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ABSTRACT
We consider the task of identifying attitudes towards a given set
of entities from text. Conventionally, this task is decomposed into
two separate subtasks: target detection that identifies whether each
entity is mentioned in the text, either explicitly or implicitly, and
polarity classification that classifies the exact sentiment towards an
identified entity (the target) into positive, negative, or neutral.

Instead, we show that attitude identification can be solved with
an end-to-end machine learning architecture, in which the two sub-
tasks are interleaved by a deep memory network. In this way, sig-
nals produced in target detection provide clues for polarity classi-
fication, and reversely, the predicted polarity provides feedback to
the identification of targets. Moreover, the treatments for the set of
targets also influence each other – the learned representations may
share the same semantics for some targets but vary for others. The
proposed deep memory network, the AttNet, outperforms methods
that do not consider the interactions between the subtasks or those
among the targets, including conventional machine learning meth-
ods and the state-of-the-art deep learning models.

1. INTRODUCTION
In many scenarios, it is critical to identify people’s attitudes 1

towards a set of entities. Examples include companies who want to
know customers’ opinions about their products, governments who
are concerned with public reactions about policy changes, and fi-
nancial analysts who identify daily news that could potentially in-
fluence the prices of securities. In a more general case, attitudes
towards all entities in a knowledge base may be tracked over time
for various in-depth analyses.

Different from a sentiment which might not have a target (e.g.,
“I feel happy”) or an opinion which might not have a polarity (e.g.,
“we should do more exercise”), an attitude can be roughly con-
sidered as a sentiment polarity towards a particular entity (e.g.,
“WSDM is a great conference”). Therefore, the task of attitude
identification has been conventionally decomposed into two sepa-

1 “The way you think and feel about someone or something,” as
defined by Merriam-Webster. http://www.merriam-webster.com/
dictionary/attitude
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rate subtasks: target detection that identifies whether an entity is
mentioned in the text, either explicitly or implicitly, and polarity
classification that classifies the exact sentiment towards the iden-
tified target, usually into three categories: positive, negative, and
neutral.

Solving the two subtasks back-to-back is by no means unreason-
able, but it may not be optimal. Specifically, intrinsic interactions
between the two subtasks may be neglected in such a modularized
pipeline. Indeed, signals identified in the first subtask – both the
words that refer to the target and the positions of these words, could
provide useful information for the polarity of sentiments. For ex-
ample, the identified target in the sentence “this Tiramisu cake is

” indicates a high probability that a sentimental word would ap-
pear in the blank and is highly likely to be related to flavor or price.
On the other hand, sentimental expressions identified in the sec-
ond subtask and their positions could in turn provide feedback to
the first task and signal the existence of a target. For example, the
positive sentiment in “the new Keynote is user friendly ” provides
good evidence that “Keynote” is a software (the target) instead of
a speech (not the target). In addition, models learned for certain
targets and their sentiments may share some important dimensions
with each other while differ on other dimensions. For example, two
targets food and service may share many sentimental expressions,
but the sentence “we have been waiting for food for one hour” is
clearly about the service instead of the food. Failure to utilize these
interactions (both between tasks and among targets) may compro-
mise the performance of both subtasks.

Recent developments of deep learning has provided the opportu-
nity of a better alternative to modularized pipelines, in which ma-
chine learning and natural language processing tasks can be solved
in an end-to-end manner. With a carefully designed multi-layer
neural network, learning errors backpropagate from upper layers to
lower layers, which enables deep interactions between the learning
of multi-grained representations of the data or multiple subtasks.
Indeed, deep learning has recently been applied to target-specific
sentiment analysis (mostly the second subtask of attitude identifi-
cation) and achieved promising performance, where a given target
is assumed to have appeared exactly once in a piece of text and the
task is to determine the polarity of this text [38, 45, 36]. A deep
network structure learns the dependency between the words in the
context and the target word.

In another related topic known as multi-aspect sentiment analy-
sis, where the goal is to learn the fine-grained sentiments on dif-
ferent aspects of a target, some methods have attempted to model
aspects and sentiments jointly. Aspects are often assumed to be
mentioned explicitly in text, so that the related entities can be ex-
tracted through supervised sequence labeling methods [21, 19, 46];
aspects mentioned implicitly can be extracted as fuzzy representa-
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tions through unsupervised methods such as topic models [22, 41,
32]. While unsupervised methods suffer from low accuracy, it is
usually difficult for supervised methods, like support vector ma-
chines (SVMs) [17], to interleave aspect extraction and sentiment
classification.

In this paper, we show that the accuracy of attitude identification
can be significantly improved through effectively modeling the in-
teractions between subtasks and among targets. The problem can
be solved with an end-to-end machine learning architecture, where
the two subtasks are interleaved by a deep memory network. The
proposed model, called the AttNet, also allows different targets to
interact with each other, by sharing a common semantic space and
simultaneously keep their own space, making it possible for all tar-
gets to be learned in a unified model. The proposed deep mem-
ory network outperforms models that do not consider the subtask
or target interactions, including conventional supervised learning
methods and state-of-the-art deep learning models.

The rest of the paper is organized as follows. Section 2 summa-
rizes the related literature. In Section 3, we describe how the deep
neural network is designed to incorporate the interaction both be-
tween subtasks and among targets. We present the design and the
results of empirical experiments in Section 4 and Section 5, and
then conclude the paper in Section 6.

2. RELATED WORK
Sentiment analysis has been a very active area of research [27,

30]. While sentiment in general does not need to have a specific
target, the notion of attitude is usually concerned with a sentiment
towards a target entity (someone or something). As one category
of sentiment analysis, there is much existing work related to atti-
tude identification, which generally takes place in three domains:
multi-aspect sentiment analysis in product reviews, stance classi-
fication in online debates, and target-dependent sentiment classifi-
cation in social media posts. Below we categorize existing work
by the problem settings, e.g., whether the target is required to be
explicitly mentioned.

Explicitly tagged targets. There has been a body of work that
classifies the sentiment towards a particular target that is explicitly
mentioned and tagged in text, mostly applied to social media text
such as Tweets. Due to the short length of Tweets, many models as-
sume that targets appear exactly once in every post. Jiang et al. [14]
developed seven rule-based target-dependent features, which are
fed to an SVM classifier. Dong et al. [6] proposed an adaptive
recursive neural network that propagates sentiment signals from
sentiment-baring words to specific targets on a dependence tree.
Vo et al. [38] split a Tweet into a left context and a right context
according to a given target, and used pre-trained word embeddings
and neural pooling functions to extract features. Zhang et al. [45]
extended this idea by using gated recursive neural networks. The
paper most relevant to ours is Tang et al. [36], which applied Mem-
ory Networks [35] to the task of multi-aspect sentiment analysis.
Aspects are given as inputs, assuming that they have already been
annotated in the text. Their memory network beat all LSTM-based
networks but did not outperform SVM with hand-crafted features.

Model structures for target-dependent sentiment classification
heavily rely on the assumption that the target appears in the text
explicitly, and exactly once. These models could degenerate when
a target is implicitly mentioned or mentioned multiple times. Addi-
tionally, they do not consider the interactions between the subtasks
(target detection and sentiment classification) or among the targets.

Given target, one per instance. In the problem of stance classi-
fication, the target, mentioned explicitly or implicitly, is given but
not tagged in a piece of text. The task is only to classify the sen-

timent polarity towards that target. Most methods train a specific
classifier for each target and report performance separately per tar-
get. Many researchers focus on the domain of online debates. They
utilized various features based on n-grams, part of speech, syntac-
tic rules, and dialogic relations between posts [40, 10, 7, 31]. The
workshop SemEval-2016 presented a task on detecting stance from
tweets [24], where an additional category is added for the given
target, indicating the absence of sentiment towards the target. Mo-
hammad et al. [25] beat all teams by building an SVM classifier for
each target.

As stance classification deals with only one given target per in-
stance, it fails to consider the interaction between target detection
and sentiment classification. Furthermore, the interplay among tar-
gets is ignored by training a separate model per target.

Explicit targets, not tagged. In the domain of product reviews,
a specific aspect of a product could be considered as a target of
attitudes. When the targets appear in a review but are not explic-
itly tagged, they need to be extracted first. Most work focuses on
extracting explicitly mentioned aspects. Hu et al. [12] extracted
product aspects via association mining, and expanded seed opin-
ion terms by using synonyms and antonyms in WordNet. When
supervised learning approaches are taken, both tasks of aspect ex-
traction and polarity classification can be cast as a binary classi-
fication problem [17], or as a sequence labeling task and solved
using sequence learning models such as conditional random fields
(CRFs) [21, 19] or hidden Markov models (HMMs) [46].

Implicit targets. There are studies that attempt to address the
situation when aspects could be implicitly mentioned. Unsuper-
vised learning approaches like topic modeling treat aspects as top-
ics, so that topics and sentiment polarity can be jointly modeled [22,
41, 32]. The workshop of SemEval-2015 announced a task of as-
pect based sentiment analysis [28], which separates aspect iden-
tification and polarity classification into two subtasks. For aspect
identification, top teams cast aspect category extraction as a multi-
class classification problem with features based on n-grams, parse
trees, and word clusters.

Although aspect identification and polarity classification are mod-
eled jointly here, it is hard to train unsupervised methods in an end-
to-end way and directly optimize the task performance.

Deep learning for sentiment analysis. In the general domain
of sentiment analysis, there has been an increasing amount of at-
tention on deep learning approaches. In particular, Bespalov et
al. [1] used Latent Semantic Analysis to initialize the word em-
bedding, representing each document as the linear combination of
n-gram vectors. Glorot et al. [9] applied Denoising Autoencoders
for domain adaptation in sentiment classification. A set of mod-
els have been proposed to learn the compositionality of phrases
based on the representation of children in the syntactic tree [33, 34,
11]. These methods require parse trees as input for each document.
However, parsing does not work well on user generated contents,
e.g., tweets [8]. Liu et al. [20] used recurrent neural networks to
extract explicit aspects in reviews.

Compared to the existing approaches, our work develops a novel
deep learning architecture that emphasizes the interplay between
target detection and polarity classification, and the interaction among
multiple targets. These targets can be explicitly or implicitly men-
tioned in a piece of text and do not need to be tagged a priori.

3. ATTNET FOR ATTITUDE IDENTIFICA-
TION

We propose an end-to-end neural network model to interleave the
target detection task and the polarity classification task. The target



detection task is to determine whether a specific target occurs in a
given context either explicitly or implicitly. The polarity classifi-
cation task is to decide the attitude of the given context towards the
specific target if the target occurs in the context. Formally, a tar-
get detection classifier is a function mapping pairs of targets and
contexts into binary labels, (context, target) → {present, absent}.
A polarity classifier is a function mapping pairs of targets and con-
texts into three attitude labels, (context, target)→{positive, negative,
neutral}. For example, given a context, if everyone has guns, there
would be just mess, and a target, gun control, the correct label is
present for the target detection task and positive for polarity classi-
fication.

Our model builds on the insight that the target detection task and
the polarity classification task are deeply coupled in several ways.

• The polarity classification depends on the target detection be-
cause the polarity is meaningful only if the target occurs in
the context. Reversely, the polarity classification task pro-
vides indirect supervision signals for the target detection task.
For example, if the attitude label positive is provided for a
context-target pair, the target must have occurred in the con-
text following the definition. Such indirect supervision sig-
nals are useful especially when the target only occurs in the
context implicitly.

• The signal words in the target detection and the polarity clas-
sification task are usually position-related: the signal words
to determine the polarity are usually the surrounding words
of the signal words to detect the target. Moreover, when a
context has multiple targets, the signal words usually cluster
for different targets [12, 30].

• Different targets interact in both the target detection task and
the polarity classification task. Intuitively, some context words
could mean the same for many targets, while some context
words could mean differently for different targets.

Specifically, our model introduces several techniques building
on the interaction between the target detection task and the polarity
classification task accordingly.

• The output of the target detection is concatenated as part of
the input of the polarity classification task to allow polarity
classification to be conditioned on target detection. Polarity
classification labels are also used to train the target detection
classifier by back-propagating the errors of the polarity clas-
sification to the target detection end-to-end.

• The attention of polarity classification over context words are
preconditioned by the attention of target detection. The po-
larity classification task benefits from such precondition es-
pecially when there are multiple targets in the context.

• Target-specific projection matrices are introduced to allow
some context words to have similar representations among
targets and other context words to have distinct representa-
tions. These matrices are all learned in an end-to-end fash-
ion.

We propose a deep memory network model, called the AttNet,
which implements the above motivation and ideas. In the rest of
this section, we give a brief introduction to the memory network
model, followed by a description of a single layer version of the
model. Then we extend the expressiveness and capability of the
model by stacking multiple layers.

3.1 Background: Memory Networks
As one of the recent developments of deep learning, memory

networks [35] have been successfully applied to language model-
ing, question answering, and aspect-level sentiment analysis [36],
which generates superior performance over alternative deep learn-
ing methods, e.g., LSTM.

Given a context (or document, e.g., “we have been waiting for
food for one hour”) and a target (e.g., service ), a memory network
layer converts the context into a vector representation by comput-
ing a weighted sum of context word vector representations. The
weight is a score that measures the relevance between the context
word and the target (e.g., a higher score between the words wait-
ing and service). The vector representation of the context is then
passed to a classifier for target detection or polarity classification.
An attractive property is that all parameters, including the target
embeddings, context word embeddings and scores, are end-to-end
trainable without additional supervision signals.

AttNet improves the original memory network models for atti-
tude identification by (1) interleaving the target detection and po-
larity classification subtasks and (2) introducing target-specific pro-
jection matrices in representation learning, without violating the
end-to-end trainablity.

3.2 Single Layer AttNet
We begin by describing AttNet in the single layer case, shown

in Figure 1. Hereafter for simplicity, we refer to the task of target
detection as TD, and polarity classification as PC.

(1) Target Embedding. Each query target is represented as a one-
hot vector, q ∈ RNtarget , where Ntarget is the number of targets. All
targets share a target embedding matrix B ∈ Rd×Ntarget , where d is
the embedding dimensionality. The matrix B converts a target into
its embedding vector u = Bq, which is used as the input for the
TD task.

(2) Input Representation and Attention for TD. We compute
match scores between the context (or document) and the target for
content-based addressing. The context is first converted into a se-
quence of one-hot vectors, {xi ∈ RNvoc} , where xi is the one-hot
vector for the i-th word in the context and Nvoc is the number of
words in the dictionary. The entire set of {xi} are then embedded
into a set of input representation vectors {mt

i} by:

mt
i = Vt

qA
txi,

where At ∈ Rd×Nvoc is the word embedding matrix shared across
targets, superscript t stands for the TD task, and Vt

q ∈ Rd×d is a
target-specific projection matrix for target q, which allows context
words xi to share some semantic dimensions for some targets while
vary for others.

In the embedding space, we compute the match scores between
the target input representation u and each context word representa-
tion mt

i by taking the inner product followed by a softmax, ati =
SoftMax(uᵀmt

i), where SoftMax(wi) = exp(wi)/
∑
j exp(wj).

In this way, at is a soft attention (or probability) vector defined over
the context words.

(3) Output Representation for TD. A different embedding ma-
trix, Ct ∈ Rd×Nvoc , is introduced for flexibility in computing the
output representation of context words by:

cti = Vt
qC

txi
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Figure 1: A single layer version of AttNet. Key submodules are numbered and correspondingly detailed in the text.

The response output vector ot is then a sum over the outputs cti ,
weighted by the attention vector from the input: ot =

∑
i a
t
ic
t
i .

(4) Interleaving TD and PC. In the single layer case, the sum
of the output vector ot and the target query embedding u is then
passed to the PC task, z = ot + u.

(5) Input Representation and Attention for PC. Similar to the
TD task, we convert the entire set of {xi} into input representation
vectors {mp

i } by:

mp
i = Vp

qA
pxi,

where Ap ∈ Rd×Nvoc is the input embedding matrix for PC. We
use separate embedding matrices At and Ap for TD and PC, as the
words could have different semantics in the two tasks. For similar
reasons, we use different projection matrices Vt

q and Vp
q for the

two tasks.
Given the polarity input representation {mp

i }, we also compute
the soft attention over the context words for polarity identification,
api = SoftMax(zᵀmp

i ).

(6) Output Representation for PC. There is also one correspond-
ing output vector cpi in PC for each xi:

cpi = Vp
qC

pxi,

where Cp ∈ Rd×Nvoc is the polarity output embedding matrix. It
has been observed that sentiment-baring words are often close to
the target [12, 30]. Based on this observation, attentions, or posi-
tions of important words that identify the target in the first module,
could provide prior knowledge to learn the attention of the second
module. Therefore we compute the final attention vector as a func-
tion of original attentions of both tasks:

bp = (1− λ)ap + λf(at), (1)

where 0 ≤ λ < 1 controls the importance of the second term, and
f is a moving average function which shifts attentions from words
of high values to their surrounding neighbors. The output vector is
op =

∑
i b
p
i c
p
i .

(7) Prediction for TD and PC. To predict whether a target presents,
the sum of the output vector of target classification ot and the tar-
get query vector u is passed through a weight matrix Wt ∈ R2×d

(2 is the number of classes: present, absent) and a softmax oper-
ator to produce the predicted label, a vector of class probabilities:
yt = SoftMax(Wt(ot + u)).

Similarly, the sum of the output vectors op of PC and its input
vector z is then passed through a weight matrix Wp ∈ R3×d and
a softmax operator to produce the predicted attitude label vector,
yp = SoftMax(Wp(op + z)).

3.3 Multiple Layer AttNet
We now extend our model to stacked multiple layers. Figure 2

shows a three layer version of our model. The layers are stacked in
the following way:

Functionality of Each Layer. For TD, the input to the (k+1)-
th layer is the sum of the output otk and the input uk from the k-th
layer, followed by a sigmoid nonlinearity: uk+1 = σ(Htuk+otk),
where σ(x) = 1/(1 + exp(x)) is the sigmoid function and Ht is
a learnable linear mapping matrix shared across layers. For the PC
task, the input to the first layer is the transformed sum from the last
layer of the TD module, z1 = σ(HtuKt + otKt

), where Kt is the
number of stacked layers in the TD task. Thus the prediction of
polarity would depend on the output of the TD task and reversely
the TD task would benefit from indirect supervision from the PC
task by backward propagation of errors. Similarly for PC, the input
to the (k+1)-th layer is the sum of the output opk and the input zk
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from the k-th layer, followed by a sigmoid nonlinearity: zk+1 =
σ(Hpzk + opk).

Attention for PC. In the single layer case, the attention for PC is
based on that of the TD module. When layers are stacked, all layers
of the first module collectively identify important attention words
to detect the target. Therefore we compute the averaged attention
vector across all layers in the TD module āt = 1

Kt

∑Kt
k=1 a

t
k.

Accordingly for k-th layer of the PC module, the final attention
vector is bpk = (1 − λ)apk + λf(āt), and the output vector is
opk =

∑
i b
p
k,ic

p
k,i.

Tying Embedding and Projection Matrices. The embedding ma-
trices and projection matrices are constrained to ease training and
reduce the number of parameters [35]. The embedding matrices
and the projection matrices are shared for different layers. Specifi-
cally, using subscription (k) denote the parameters in the k-th layer,
for any layer k, we have At(1) ≡ At(k), Ct(1) ≡ Ct(k), Ap(1) ≡
Ap(k), Cp(1) ≡ Cp(k), Vt(1)

q ≡ V
t(k)
q and V

p(1)
q ≡ V

p(k)
q .

Predictions for TD and PC. The prediction stage is similar to
the single-layer case, with the prediction based on the output of
the last layer Kt (for TD) and Kp (for PC). For the TD task, yt =
SoftMax(Wtσ(HtuKt+otKt

)), while for PC, yp = SoftMax(Wp

σ(HpzKp + opKp
)).

3.4 End-to-End Multi-Task Training
We use cross entropy loss to train our model end-to-end given a

set of training data {cti, qj , gtij , gpij}, where cti is the i-th context
(or document), qj is the j-th target, gtij and gpij are the ground-truth
labels for the TD and the PC tasks respectively. The training is to
minimize the objective function:

L = −
∑
i

∑
j

(
log(ytij(g

t
ij)) + 1gtij log(ypij(g

p
ij))
)
,

where ytij is a vector of predicted probability for each class of TD,
ytij(s) selects the s-th element of ytij , 1gtij equals to 1 if gtij equals
to class present and 0 otherwise. Note that when a target is not
mentioned in a given context, the polarity term plays no role in the
objective because the value of 1gtij is zero.

4. EXPERIMENT SETUP
In the experiments, we compare AttNet to conventional approaches

and alternative deep learning approaches on three real world data

sets, and we show the superior performance of our model. We also
experiment with variants of AttNet as credit assignments for the
key components in our model.

4.1 Data Sets
We examine AttNet on three domains that are related to atti-

tude classification: online debates (Debates), multi-aspect senti-
ment analysis on product review (Reviews), and stance in tweets
(Tweets).

Debates. This data set is from the Internet Argument Corpus ver-
sion 22. The data set consists of political debates on three Internet
forums3 . In these forums, a person can initiate a debate by posting
a topic and taking positions such as favor vs. against. Examples
of topics are gun control, death penalty and abortion. Other users
participate in these debates by posting their arguments for one of
the sides.

Tweets. This data set comes from a task of the workshop SemEval-
2016 on detecting stance from tweets [24]. Targets are mostly re-
lated to ideology, e.g., atheism and feminist movement4.

Review. This data set includes reviews of restaurants and laptops
from SemEval 2014 [29] and 2015 [28], where subtasks of identi-
fying aspects and classifying sentiments are provided. We merge
two years’ data to enlarge the data set, and only include aspects
that are annotated in both years.

To guarantee enough training and test instances, for all the data
sets we filter out targets mentioned in less than 100 documents. The
original train-test split is used if provided, otherwise we randomly
sample 10% data into test set. We further randomly sample 10%
training data for validation. Text pre-processing includes stopword
removal and tokenization by the CMU Twitter NLP tool [8]. The
details of the data sets are shown in Table 1.

Table 1: Statistics of each data set.
Data set Set #docs #pos #neg #neutral #absent

Debates
train 24352 13891 10711 0 0
val 2706 1530 1203 0 0
test 3064 1740 1371 0 0

Tweets
train 2614 682 1253 0 679
val 291 71 142 0 78
test 1249 304 715 0 230

Review
train 5485 2184 1222 210 2336
val 610 260 121 17 277
test 1446 496 455 60 634

#pos means the number of documents with positive sentiment for each tar-
get. If one document contains positive sentiment towards two targets, it
will be counted twice. #absent counts the number of documents without
any attitude towards any target.

2https://nlds.soe.ucsc.edu/iac2.
34forums(http://www.4forums.com/political/),
ConvinceMe(http://www.convinceme.net/) and
CreateDebate(http://www.createdebate.com/)
4Since there are less than 10 tweets with neutral stance, we only
consider positive and negative attitude by discarding these neutral
tweets.

https://nlds.soe.ucsc.edu/iac2
http://www.4forums.com/political/
http://www.convinceme.net/
http://www.createdebate.com/


4.2 Metrics
For our problem, each data set has multiple targets, and each

target can be classified into one of the outcomes: absent (do not
exist), neutral, positive, and negative. If we treat each outcome
of each target as one category, we can adopt common metrics for
multi-class classification. Since most targets do not appear in most
instances, we have a highly skewed class distribution, where mea-
sures like accuracy are not good choices [3].

Apart from precision, recall and AUC, we also use the macro-
average F-measure [44]. Let ρi and πi be recall and precision re-
spectively for a particular category i, ρi = TPi

TPi+FNi
, πi = TPi

TPi+FPi
,

where TPi, FPi, FNi are the number of true positive, false positive,
and false negative for category i. Given ρi and πi, F-score of cate-
gory i is computed as Fi = 2πiρi

πi+ρi
. The macro-average F-score is

obtained by taking the average over all categories. The final preci-
sion and recall are also averaged over individual categories. There
is another micro-averaged F-measure, which is equivalent to accu-
racy. Therefore, we do not include it.

4.3 Baselines
We compare baseline methods from two large categories: con-

ventional methods and alternative deep learning methods.
Each baseline method has various configurations, based on whether:

(1) it trains a single model or two separate models for the TD and
PC subtasks, and (2) it trains one universal model for all targets
or separated models for different targets. To distinguish different
configurations, we append -sgl when using a single model for the
two subtasks, and -sep when using separate models for each sub-
task. Taking SVM as an example, SVM-sgl directly classify tar-
gets into four classes: absent, neutral, positive, and negative. In
contrast, SVM-sep first classifies each target into two classes: ab-
sent, present, and use a second model to classify polarity: neutral,
positive, and negative. Moreover, we append -ind when individual
targets are trained on separate models, or -all when one model is
trained for all targets.

4.3.1 Conventional baselines
SVM+features. SVM using a set of hand-crafted features has

achieved the state-of-the-art performance in stance classification of
SemEval 2016 task [25], online debates [10], and aspect-based sen-
timent analysis [36]. SVM has also demonstrated superior perfor-
mance in document-level sentiment analysis compared with condi-
tional random field methods [42]. Therefore we include all features
from these methods that are general across domains, and use a lin-
ear kernel SVM implemented by LIBSVM [2] for classification.
We list the set of features:

Document info: basic counting features of a document, including
the number of characters, the number of words, the average words
per document and the average word length.

N-grams: word unigrams, bigrams, and trigrams. We insert sym-
bols that represent the start and end of a document to capture cue
words [40].

Sentiment: the number of positive and negative words counted
from the NRC Emotion Lexicon [26], Hu and Liu Lexicon [12],
and the MPQA Subjectivity Lexicon [43].

Target: presence of the target phrase in the text. Furthermore, if
the target is present, we generate a set of target dependent features
according to [14]. To get a sense of these features, for the target
iPhone in text I love iPhone, a feature love_arg will be generated.

POS: the number of occurrences of each part-of-speech tag (POS).
Syntactic dependency: a set of triples obtained by Stanford de-

pendency parser [5]. More specifically, the triple is of the form

(rel, wi, wj), where rel represents the grammatical relation be-
tween word wi and wj , e.g., is subject of.

Generalized dependency: the first word of the dependency triple
is “backed off” to its part-of-speech tag [39]. Additionally, words
that appear in sentiment lexicons are replaced by positive or nega-
tive polarity equivalents [39].

Embedding: the element-wise averages of the word vectors for
all the words in a document. We use three types of word embed-
dings. Two of them are from studies on target-dependent senti-
ment classification [38, 45], which are the skip-gram embeddings
of Mikilov et al. [23] and the sentiment-driven embeddings of Tang
et al. [37]. The first type of embedding is trained on 5 million un-
labeled tweets that contain emoticons, which guarantees that more
sentiment related tweets are included. The second type of embed-
ding is of 50 dimensions, which is publicly available5. The third
type of embedding is also 50-dimensional, released by Collobert et
al. [4] and trained on English Wikipedia6.

Word cluster: the number of occurrences of word clusters for all
words in text. We perform K-means clustering on the word vectors.

Apart from two standard SVM model configurations, SVM-sep-
ind and SVM-sgl-ind, we also compare with a hybrid model SVM-
cmb-ind, whose prediction is absent if SVM-sep-ind says so, and
otherwise it follows the decisions of SVM-sgl-ind.7

4.3.2 Deep Learning Baselines
BiLSTM, MultiBiLSTM and Memnet. We also compare to

the bidirectional LSTM (BiLSTM) model, the state-of-the-art in
target-dependent sentiment classification [45]. Their variant of BiL-
STM model assumes that the given target always appears exactly
once, and can be tagged in text by starting and ending offsets.
When such assumption fails, their model is equivalent to standard
BiLSTM. We include the standard multi-layered bidirectional LSTM
(MultiBiLSTM) [13] as an extension. Recently, Tang et al. [36]
applied memory networks (Memnet) to multi-aspect sentiment anal-
ysis. Their results show memory network performs comparably
with feature based SVM and outperforms all LSTM-related meth-
ods in their tasks.

CNN and ParaVec. We include related deep learning techniques
beyond the sentiment analysis domain, such as the convolutional
neural networks (CNN) [15] and ParaVec [18]. ParaVec requires
a huge amount of training data to reach decent performance. We
enhance the performance of the ParaVec model by training over the
merged training set of all data sets, plus the 5 million unlabeled
tweets mentioned above.

Parser-dependent deep learning methods have also been applied
to sentiment analysis [33, 34, 11]. These models are limited in our
attitude identification problem for two reasons. First, they often
work well with phrase-level sentiment labels, but only document-
level sentiment labels are provided in our problems. Second, their
parsers do not extend to user generated content, such as Tweets
and Debates [8]. Our preliminary results show these methods work
poorly on our problems and we do no include their results for sim-
plicity.

For all deep learning methods, we report their -sep-all and -sgl-
all version. Unlike SVM, deep methods perform quite well when
using a single model for all targets, by casting the problem as a
multi-task multi-class classification. Though not scalable, for the
strongest baselines (BiLSTM and MultiBiLSTM), we in addition

5http://ir.hit.edu.cn/~dytang/
6http://ronan.collobert.com/senna/
7SVM-sgl-all and SVM-sep-all have performance degeneration due
to the interference of different targets. We do not include their re-
sults for simplicity.

http://ir.hit.edu.cn/~dytang/
http://ronan.collobert.com/senna/


train a separate model for each target. Since -sep-ind works bet-
ter than -sgl-ind, we only report the former one. The variants of
memory networks are detailed below.

4.4 Variants of AttNet
To assign the credit of key components in our model, we con-

struct a competing model AttNet-. Unlike our proposed model, for
AttNet- the target-specific projection matrices Vp

q and Vt
q are re-

placed by the identity matrix and are fixed during training. Thus the
AttNet- model interleave the target detection and polarity classifi-
cation subtasks, but do not consider the interactions among targets.
We refer our proposed model as AttNet, which allows the projec-
tion matrices to be learned during training, and thus word semantics
could vary for targets.

For AttNet-, we report two settings in our experiments: AttNet-
ind and AttNet-all. The former makes all targets share the same
embedding, while the latter separates the embedding space com-
pletely for each target, i.e., targets are trained on separate models.

Table 2: Hyper-parameters for our method AttNet.
Hyper-parameters Tweets Review Debates

L1 coeff 1e-6 1e-4 1e-6
L2 coeff 1e-4 1e-8 1e-8

init learning rate 0.05 0.01 0.005
#layers(target) 4 4 3

#layers(sentiment) 4 8 6
prior attention λ 0.5 0.1 0.5

The embedding size is set to 100 for all data sets. The sliding window size
of the moving average function in Equation 1 is set to 3. #layers(target) is
the number of memory layers for target detection, and #layers(sentiment)
is the number for sentiment classification. prior attention λ is the weight
for prior attention in Equation 1.

4.5 Training Details
All hyper-parameters are tuned to obtain the best performance of

F-score on validation set. The candidate embedding size set is {50,
100, 200, 300} for LSTM-related methods, SVM and CNN. The
candidate number of clusters for K-means is {50, 100, 150}. The
candidate relaxing parameter C for SVM model is {27, 26, ..., 2−3}.
The CNN model has three convolutional filter sizes and their filter
size candidates are {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {2, 4, 6}}, and
the candidate number of filters is {50, 100, 200, 300}. For Par-
aVec, we experiment with both skip-gram model or bag-of-words
model, and select the hidden layer size from {26, 27, ..., 210}.

We explored three weight initialization methods of word embed-
dings for LSTM-related and CNN baselines: (1) sampling weights
from a zero-mean Gaussian with 0.1 standard deviation; (2) initial-
izing from the pre-trained embedding matrix, and (3) using a fixed
pre-trained embedding matrix.

Memory network models, including our model, are initialized by
sampling weights from a zero-mean Gaussian with unit standard
deviation. The candidate number of memory layers is {2, 3, ...,
9}. The prior attention parameter λ of our model is selected from
{0, 0.1, 0.5, 0.9, 1}. The capacity of memory, which has limited
impact on the performance, is restricted to 100 words without fur-
ther tuning. A null symbol was used to pad all documents to this
fixed size. To reduce the model complexity, the projection matrices
are initialized in the way that each column is a one-hot vector.

Deep learning models are optimized by Adam [16]. The initial
learning rate is selected from {0.1, 0.05, 0.01, 0.005, 0.001}, and
L1-coefficient and L2-coefficient of regularizers are selected from

{10−2, 10−4, ..., 10−10}. The hyper-parameters of our model At-
tNet+ for different data sets are listed in Table 2.

5. EXPERIMENT RESULTS

5.1 Overall Performance
The overall performance of all competing methods over data

sets are shown in Table 38. Evaluating with F-score and AUC,
we make the following observations. Our method AttNet outper-
forms all competing methods significantly. This empirically con-
firms that interleaving target detection and polarity classification
subtasks combined with target-specific representations could bene-
fit attitude identification.

The variants of our model, AttNet-all and AttNet-ind, have al-
ready gained significant improvement over the strongest baselines
on all data sets. More importantly, the two methods significantly
outperform the Memnet-sep-all and Memnet-sep-all baselines, which
do not interleave the subtasks. Such empirical findings cast light
on that interleaving the subtasks indeed improves the attitude iden-
tification performance. In contrast, separating the two subtasks of
attitude identification could lead to performance degeneration.

Our model AttNet also outperforms its variants, AttNet-all and
AttNet-ind, on all data sets. The performance advantage of AttNet
comes from the adoption of target-specific projection matrices in
representation learning, since these matrices are the only differ-
ences between AttNet and AttNet-. Even though the improvement
from adopting target-specific projection matrices is not as marked
as from the techniques of interleaving the subtasks, the improve-
ment is still significant. This result confirms that attitude identifi-
cation could benefit from the learned representations that share the
same semantics for many targets but vary for some targets.

By examining the precision and recall results, we find that the
superior performance of our model is mainly from the significant
improvement of recall, though both precision and recall are im-
proved significantly on the Debates data set.

5.2 Performance on Subtasks
We have established that our models outperform competing meth-

ods on all data sets. In order to further assign the credits of the im-
provement of our methods, we evaluate our models on the two sub-
tasks: target detection and polarity classification, with results given
in Table 4 and 5 respectively. Since different configurations of the
same method work similarly, we only present the results where sep-
arate models are trained for each task. It can be seen from Table 4
that the target detection task is relatively easy, as all methods can
achieve quite high scores. This also means that it is hard to improve
any further on this task. In terms of precision and recall, SVM per-
forms quite well on the precision metric, especially for the Review
data set. While most deep learning methods focus more on enhanc-
ing recall. When considering both precision and recall, most deep
learning methods are still better, as the F-score shows.

The second task is only evaluated on documents with ground-
truth sentiments towards particular targets, with F-scores averaged
over all targets and three sentiment classes: positive, negative, and
neutral. We make several notes for this evaluation. (1) In order
to achieve a high score in the second task, it is still important to
classify correctly the presence of a target. (2) In general the scores
for all methods in the second task are low, due to that the classi-
fier might predict a target as absent, even though the ground-truth
8The performance of all methods on the Review data set is lower
than the other two because Review data set handles three polarities
while the others only need to handle two polarities as shown in
Table 1.



Table 3: Performance of competing methods: AttNet achieves top performance.
Tweets Review Debates

Method F-score AUC Precision Recall F-score AUC Precision Recall F-score AUC Precision Recall
SVM-sep-ind 59.93 69.20 68.70 55.69 38.43 57.99 51.22 36.83 58.30 72.10 64.48 57.81

SVM-sgl-ind 57.44∗∗∗ 66.64∗∗∗ 69.87 52.45∗∗∗ 36.06∗∗ 56.84∗∗ 50.79 34.07∗∗ 59.75 72.25 66.39 57.67

SVM-cmb-ind 57.09∗∗∗ 66.46∗∗∗ 69.84 52.25∗∗∗ 35.71∗∗∗ 56.61∗∗∗ 50.73 33.78∗∗∗ 59.86 71.68 66.28 56.48

ParaVec-sep-all 53.17∗∗∗ 62.88∗∗∗ 56.75∗∗∗ 48.29∗∗∗ 34.02∗∗∗ 55.26∗∗∗ 38.04∗∗∗ 30.47∗∗∗ 56.32∗∗ 68.12∗∗∗ 59.09∗∗∗ 49.41∗∗∗

ParaVec-sgl-all 54.15∗∗∗ 63.41∗∗∗ 57.52∗∗∗ 48.76∗∗∗ 34.26∗∗∗ 55.31∗∗∗ 38.26∗∗∗ 30.89∗∗∗ 55.35∗∗∗ 67.48∗∗∗ 59.46∗∗∗ 49.82∗∗∗

CNN-sep-all 58.05∗ 70.10 62.43∗∗∗ 56.19 37.15∗ 57.55 43.73∗∗∗ 33.24∗∗ 57.38 70.70∗∗ 61.81∗∗ 52.94∗∗∗

CNN-sgl-all 58.69 70.71∗ 61.83∗∗∗ 56.64 35.45∗∗∗ 56.29∗ 44.65∗∗∗ 32.83∗∗ 56.23∗∗ 69.92∗∗ 60.75∗∗ 52.29∗∗∗

BiLSTM-sep-all 61.16 71.26∗∗ 63.45∗ 59.87∗∗∗ 40.78∗ 61.01∗∗∗ 42.54∗∗∗ 39.01∗∗ 59.83∗ 71.91 65.94∗ 57.65

BiLSTM-sgl-all 60.86 71.02∗∗ 62.58∗ 59.61∗∗∗ 39.68 60.84∗∗ 41.88∗∗∗ 38.81∗ 58.66 72.01 64.87 57.89

BiLSTM-sep-ind 59.49 71.92∗∗ 61.44∗∗∗ 57.86 40.42 62.25∗∗∗ 42.68∗∗∗ 39.78∗∗ 58.75 72.83 64.73 57.95

MultiBiLSTM-sep-all 60.53 71.51∗∗ 64.81∗ 57.76 40.47 60.71∗∗ 44.89∗∗∗ 37.67∗ 59.24∗ 72.24 64.75 58.43

MultiBiLSTM-sgl-all 60.59 71.32∗∗ 64.27∗ 57.97 39.38 59.68∗ 43.22∗∗∗ 37.92∗ 58.98 71.18 63.46 57.26

MultiBiLSTM-sep-ind 59.71 71.16∗∗ 63.72∗ 57.94 40.81 61.27∗∗ 44.76∗∗∗ 38.02∗ 58.36 72.93 64.15 57.14

Memnet-sep-all 59.44 71.68∗∗ 63.22∗ 59.80∗∗∗ 41.75∗∗ 61.82∗∗∗ 45.61∗∗∗ 39.25∗∗ 60.42∗∗ 73.84∗ 65.37 58.92∗

Memnet-sgl-all 60.69 71.80∗∗ 63.48∗ 59.97∗∗∗ 41.65∗∗ 61.53∗∗∗ 45.23∗∗∗ 39.13∗∗ 59.67∗ 73.31∗∗ 64.27 58.83

Proposed methods
AttNet-all 63.42∗∗��� 72.94∗∗∗� 68.78��� 60.57∗∗∗ 43.91∗∗∗�� 63.18∗∗∗�� 47.89∗∗�� 42.77∗∗∗�� 64.23∗∗∗��� 76.13∗∗∗�� 67.19∗∗�� 62.17∗∗���
AttNet-ind 63.09∗∗��� 72.73∗∗∗ 68.33��� 59.68∗∗ 44.15∗∗∗�� 63.53∗∗∗�� 50.02��� 40.58∗∗ 65.01∗∗∗��� 76.35∗∗∗�� 70.08∗∗∗��� 60.70∗�

AttNet 64.62∗∗∗
O 74.76∗∗∗

OO 68.40 62.09∗∗∗
OO 45.93∗∗∗

O 65.58∗∗∗
OO 50.34 44.95∗∗∗

OO 67.68∗∗∗
OO 78.48∗∗∗

OOO 74.55∗∗∗
OOO 66.31∗∗∗

OO

*(**,***) indicate that one method is statistically significantly better or worse than SVM-sep-ind (which is in general the best configuration among all SVM
models) according to t-test [44] at the significance level of 0.05(0.01,0.001). ��(���) indicate AttNet- outperforms the better one between Memnet-sep-all and
Memnet-sgl-all at the significance level of 0.01(0.001). OO(OOO) indicate AttNet outperforms the better one between AttNet-all and AttNet-ind at the
significance level of 0.01(0.001).

Table 4: Performance on target detection for -sep models.
Tweets Review Debates

SVM 79.74 67.84 84.59
89.12,75.00 84.13,63.52 91.47,81.00

ParaVec 75.63∗∗ 63.74∗∗∗ 76.16∗∗∗

82.67∗∗∗ ,71.76∗∗∗ 67.41∗∗∗ ,57.03∗∗∗ 80.32∗∗∗ ,71.80∗∗∗

CNN 80.62 65.34∗∗ 80.21∗∗

87.57∗∗ ,77.41∗ 73.23∗∗∗ ,59.16∗∗ 93.26∗ ,73.48∗∗

BiLSTM 81.50∗∗ 70.41∗∗ 85.05
86.48∗ ,81.68∗∗ 76.39∗∗∗ ,69.11∗∗∗ 92.03,82.05

MultiBiLSTM 81.53∗∗ 69.26∗∗ 85.33
87.69,78.82∗∗ 75.38∗∗∗ ,68.40∗∗∗ 92.82,83.77∗

Memnet 81.29∗∗ 70.71∗∗ 86.29∗

87.82,79.36∗∗ 75.52∗∗∗ ,68.59∗∗∗ 92.31,83.26

AttNet-all 82.58∗∗ 71.84∗∗∗ 89.02∗∗∗��
88.78,79.05∗∗ 75.85∗∗∗ ,69.99∗∗∗ 92.24,86.47∗∗∗��

AttNet-ind 82.74∗∗� 71.95∗∗∗ 88.89∗∗��
88.29, 79.82∗∗ 82.67��� , 66.19∗∗ 92.35, 82.22

AttNet 84.89∗∗∗
OO 72.59∗∗∗ 89.35∗∗∗

88.76,82.24∗∗∗
OO 76.38∗∗∗ ,71.09∗∗∗

O 92.05,87.12∗∗∗

The first row of each method shows F-score, followed by precision and recall on the
second row.

class can only be drawn from three sentiment classes. (3) It is pos-
sible for a method to outperform SVM on both tasks, while still
obtain close results when two tasks are evaluated together. This
results from our method of evaluation on the second task, where a
document is included only when it expresses sentiment towards a
particular target.

Based on the results from Table 5, we can see that the percentage
of improvement over SVM is much higher than that of the first
task. Intuitively, the sentiment task requires better modeling of the
non-linear interaction between the target and the context, while for
the target detection task, presence of certain signal words might be
enough.

5.3 Training Time Analysis
In order to measure the training speed of each model, we train

all deep learning methods on a server with a single TITAN X GPU.
For SVM, it is trained on the same server with a 2.40 GHz CPU
and 120 G RAM. All methods are trained sequentially without par-
allelization.

Table 5: Performance on polarity classification for -sep models.

Tweets Review Debates

SVM 44.45 21.37 42.52
64.50,34.28 53.25,14.66 57.37,38.29

ParaVec 39.20∗∗∗ 17.69∗∗∗ 30.59∗∗∗

56.91∗∗ ,26.46∗∗∗ 31.05∗∗∗ ,9.25∗∗∗ 56.15,20.88∗∗∗

CNN 42.95 19.42∗ 35.15∗∗∗

58.20∗∗ ,35.71 39.91∗∗ ,11.34∗∗ 49.82∗∗ ,25.40∗∗∗

BiLSTM 46.18∗∗ 25.25∗∗ 42.69
61.35∗ ,41.79∗∗∗ 41.06∗∗∗ ,19.40∗∗ 54.58,35.59

MultiBiLSTM 46.26∗∗ 24.06∗∗ 41.87
60.56∗∗ ,39.36∗∗ 47.15∗∗ ,17.52∗∗ 49.69∗ ,37.26

Memnet 47.81∗∗ 25.47∗∗ 44.61
61.20∗∗ ,40.52∗∗ 46.34∗∗ ,19.81∗∗ 54.40∗ ,38.14

AttNet-all 50.91∗∗∗�� 32.43∗∗∗��� 50.46∗∗∗���
66.39��� ,42.00∗∗∗� 55.92��� ,24.43∗∗∗�� 60.72∗��� ,44.02∗∗��

AttNet-ind 49.16∗∗� 32.79∗∗∗��� 51.88∗∗∗���
64.01�� , 41.74∗∗∗ 56.15∗∗�� , 23.17∗∗∗�� 62.70∗∗��� , 40.52

AttNet 52.23∗∗∗
OO 35.34∗∗∗

OO 55.93∗∗∗
OOO

65.54,44.57∗∗∗
OO 59.99∗∗∗

OO ,27.32∗∗∗
OO 71.53∗∗

OO ,50.25∗∗∗
OO

The first row of each method shows F-score, followed by precision and recall on the
second row.

SVM can finish training in less than one hour, but its required
training time increase linearly as the number of targets increases.

For all deep learning methods, the number of epochs required
for training is in general very close, which is around 20 epochs
averaged over all data sets.

Comparing the training time per epoch, ParaVec and CNN are
much faster than other methods (less than 5 seconds / epoch). De-
spite the training efficiency, their effectiveness is a problem. When
all targets share a single model, LSTM has a speed of 200 sec-
onds/epoch, while standard memory networks have a speed of 150
seconds/epoch. Memory networks in many tasks, e.g., language
modeling, are much faster than LSTM, due to the expensive re-
cursive operation of LSTM. However in our problem setting, each
target has to be forwarded one by one for every document, lower-
ing the efficiency of memory networks. When individual targets
are trained on separate LSTMs, LSTMs require far more training
time (1000 seconds/epoch).

AttNet consumes 200 seconds per epoch. Comparing to stan-



dard memory networks, AttNet produces some additional overhead
by introducing the interaction between subtasks, and by adding a
projection matrix. But this overhead is small.

The efficiency of deep learning methods could be improved by
parallelization. Since there are already many work on this topic,
which could increase the speed without sacrificing effectiveness,
we do not go further into this direction.

Summary: empirical experiments demonstrated that the proposed
deep memory networks, AttNet and its variants outperforms con-
ventional supervised learning methods. This is promising but per-
haps not surprising given the success of deep learning in general. It
is encouraging to notice that AttNet also improves the state-of-the-
art deep learning architectures. This improvement is statistically
significant, and can be observed for both subtasks and for attitude
identification as a whole. The improvement of effectiveness does
not compromise learning efficiency.

5.4 Visualization of attention
In order to better understand the behavior of our models, we

compare the attention weights given by our model AttNets and the
competing method Memnet.

1. It is admittedly to have them for policy . if
everyone have guns there would be just mess
. (Truth: gun control+. Predict + given gun
control.)

2. Highly impressed from the decor to the food to
the great night ! (Truth: service+, ambience+,
food+. Predict + given ambience.)

3. When we inquired about ports - the waitress
listed off several but did not know taste
variations or cost . (Truth: service-. Predict
absent given drink.)

(a) Attention given by AttNets.
1. It is admittedly to have them for policy . if

everyone have guns there would be just mess
. (Predict - given gun control.)

2. Highly impressed from the decor to the food to
the great night ! (Predict absent given
ambience.)

3. When we inquired about ports - the waitress
listed off several but did not know taste
variations or cost . (Predict - given drink.)

(b) Attention given by Memnet.

Figure 3: Visualization of learned attention. Red patches
highlighting the top half of the text indicate model’s attention
weight in the target detection task, while green ones highlight-
ing the bottom half show the polarity classification task. Darker
colors indicate higher attentions. Truth: service+ means that
the ground-truth sentiment towards service is positive, while
Predict + given ambience gives the predicted positive sentiment
given the query target ambience.

Figure 3 (a) and (b) list some examples of word attentions gen-
erated by different models for the same set of sentences in the test
set. In the first sentence, both them and guns are found as targets
by AttNets, while words like mess and policy are found as senti-
ment words. Though Memnet correctly identifies the existence of
the attitude towards gun control, it fails to find important words to
classify the polarity of sentiment. This suggests the importance of

interleaving the two tasks – successfully identifying mentioned tar-
gets could offer clues about the finding of sentiment words for the
second task.

The second sentence is from a review of a restaurant, when am-
bience is used as the query target. We can see that the target detec-
tion module of AttNets captures the word decor, which signals the
presence of the target ambience. The polarity classification module
then focuses on extracting sentiment words associated with the tar-
get. However for the baseline Memnet, it captures both decor and
food in the first task, mistakenly considering all sentiments are only
describing food other than the ambience. Consequently, it judges
that there is no attitude towards ambience. This example shows us
the benefit of using the projection matrices to consider the interac-
tion and distinction between targets. Otherwise the model might
easily be confused by to which entity the sentiments are expressed.

From the third sentence, we can see how our model AttNets de-
termines that the query target drink does not exist. The first module
highlights words like ports (wine name), waitress, and the second
module extracts negative sentiments but not know, which is usually
used to describe people, rather than drink. Memnet almost has the
same attention distribution as AttNets, but still fails to produce the
correct prediction. Similar to the second case, projection matrices
are important for models to figure out the common phrases used to
describe different set of entities.

6. CONCLUSION
Attitude identification, a key problem of morden natural lan-

guage processing, is concerned with detecting one or more target
entities from text and then classifying the sentiment polarity to-
wards them. This problem is conventionally approached by sep-
arately solving the two subtasks and usually separately treating
each target, which fails to leverage the interplay between the two
subtasks and the interaction among the target entities. Our study
demonstrates that modeling these interactions in a carefully de-
signed, end-to-end deep memory network significantly improves
the accuracy of the two subtasks, target detection and polarity clas-
sification, and attutide indentification as a whole. Empirical ex-
periments proves that this novel model outperforms models that do
not consider the interactions between the two subtasks or among
the targets, including conventional methods and the state-of-the-art
deep learning models.

This work opens the exploration of interactions among subtasks
and among contexts (in our case, targets) for sentiment analysis us-
ing an end-to-end deep learning architecture. Such an approach can
be easily extended to handle other related problems in this domain,
such as opinion summarization, multi-aspect sentiment analysis,
and emotion classification. Designing specific network architecture
to model deeper dependencies among targets is another intriguing
future direction.
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