time passes by, making
two ads incomparable. It might be surprising that the best N is
around 8 hours. Actually a user’s intent could change rapidly in
daily tasks (e.g., choosing restaurants). The context of timeline ads
also changes fast and affects the user’s perception of ads.

6.7 Feature analysis

As mentioned before, we put features into four categories: ad-
vertiser, user, ad-user interaction, and context of the session. To
study the importance of different feature categories, we rerun the
offline experiments of combined learning by removing one feature
category at one time, while keeping all other features present. Fig-
ures[7]and[9]show the negated percentage of performance reduction
relative to the method using the entire feature set. We negate the
values in order to make the figures more graphically intuitive. Each
category is colored distinctively, and features belonging to the same
major category carry the same color. The left figure plots the result
after removing all features belonging to a major category, whereas
the right figure is only removing a subcategory. Apart from remov-
ing features, we also consider using a single category alone, with
all other features excluded. The results are shown in Figure[§]and
10
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Figure 7: Negated percentage of NRIG diminished when removing
features of a particular category.

(a) Major categories (b) Subcategories
Figure 8: Negated percentage of NRIG diminished when keeping
features of a particular category.

We could analyze feature importance by reading the two types
of figures side by side. There are in total four possible outcomes,
which are summarized in Table 2]

6.7.1 NRIG

Looking at the major categories depicted in Figure [7] (a) and [§]
(a), we can see that in order to achieve a good CTR prediction per-
formance, the ad features play an importance role. Removing user
features leads to a significant decrease of model quality as well,
but is much less severe than that of ad features. Excluding ad-user
features causes a counterintuitively marginal impact. By looking
at Figure[8] (a), where ad-user features achieve comparable perfor-
mance as user features, we could conjecture that features from ad-
user category correlate with ad and user features — if a user clicks

Remove | Keep Interpretation
L S Important features
L L Does not happen
S L Weak features
S S Important but possibly covered by other features

Table 2: Possible outcomes for each feature category. “L'' un-
der “Remove' column means there is a large drop of perfor-
mance after removing a feature category. Likewise, “S'' means
small.

frequently and an ad is popular, there is usually a good interaction
between the user and the ad. Context information extracted from a
session is not so useful, suggesting that textual information in the
context is hard to capture user’s current interest.

Investigating the subcategories by reading Figure[7](b) and[8](b),
click history of both advertisers and users are most important, con-
firming the result reported by Facebook [[16]. Somehow surpris-
ingly, ad meta information imposes a non-negligible effect on CTR
estimation. This is due to the existence of advertiser IDs, which act
as an indirect way of counting the popularity of advertisers.
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Figure 9: Negated percentage of AUC diminished when removing
features of a particular category.
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Figure 10: Negated percentage of AUC diminished when keeping

features of a particular category.

6.7.2 AUC

When we study feature importance on ranking, one unexpected
observation in Figure 9] and [T0]is the existence of positive values,
which means AUC is actually improved after removing a feature
category or when applying a single category alone. We make two
comments on this observation. First, the majority of instances fed
to the learning model are formed from single ads, rather than a
pair of ads. In other words, the model would optimize towards
CTR estimation more than ranking. Consequently, learned features
might contribute positively to CTR prediction, even if ranking per-
formance is sacrificed. Second, the sacrifice of AUC is not signifi-
cantly large — all positive values are no more than 1%.

Having discussed about the abnormality, we move our focus to
the feature importance with respect to ranking. We can see from



Method Pointwise Combined
Relative CTR (%) +14.59 | +26.10(+10.05)
Relative RPMq (%) | +57.20 | +57.89(40.44)
Table 3: Summary of performance relative to random-

pointwise. Numbers in the parentheses indicate performance
of combined learning relative to pointwise learning.

Figure 0] (a) and[I0] (a) that the ad features are paramount in decid-
ing rankings. However, except for the ad category, removing any
other single category causes almost no effect on ranking. Judged
from Figure[I0](a), user information and ad-user interaction can to
some extent be helpful in ranking. But removing either of them is
not hurting the performance, due to the power of ad features. It is
reasonable that context features are not strong indicators, as ads in
the same session almost face the same context.

According to Figure[9](b) and[I0](b), excluding a single subcate-
gory does no harm to ranking, as either ad meta or ad click informa-
tion is strong enough to maintain a good performance. Aside from
ad features, similarity between an advertiser and a user could give
a relatively good ranking while clicks of a user towards a particular
advertiser cannot. The reason is that we have much richer infor-
mation to calculate similarity, including user’s following accounts,
and user’s Tweets. However, click information is much sparser —
typically users seldom click ads, not to mention ads from a partic-
ular advertiser.

7. ONLINE EXPERIMENT
7.1 Metrics

For online experiment, we compare the click-through rate (CTR)
and revenue per thousand requests (RPMq) of different approaches.
We report both metrics because there is a trade-off between CTR
and RPMq. A model can play conservatively by only placing ads
for requests that are most likely to result in a click, while ignoring
most ad requests. In this case, this model could achieve a rather
high CTR, but at the cost of RPMq. Conversely, if a model acts
aggressively by sending out ads to every request, it could possibly
increase RPMq by sacrificing CTR, which hurts user experience
and causes negative effects for the company in the long run.

Consequently, a model can be safely claimed to be successful if
it can improve one of the metrics, while keeping the other one at
least as good as competing methods.

7.2 Procedure

A random week of year 2014 is selected to evaluate pointwise
learning and combined learning via online A/B tests. Additionally,
a weaker baseline random-pointwise is introduced, which adds
some randomness in the ad selection process to the pointwise learn-
ing model. Users are randomized into different bins by hashing user
IDs, with one bin corresponds to 0.5% of all Twitter users. Each
method is then evaluated on users belonging to one of the bins.

7.3 Experiment results

To further evaluate the effectiveness of combined learning in real
setting, we launched the online experiments, comparing it with the
baseline pointwise learning and a weaker baseline random-pointwise.
The result averaged over one week can be referred in Table[3]

The performance on each individual day are plotted in Figures[TT]|
and [T2] using the result of random-pointwise on the first day as
reference. A few observations could be made from the figures.
First, both pointwise and combined learning are acting better than
random-pointwise, suggesting the benefits of taking learning ap-
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Figure 11: Relative CTR as a function of time.
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Figure 12: Relative RPMq as a function of time.

proaches towards advertising in stream. Second, combined learning
strictly dominates and significantly outperforms pointwise learning
on CTR. In terms of RPMgq, it performs on par with, and on average
slightly better than pointwise learning. As described in Section[7.1]
trade-off exists between CTR and RPMq. Improving CTR while
maintaining RPMq has proved the superiority of combined learn-
ing over pointwise learning. More specifically, the results mean
that combined model is showing fewer ads to users. But these ads
lead to higher click-throughs, compensating for the revenue loss
caused by placing fewer number of ads. Though short-term rev-
enue brought by the two methods stays close, user experience is
improved when using combined learning, bringing in more long-
term benefits to the company. Moreover, some threshold parame-
ters could be adjusted in the auction system, so that the combined
model could distribute more ads. In this way, combined learning
can achieve similar CTR score as the pointwise baseline, but with
much higher revenue, measured by RPMgq.

8. CONCLUSION

In this paper, we presented the problem of click-through pre-
diction for advertising in Twitter Timeline. Compared with tradi-
tional computational advertising sponsored search and contextual
advertising, placing ads in a Tweet stream is particularly challeng-
ing given the nature of a data stream: the context in which an ad
can be placed changes dynamically and few ads could be placed in
the same session. This makes the information available for training
extremely sparse.

We proposed a learning-to-rank method which not only addresses
the sparsity of training signals but also can be trained in real-time
with great scalability. The proposed method was evaluated us-
ing both offline experiments and online A/B tests, involving very
large collections of Twitter data and real Twitter users. We demon-
strated that the proposed method not only improved prediction per-
formance in offline simulations but also significantly enhanced ac-
tual CTR when deployed to the real Twitter ads-serving system,
using the production model as the baseline.
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