
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/329220850

A Hierarchical Low-Rank Decomposition Algorithm Based on Blocked
Adaptive Cross Approximation Algorithms

Preprint · November 2018

CITATIONS

0
READS

193

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Butterfly-based Iterative and Direct Solvers View project

Plane-wave time-domain algorithms for large-scale transient scattering analyses View project

Yang Liu
Lawrence Berkeley National Laboratory

27 PUBLICATIONS 94 CITATIONS

SEE PROFILE

Wissam Sid-Lakhdar
Lawrence Berkeley National Laboratory

11 PUBLICATIONS 100 CITATIONS

SEE PROFILE

All content following this page was uploaded by Yang Liu on 05 September 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/329220850_A_Hierarchical_Low-Rank_Decomposition_Algorithm_Based_on_Blocked_Adaptive_Cross_Approximation_Algorithms?enrichId=rgreq-387766734d7724a725c115e49bfc3e98-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDg1MDtBUzo3OTk4NzAxMjIyMTc0NzRAMTU2NzcxNTMwNjM3OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/329220850_A_Hierarchical_Low-Rank_Decomposition_Algorithm_Based_on_Blocked_Adaptive_Cross_Approximation_Algorithms?enrichId=rgreq-387766734d7724a725c115e49bfc3e98-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDg1MDtBUzo3OTk4NzAxMjIyMTc0NzRAMTU2NzcxNTMwNjM3OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Butterfly-based-Iterative-and-Direct-Solvers?enrichId=rgreq-387766734d7724a725c115e49bfc3e98-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDg1MDtBUzo3OTk4NzAxMjIyMTc0NzRAMTU2NzcxNTMwNjM3OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Plane-wave-time-domain-algorithms-for-large-scale-transient-scattering-analyses?enrichId=rgreq-387766734d7724a725c115e49bfc3e98-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDg1MDtBUzo3OTk4NzAxMjIyMTc0NzRAMTU2NzcxNTMwNjM3OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-387766734d7724a725c115e49bfc3e98-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDg1MDtBUzo3OTk4NzAxMjIyMTc0NzRAMTU2NzcxNTMwNjM3OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yang_Liu4?enrichId=rgreq-387766734d7724a725c115e49bfc3e98-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDg1MDtBUzo3OTk4NzAxMjIyMTc0NzRAMTU2NzcxNTMwNjM3OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yang_Liu4?enrichId=rgreq-387766734d7724a725c115e49bfc3e98-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDg1MDtBUzo3OTk4NzAxMjIyMTc0NzRAMTU2NzcxNTMwNjM3OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Lawrence_Berkeley_National_Laboratory?enrichId=rgreq-387766734d7724a725c115e49bfc3e98-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDg1MDtBUzo3OTk4NzAxMjIyMTc0NzRAMTU2NzcxNTMwNjM3OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yang_Liu4?enrichId=rgreq-387766734d7724a725c115e49bfc3e98-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDg1MDtBUzo3OTk4NzAxMjIyMTc0NzRAMTU2NzcxNTMwNjM3OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wissam_Sid-Lakhdar?enrichId=rgreq-387766734d7724a725c115e49bfc3e98-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDg1MDtBUzo3OTk4NzAxMjIyMTc0NzRAMTU2NzcxNTMwNjM3OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wissam_Sid-Lakhdar?enrichId=rgreq-387766734d7724a725c115e49bfc3e98-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDg1MDtBUzo3OTk4NzAxMjIyMTc0NzRAMTU2NzcxNTMwNjM3OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Lawrence_Berkeley_National_Laboratory?enrichId=rgreq-387766734d7724a725c115e49bfc3e98-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDg1MDtBUzo3OTk4NzAxMjIyMTc0NzRAMTU2NzcxNTMwNjM3OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wissam_Sid-Lakhdar?enrichId=rgreq-387766734d7724a725c115e49bfc3e98-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDg1MDtBUzo3OTk4NzAxMjIyMTc0NzRAMTU2NzcxNTMwNjM3OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yang_Liu4?enrichId=rgreq-387766734d7724a725c115e49bfc3e98-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDg1MDtBUzo3OTk4NzAxMjIyMTc0NzRAMTU2NzcxNTMwNjM3OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A Parallel Hierarchical Blocked Adaptive
Cross Approximation Algorithm

Journal Title
XX(X):1�13
cThe Author(s) 2019

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Yang Liu1, Wissam Sid-Lakhdar1, Elizaveta Rebrova2, Pieter Ghysels1 and Xiaoye Sherry Li1

Abstract
This paper presents a low-rank decomposition algorithm assuming any matrix element can be computed in O(1)
time. The proposed algorithm �rst computes rank-revealing decompositions of sub-matrices with a blocked adaptive
cross approximation (BACA) algorithm, and then applies a hierarchical merge operation via truncated singular value
decompositions (H-BACA). The proposed algorithm signi�cantly improves the convergence of the baseline ACA
algorithm and achieves reduced computational complexity compared to the full decompositions such as rank-revealing
QR. Numerical results demonstrate the ef�ciency, accuracy and parallel scalability of the proposed algorithm.

Keywords
Adaptive cross approximation, singular value decomposition, rank-revealing decomposition, parallelization, multi-level
algorithms

Introduction
Rank-revealing decomposition algorithms are important
numerical linear algebra tools for compressing high-
dimensional data, accelerating solution of integral and
partial differential equations, constructing ef�cient machine
learning algorithms, and analyzing numerical algorithms,
etc, as matrices arising from many science and engineering
applications oftentimes exhibit numerical rank-de�ciency.
Despite the favorable O(nr) memory footprint of such
decompositions with n and r respectively denoting the
matrix dimension (assuming a square matrix) and the
numerical rank, the computational cost can be expensive.
Existing rank-revealing decompositions such as truncated
singular value decomposition (SVD), column-pivoted QR
(QRCP), CUR decomposition, interpolative decomposition
(ID), and rank-revealing LU typically require at leastO(n2r)
operations Gu and Eisenstat (1996); Cheng et al. (2005);
Voronin and Martinsson (2017); Mahoney and Drineas
(2009). This complexity can be reduced toO(n2log r + nr2)
by structured random matrix projection-based algorithms
Voronin and Martinsson (2017); Liberty et al. (2007). In
addition, faster algorithms are available in the following
three scenarios. 1. When each element entry can be
computed in O(1) CPU time with prior knowledge (i.e.,
smoothness, sparsity, or leverage scores) about the matrix,
faster algorithms such as randomized CUR and adaptive
cross approximation (ACA) Bebendorf (2000); Bebendorf
and Grzhibovskis (2006); Zhao et al. (2005) algorithms
can achieve O(nr2) complexity. However, the robustness
of these algorithms relies heavily on matrix properties that
are not always present in practice. 2. When the matrix
can be rapidly applied to arbitrary vectors, algorithms such
as randomized SVD, QR and UTV (T lower or upper
triangular) Liberty et al. (2007); Xiao et al. (2017); Feng
et al. (2018a); Martinsson et al. (2017) can be utilized
to achieve quasi-linear complexity. 3. Finally, given a

matrix with missing entries, the low-rank decomposition
can be constructed via matrix completion algorithms Cand�es
and Recht (2009); Balzano et al. (2010) in quasi-linear
time assuming incoherence properties of the matrices (i.e.,
projection of natural basis vectors onto the space spanned
by singular vectors of the matrix should not be very sparse).
This work concerns the development of a practical algorithm,
in application scenario 1, that improves the robustness of
ACA algorithms while maintaining reduced complexity for
broad classes of matrices.

The partially-pivoted ACA algorithm, closely related to
LU with rook pivoting Foster (1997), constructs an LU-
type decomposition upon accessing one row and column
per iteration. For matrices resulting from asymptotically
smooth kernels, ACA is a rank-revealing and optimal-
complexity algorithm that converges in O(k) iterations
Bebendorf (2000). Despite its favorable computational
complexity, it is well-known that the ACA algorithm suffers
from deteriorated convergence and/or premature termination
for non-smooth, sparse and/or coherent matrices Heldring
et al. (2014). Hybrid methods or improved convergence
criteria (e.g., hybrid ACA-CUR, averaging, statistical norm
estimation) have been proposed to partially alleviate the
problem Heldring et al. (2015); Grasedyck and Hackbusch
(2005). The main dif�culty of leveraging ACA as robust
algebraic tools for general low-rank matrices results from
ACA’s partial pivot-search strategy to attain low complexity.

1Computational Research Division, Lawrence Berkeley National
Laboratory, Berkeley, CA, USA
2Department of Mathematics, University of California, Los Angeles, CA,
USA

Corresponding author:
Yang Liu, Computational Research Divisio Lawrence Berkeley National
Laboratory, Berkeley, CA, USA.
Email: liuyangzhuan@lbl.gov

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

In addition to the abovementioned remedies, another
possibility to improve ACA’s robustness is to search for
pivots in a wider range of rows/columns without sacri�cing
too much computational ef�ciency. Here we consider two
different strategies: 1. Instead of searching one row/column
per iteration as in ACA, it is possible to search a block of
rows/columns to �nd multiple pivots together. 2. Instead of
applying ACA directly on the entire matrix, it is possible
to start with compressing submatrices via ACA and then
merge the results as one low-rank product. In extreme
cases (e.g., when block size equals matrix dimension or
submatrix dimension equals one), these strategies lead to
quadratic computational costs. Therefore, it is valuable to
address the question: for what matrix kernels and under
what block/submatrix sizes will these strategies retain low
complexity.

For the �rst strategy, this work proposes a blocked
ACA algorithm (BACA) that extracts a block row/column
per iteration to signi�cantly improve convergence of the
baseline ACA algorithms. The blocked version also enjoys
higher �op performance as it involves mainly BLAS-
3 operations. Compared to the aforementioned remedies,
the proposed algorithm provides a uni�ed framework to
balance robustness and ef�ciency. Upon increasing the block
size (i.e., the number of rows/columns per iteration), the
algorithm gradually changes from ACA to ID. For the
second strategy, the proposed algorithm further subdivides
the matrix into nb submatrices compressed via BACA,
followed by a hierarchical merge algorithm leveraging
low-rank arithmetic Hackbusch et al. (2002); Grasedyck
and Hackbusch (2003). The overall cost of this H-BACA
algorithm is at most O(

p
nbnr2) assuming the block size in

BACA is less than the rank. In other words, the proposed H-
BACA algorithm is a general numerical linear algebra tool as
an alternative to ACA, SVD, QR, etc. In addition, the overall
algorithm can be parallelized using distributed-memory
linear algebra packages such as ScaLAPACK Blackford et al.
(1997) which avoids the dif�culty of ef�cient parallelization
of plain ACA algorithms. Numerical results illustrate good
accuracy, ef�ciency and parallel performance. In addition,
the proposed algorithm can be used as a general low-
rank compression tool for constructing hierarchical matrices
Rebrova et al. (2018).

Notation
Throughout this paper, we adopt the Matlab notation of
matrices and vectors. Submatrices of a matrix A are denoted
A(I; J), A(:; J) or A(I; :) where I , J are index sets.
Similarly, subvectors of a column vector u are denoted u(I).
An index set I permuted by J reads I(J). Transpose, inverse,
pseudo-inverse of A are At, A�1, Ay. kAkF and kuk2
denote Frobenius norm and 2-norm. Note that u refers to a
n� 1 column vector. Vertical and horizontal concatenations
of A, B are [A;B] and [A;B]. Element-wise multiplication
of A and B is A �B. All matrices are real-valued unless
otherwise stated. It is assumed for A 2 Rm�n, m = O(n),
but the proposed algorithms also apply to complex-valued
and tall-skinny / short-fat matrices. We denote truncated
SVD as [U;�; V; r] = SVD(A; �) with U 2 Rm�r, V t 2
Rn�r column orthogonal, � 2 Rr�r diagonal, and r being

�-rank de�ned by r = minfk 2 N : �k+1;k+1 < ��1;1g.
We denote QRCP as [Q;T; J] = QR(A; r) or [Q;T; J] =
QR(A; �) with Q 2 Rm�r column orthogonal, T 2 Rr�n
upper triangular, J being column pivots, and � and r
being the prescribed accuracy and rank, respectively. QR
without column-pivoting is simply written as [Q;T] =
QR(A). Cholesky decomposition without pivoting is written
as T = Chol(A) with T upper triangular. logn means
logarithm of n to the base 2.

Algorithm Description

Adaptive Cross Approximation
Before describing the proposed algorithm, we �rst brie�y
summarize the baseline ACA algorithm Zhao et al. (2005).
Consider a matrix A 2 Rm�n of �-rank r, the ACA
algorithm approximates A by a sequence of rank-1 outer-
products as

A � UV =
rX

k=1

ukvtk (1)

At each iteration k, the algorithm selects column uk
(pivot jk from remaining columns) and row vtk (pivot ik
from remaining rows) from the residual matrix Ek�1 =
A�

Pk�1
i=1 uiv

t
i corresponding to an element denoted by

Ek�1(ik; jk) with suf�ciently large magnitude. Note that
uk and vk are m� 1 and n� 1 vectors. The partially-
pivoted ACA algorithm (ACA for short), selecting jk; ik
by only looking at previously selected rows and columns,
is described as Algorithm 1. Speci�cally, each iteration k
selects pivot ik used in the current iteration and pivot jk+1
for the next iteration (via line 4 and 7) as

ik = arg max
i 6=i1;:::;ik�1

jEk�1(:; jk)j (2)

jk+1 = arg max
j 6=j1;:::;jk

jEk�1(ik; :)j (3)

and j1 is a random initial column index. Note that ik 6=
i1; :::; ik�1 and jk 6= j1; :::; jk�1 are enforced. The iteration
is terminated when � < �� with

� =
ukvtk

F � kA� UV kF ; � = kUV kF � kAkF

(4)

and � is the prescribed tolerance. Note that each iteration
requires only O(nrk) �op operations with rk denoting
currently revealed numerical rank. The overall complexity
of partially-pivoted ACA scales as O(nr2) when the
algorithm converges inO(r) iterations. Despite the favorable
complexity, the convergence of ACA for general rank-
de�cient matrices is unsatisfactory. For many rank-de�cient
matrices arising from the numerical solution of PDEs, signal
processing and data science, ACA oftentimes either requires
O(n) iterations or exhibits premature termination. First,
as ACA does not search the full residual matrices for
the largest element, it cannot avoid selection of smaller
pivots for general rank-de�cient matrices and may require
O(n) iterations. Second, the approximation kukvtkkF in (4)
often causes the premature termination with the selection of
smaller pivots. Remedies such as averaged stopping criteria

Prepared using sagej.cls

Liu, Sid-Lakhdar, Rebrova, Ghysels and Li 3

Zhou et al. (2017), stochastic error estimation Heldring et al.
(2015), ACA+ Grasedyck and Hackbusch (2005), and hybrid
ACA Grasedyck and Hackbusch (2005) have been developed
but they do not generalize to a broad range of applications.

Algorithm 1: Adaptive cross approximation
algorithm (ACA)

input : Matrix A 2 Rm�n, relative tolerance �
output: Low-rank approximation of A � UV with

rank r
1 U = 0, V = 0, � = 0, r0 = 0, j1 is a random

column index;
2 for k = 1 to minfm;ng do
3 uk = Ek�1(:; jk) = A(:; jk)� UV (:; jk);
4 ik = arg maxijuk(i)j;
5 uk uk=uk(ik);
6 vtk = Ek�1(ik; :) = A(ik; :)� U(ik; :)V ;
7 jk+1 = arg maxj jvk(j)j;
8 �2 = kukk

2
2 kvkk

2
2;

9 �2 �2 + �2 + 2
Pk�1
j=1 V (j; :)vkutkU(:; j);

10 U [U; uk]; V [V ; vtk]; rk=rk�1 + 1;
11 Terminate if � < ��.

Blocked Adaptive Cross Approximation
Instead of selecting only one column and row from the
residual matrix in each ACA iteration, we can select a �xed-
size block of columns and rows per iteration to improve
the convergence and accuracy of ACA. In addition, many
BLAS-1 and BLAS-2 operations of ACA become BLAS-
3 operations and hence higher �op performance can be
achieved.

Speci�cally, the proposed BACA algorithm factorizes A

A � UV =
ndX

k=1

UkVk (5)

where Uk 2 Rm�dk and Vk 2 Rdk�n. In principle, the
algorithm selects a block of d rows and columns via cross
approximations in the residual matrix and then dk � d ones
via rank-revealing algorithms to form a low-rank update at
iteration k. The total number of iterations is approximately
nd � dr=de if dk � d. Instead of selecting row/column
pivots via lines 4 and 7 of Algorithm 1, the proposed
algorithm selects row and column index sets Ik and Jk
by performing QRCP on d columns (more precisely their
transpose) and rows of the residual matrices. This proposed
strategy is described in Algorithm 2.

Each BACA iteration is composed of three steps.

� Find block row Ik and block column Jk+1 by QRCP.
Starting with a random column index set J1, the block
row Ik and the next iteration’s block column Jk+1 are
selected by (line 4 and 6)

[Qck; T
c
k ; Ik] = QR(Etk�1(:; Jk); d) (6)

[Qrk+1; T
r
k+1; Jk+1] = QR(Ek�1(Ik; :); d) (7)

Algorithm 2: Blocked adaptive cross approxima-
tion algorithm (BACA)

input : Matrix A 2 Rm�n, block size d, relative
tolerance �

output: Low-rank approximation of A � UV with
rank r

1 U = 0, V = 0, r0 = 0, � = 0, �J1 is a random
index set of cardinality d;

2 for k = 1 to minfm;ng do
3 Ck = Ek�1(:; Jk) = A(:; Jk)� UV (:; Jk);
4 [Qck; T

c
k ; Ik] = QR(Ctk; d), Ik denotes selected

skeleton rows;
5 Rk = Ek�1(Ik; :) = A(Ik; :)� U(Ik; :)V ;
6 [Qrk+1; T

r
k+1; Jk+1] = QR(Rk; d), Jk+1

denotes selected skeleton columns;
7 Wk = Ek�1(Ik; Jk) = A(Ik; Jk)� U(Ik; :

)V (:; Jk);
8 [Uk; Vk; dk; �J] = LRID(Ck;Wk; Rk);
9 Ik Ik([1; dk]); Jk Jk(�J);

10 rk = rk�1 + dk;
11 � = LRnorm(Uk; Vk);
12 � LRnormUp(U; V; �; Uk; Vk; �);
13 U [U;Uk]; V [V ;Vk];
14 Terminate if � < ��.
15 Function LRID (C,W ,R,�)

input : C = A(:; J), R = A(I; :),
W = A(I; J) with I; J of same
cardinality

output: A � UV with U 2 Rm�r; V 2 Rr�n
16 [Q;T; �J; r] = QR(W; �);
17 U = C(:; �J);
18 V = T�1QtR;
19 return U; V; r; �J
20 Function LRnorm (U ,V)

input : A = UV
output: kAkF

21 T1 = Chol(U tU);
22 T2 = Chol(V V t);
23 return kT1T t2kF ;
24 Function LRnormUp (U; V; �; �U; �V ; ��)

input : U 2 Rm�r, V 2 Rr�n, �U 2 Rm��r,
�V 2 R�r�n, � = kUV kF , �� =

 �U �V

F

output:
[U; �U][V ; �V]

F

25 s = �2 + ��2 + 2
Pr
i=1
P�r
j=1

~V (i; j) with
~V = (V �V t) � (U t �U);

26 return
p
s

Here the algorithm �rst selects d skeleton rows
from the submatrix Ek�1(Jk; :) (i.e., d columns from
its transpose) and then selects d skeleton columns
from the submatrix Ek�1(Ik; :) by leveraging the
LAPACK implementation of QRCP as it provides
a simple way of greedily selecting well-conditioned
columns by examining column norms in the R factor
at each iteration. Note that many other subset selection
algorithms exist in both the machine learning and
numerical linear algebra communities (e.g., strong

Prepared using sagej.cls

4 Journal Title XX(X)

rank-revealing QR Gu and Eisenstat (1996), spectrum-
revealing QR Feng et al. (2018b), and column
subset selection problems Boutsidis et al. (2009)),
which ideally pick d matrix columns with maximum
volumes. Note that Ik excludes rows selected
in previous iterations. To ef�ciently enforce such
condition, the QRCP is performed on the submatrix of
Etk�1(:; Jk) excluding previously selected rows rather
than directly on Etk�1(:; Jk). Similarly, Jk excludes
columns selected in previous iterations. See Fig. 1a
for an illustration of the procedure. Ik and Jk+1 are
selected by QRCP on the column and transpose of
the row marked in yellow, respectively. The column
marked in grey is used to select Ik+1 in the next
iteration. For illustration purpose, index sets in Fig. 1a
consist of contiguous indices.

� Form the factors of the low-rank product UkVk.
Let Ck = Ek�1(:; Jk), Rk = Ek�1(Ik; :) and Wk =
Ek�1(Ik; Jk), Ek�1 can be approximated by an
ID-type decomposition Ek�1 � CkW ykRk = UkVk
Voronin and Martinsson (2017) by (8) and (9). Note
that the pseudo inverse is computed via rank-revealing
QR (also see the LRID algorithm at line 8). The rank-
revealing algorithm is needed as the d� d block Wk
can be further compressed with rank dk. Particularly
for matrices where the ACA algorithm tends to fail,
the corresponding d� d matrices Wk in BACA are
often rank-de�cient. In this case, BACA becomes
more robust than ACA as the effective dk pivots can
still be used to generate d columns Jk+1 for the
next iteration (as long as dk > 0). Consequently, the
effective rank increase is dk � d and the pivot pair
(Ik; Jk) is updated in (10) by the column pivots �J of
QRCP in (8).

[Q;T; �J] = QR(Wk; �) with Q 2 Rd�dk (8)

Uk = Ck(:; �J); Vk = T�1QtRk (9)
Ik Ik([1; dk]); Jk Jk(�J) (10)

� Compute � = kUkVkkF and update � = kUV kF .
Assuming constant block size d, the norm of the low-
rank update can be computed in O(nd2

k) operations
(line 11) via

TUk = Chol(U tkUk); TVk = Chol(VkV tk) (11)

� =
TUkT

t
Vk

F (12)

Once � is computed, the norm of UV can be updated
ef�ciently in O(nrkdk) operations (line 12) as

�2 �2 + �2 + 2
rk�1X

i=1

dkX

j=1

~V (i; j)

~V = (V V tk) � (U tUk) (13)

where rk represents the column dimension of U at
iteration k. Note that the matrix multiplications in
(11) and (13) involving Vk and V (and similarly
for those involving Uk and U) can be performed
as [V; Vk]V tk to further improve the computational

ef�ciency. Then the algorithm updatesU , V as [U;Uk],
[V ;Vk] and tests the stopping criteria � < ��. Note
that �; � with larger d provides better approximations
to the exact stop criteria compared to those in (4)
hence can signi�cantly reduce the chance of premature
termination.

We would like to highlight the difference between the
proposed BACA algorithm and existing ACA algorithms.
First, as BACA selects a block of rows and columns per
iteration as opposed to a single row and column in the
baseline ACA algorithm, the convergence behavior and �op
performance can be signi�cantly improved. In the existing
ACA algorithms, convergence can also be improved by
leveraging averaged stopping criteria Zhou et al. (2017)
or searching a single pivot in a broader range of rows
and columns (e.g., fully-pivoted ACA). However, they still
�nd one row or column at a time in each iteration and
hence suffer from poor �op performance. Moreover, they
cannot utilize strong rank revealing algorithms to select
skeleton rows and columns with better volume (determinant
in modulus) qualities. Second, BACA also has important
connections to the hybrid ACA algorithm Grasedyck and
Hackbusch (2005). The hybrid ACA algorithm assumes
prior knowledge about the skeleton rows and columns to
leverage interpolation algorithms (e.g., ID and CUR) on a
skeleton submatrix and use ACA to re�ne the skeletons.
In contrast, BACA uses cross approximations with QRCP
to select skeleton rows and columns and uses interpolation
algorithms (LRID at line 8) to form the low-rank update in
each iteration. In other words, hybrid ACA can be treated as
embedding ACA into interpolation algorithms while BACA
can be thought of as embedding interpolation algorithms into
ACA iterations. In addition, BACA is purely algebraic and
requires no prior knowledge of the row/column skeletons or
geometrical information about the rows/columns.

It is worth mentioning that the choice of d affects the
trade-off between ef�ciency and robustness of the BACA
algorithm. When d < r, the algorithm requires O(nr2)
operations assuming convergence in O(r=d) iterations as
each iteration requires O(nrkd) operations. For example,
BACA (Algorithm 2) precisely reduces to ACA (Algorithm
1) when d = 1. In what follows we refer to the baseline
ACA algorithm as BACA with d = 1. On the other hand,
BACA converges in a constant number of iterations when
d� r. In the extreme case, BACA reduces to QRCP-based
ID when d = minfm;ng (note that the LRID algorithm
at line 8 remains the only nontrivial operation). In this
case the algorithm requires O(n2r) operations but enjoys
the provable convergence of QRCP. Detailed complexity
analysis of the BACA algorithm will be provided in Section
Cost Analysis.

The BACA algorithm oftentimes exhibits overestimated
ranks compared to those revealed by truncated SVD.
Therefore, an SVD re-compression step of U and V may be
needed via �rst computing a QR of U and V as [QU ; TU] =
QR(U), [QV ; TV] = QR(V t), and then a truncated SVD of
TUT tV Heldring et al. (2015). The result can be viewed as an
approximate truncated SVD of A and we assume this is the
output of the BACA algorithm in the rest of this paper.

Prepared using sagej.cls

Liu, Sid-Lakhdar, Rebrova, Ghysels and Li 5

kC

kI

kJk+1J

(:,)k kU C J=

1 t
k kV T Q R-=

kR kK

(a)

SVD

SVDCombine

Combine

1 1 1 1 1 1
U Vt n t n t nS

1 2 1 2 1 2
U Vt n t n t nS

2 1 2 1 2 1
U Vt n t n t nS

2 2 2 2 2 2
U Vt n t n t nS

1 1 1
U Vt n t n t nS

2 2 2
U Vt n t n t nS

U Vtn tn tnS

(b)

Figure 1. (a) Selection of Ik/Jk and form the low-rank update
UkVk. (b) Low-rank merge operation

Algorithm 3: Hierarchical low-rank merge algo-
rithm with BACA (H-BACA)

input : Matrix A 2 Rm�n, number of leaf-level
subblocks nb, block size d of leaf-level
BACA, relative tolerance �

output: Truncated SVD of A � U�V with rank r
1 Create L-level trees on index vectors [1;m] and

[1; n] with index set I� and J� for nodes � and �
at each level, L = log

p
nb, the leaf and root levels

are denoted 0 and L, respectively;
2 for l = 0 to L do
3 foreach A�� = A(I� ; J�) at level l do
4 if leaf-level then
5 [U�� ;��� ; V�� ; r��] =

BACA(A�� ; d; �);
6 else
7 Let �1; �2 and �1; �2 denote children of

� and �;
8 for i = 1 to 2 do
9 �U�i� = [U�i�1��i�1 ; U�i�2��i�2];

10 �V�i� = diag(V�i�1 ; V�i�2);
11 [U�i� ;��i� ; V�i� ; r�i�]

SVD(�U�i� ; �);
12 V�i� V�i� �V�i� ;
13 �U�� = diag(U�1� ; U�2�);
14 �V�� = [��1�V�1� ; ��2�V�2�];
15 [U�� ;��� ; V�� ; r��] SVD(�V�� ; �);
16 U�� �U��U�� ;

17 return U = U�� , V = V�� , � = ��� , r = r�� ;

Parallel Hierarchical Low-Rank Merge
The distributed-memory implementations of the proposed
BACA algorithm and the baseline ACA algorithm can pose
performance challenges as straightforward parallelization of
all operations in Algorithm 2 and 1 involves many collective
communications. To see this, assuming the U and V factors

in Algorithm 1 follow 1D block row and column data
layouts, then every operation from line 3 to line 9 requires
one or more collective communications. Instead, one can
assign one process to perform BACA/ACA on submatrices
without any communication and then leverage parallel low-
rank arithmetic to merge the results into one single low-
rank product. To elucidate the proposed algorithm, we �rst
describe the hierarchical low-rank merge algorithm then
outline its parallel implementation.

Given a matrix A 2 Rm�n with m � n, the algorithm
�rst creates L-level binary trees for index vectors [1;m] and
[1; n] with index set I� and J� for nodes � and � at each
level, upon recursively dividing each index set into I�i /J�j
of approximately equal sizes, i = 1; 2, j = 1; 2. Here, �i
and �j are children of � and �, respectively. The leaf and
root levels are denoted 0 and L, respectively. This process
generates nb leaf-level submatrices of similar sizes. For
simplicity, it is assumed nb = 4L. We denote submatrices
associated with �; � as A�� = A(I� ; J�) and their truncated
SVD as [U�� ;��� ; V�� ; r��] = SVD(A�� ; �). Here r�� is the
�-rank ofA�� . As submatricesA�� have signi�cantly smaller
dimensions than A (e.g., when nb = O(n2) as an extreme
case), both BACA and ACA algorithms become more robust
to attain the truncated SVD. Following compression of nb
submatrices A�� by BACA or ACA at step l = 0, there
are multiple approaches to combine them into one low-
rank product including randomized algorithms via applying
A to random matrices, and deterministic algorithms via
recursively pair-wise re-compressing the blocks using low-
rank arithmetic. Here we choose the deterministic algorithm
for simplicity of rank estimation and parallelization. Here,
we deploy truncated SVD as the re-compression tool but
other tools such as ID, QR, UTV can also be applied. Fig.
1b illustrates one re-compression operation for transforming
SVDs of A�i�j ; i = 1; 2; j = 1; 2 into that of A�� . The
operation �rst horizontally compresses SVDs of A�i�j ; i =
1; 2; j = 1; 2 at step l � 1

2 and then vertically compresses
the results, i.e., SVDs of A�i� ; i = 1; 2 at step l, l = 1; ::; L.
Speci�cally, the horizontal compression step is composed of
one concatenation operation in (14) and one compression
operation in (15):

�U�i� = [U�i�1��i�1 ; U�i�2��i�2]; �V�i� = diag(V�i�1 ; V�i�2)
(14)

[U�i� ;��i� ; V�i� ; r�i�] SVD(�U�i� ; �); V�i� V�i� �V�i�
(15)

with i = 1; 2. Let �U�i� �V�i� and U�i���i�V�i� denote the
submatrix before and after the SVD truncation, respectively.
Similarly, the vertical compression step can be performed
via horizontal merge of At�i� ; i = 1; 2. Let sl represent the
maximum rank r�� among all blocks at steps l = 0; 1; :::; L.
Note that the algorithm returns an approximate truncated
SVD after L steps. As an example, the hierarchical merge
algorithm with the level count of the hierarchical merge
L = 2 and nb = 16 is illustrated in Fig. 2. At step l = 0,
the algorithm compresses all nb submatrices with BACA; at
step l = 0:5; 1:5, the algorithm merges every horizontal pair
of blocks; similarly at level l = 1; 2, the algorithm merges
every vertical pair of blocks. Note that blocks surrounded by
solid lines represent results after compression at each step l.

Prepared using sagej.cls

6 Journal Title XX(X)

0l = 1l = 2l =1.5l =0.5l =

0

2

4

6

1

3

5

7

0

2

4

6

1

3

5

7

0

2

4

6

1

3

5

7

0

2

4

6

1

3

5

7

0

2

4

6

1

3

5

7

0

2

4

6

1

3

5

7

0

2

4

6

0

2

4

6

1

3

5

7

1

3

5

7

0

2

4

6

0

2

4

6

1

3

5

7

1

3

5

7

Figure 2. Parallel hierarchical merge with 8 processes. Blocks surrounded by solid lines represent A�� after compression at ech
step l. Blocks surrounded by dashed lines represent ScaLAPACK blocks.

The above-described hierarchical algorithm with BACA
for leaf-level compressions, is dubbed H-BACA (Algorithm
3). In the following, a distributed-memory implementation
of the H-BACA algorithm is described. Without loss of
generality, it is assumed that m = n = 2i and p = 2j . The
proposed parallel implementation �rst creates two dlogppe-
level binary trees with p denoting the total number of
MPI processes. One process performs BACA compression
of one or two leaf-level submatrices and low-rank merge
operations from the bottom up until it reaches a submatrix
shared by more than one process. Then, all such blocks are
handled by PBLAS and ScaLAPACK with BLACS process
grids that aggregate those in corresponding submatrices.
Consider the example in Fig. 2 with process count p = 8. The
workload of each process is labeled with its process rank and
highlighted with one color. The dashed lines represent the
ScaLAPACK blocks. First, BACA compressions and merge
operations at l = 0; 0:5 are handled locally by one process
without any communication. Next, merge operations at l =
1; 1:5; 2 are handled by BLACS grids of 2� 1, 2� 2, and
4� 2, respectively. For illustration purposes, we select the
ScaLAPACK block size in Fig. 2 as n0 � n0 where n0 is the
dimension of the �nest-level submatrices in the hierarchical
merge algorithm and n =

p
nbn0. In this case, the only

required data redistribution is from step l = 1 to l = 1:5.
However, the ScaLAPACK block size may be set to much
smaller numbers in practice, requiring data redistribution
at each row/column re-compression step. Similarly, the
requirement of m = n = 2i and p = 2j is not needed in
practice.

Cost Analysis

In this section, the costs for computation and communication
of the proposed BACA and H-BACA algorithms are
analyzed.

Computational Cost
First, the costs for BACA can be summarized as follows.
Assuming BACA converges in O(dr=de) iterations, each
iteration performs entry evaluation from the residual
matrices, QRCP for pivot selection, LRID for forming
the LR product, and estimation of matrix norms. The
entry evaluation computes O(nd) entries each requiring
O(rk) operations; QRCP on block rows requires O(nd2)
operations; the LRID algorithm requires O(nddk + dkd2)
operations; norm estimation requires O(nrkdk) operations.
Summing up these costs, the overall cost for the BACA

algorithm is

cBACA =
O(dr=de)X

k=1

(nd2 + nrkd+ dkd2)

� O(nd2 + rd2 + nrd)O(dr=de) = O(nr2) (16)

Here we assume the block size d � r. Note that when d� r
(e.g., d = O(n)), it follows that the worst-case complexity is
cBACA = O(n2r) by bypassing the pivot selection step that
causes the nd2 term. In practice, one would always avoid the
case of d� r.

Next, the computational costs of the H-BACA algorithm
are analyzed. The costs are analyzed for two cases of
distributions of the maximum ranks sl at each level, i.e.,
sl = r (ranks stay constant during the merge) and sl �
2lr=
p
nb = 2l�Lr (rank increases by a factor of 2 per

level), l = 0; 1; :::; L. The constant-rank case is often valid
for matrices with their numerical ranks independent of
matrix dimensions (e.g., random low-rank matrices, matrices
representing well-separated interactions from low-frequency
and static wave equations and certain quantum chemistry
matrices); the increasing-rank case holds true for matrices
whose ranks depend polynomially (with order no bigger than
1) on the matrix dimensions (e.g., those arising from high-
frequency wave equations, matrices representing near-�eld
interactions from low-frequency and static wave equations,
and certain classes of kernel methods on high dimensional
data sets). From the aforementioned analysis of BACA,
the computational costs for the leaf-level compression cb =
cBACAnb are:

cb = O
� n
p
nb
s2

0nb
�
; if d � s0 (17)

which represent the complexity with ACA when nb = 1.
Let nl = 2ln=

p
nb denote the size of submatrices A�;� at

level l. The computational costs cm of hierarchical merge
operations can be estimated as

cm =
LX

l=1

O(4L�lnls2
l) (18)

Accounting for the two cases of rank distributions, the
computational costs for the leaf-level BACA and hierarchical
merge operations of the H-BACA algorithm are summarized
in Table 1. Note that the costs of the BACA algorithm
can also be extracted from Table 1 upon setting nb = 1.
Not surprisingly, the hierarchical merge algorithm induces
a computational overhead of at most

p
nb when ranks stay

constant; the leaf-level compression can have a 1=
p
nb

reduction factor for the increasing rank case and
p
nb

overhead for the constant rank case.

Prepared using sagej.cls

Liu, Sid-Lakhdar, Rebrova, Ghysels and Li 7

constant rank increasing rank
sl�r sl�r=

p
nb � 2l

BACA d � s0 O(nr2pnb) O(nr2)=
p
nb

Merge compute O(nr2pnb) O(nr2)
Merge communicate [O(rlog2p); O(nrlog2p=pp)] [O(rlogp); O(nrlogp=pp)]

Table 1. Flop counts and communication costs for the leaf-level compression and hierarchical merge operations in Algorithm 3 for
two classes of low-rank matrices. n and r denote matrix dimension and rank. d denotes the block size in BACA. p and nb denote
number of processes and leaf-level submatrices. sl denotes maximum ranks among all level-l submatrices.

Algorithm ACA/ACA+ Hyrbird-ACA BACA H-BACA
Pivot count per iteration 1 1 d nbd

Cost (constant rank) O(nr2) O(nr2) O(nr2) O(nr2pnb)
Cost (increasing rank) O(nr2) O(nr2) O(nr2) O(nr2)

Pre-selection of submatrices no yes no no
Table 2. Comparisons between proposed BACA, H-BACA algorithms and existing ACA algorithms. Note that the algorithms show
increasing robustness from left to right.

For completeness, the comparison between the proposed
BACA, H-BACA algorithms (assuming d � r0) and existing
ACA algorithms are given in Table 2. In contrast to existing
ACA algorithms that select one pivot at a time, BACA
and H-BACA select d and nbd pivots simultaneously. As
such, H-BACA is the most robust algorithm among all listed
here. Not surprisingly, H-BACA can induce a computational
overhead of

p
nb.

Communication Cost
As the leaf-level BACA compression requires no commu-
nication, only the communication costs for the hierarchical
merge operations are analyzed here. Since the merge oper-
ations may introduce an O(

p
nb) computational overhead,

one would only increase nb to create more parallelism, i.e.,
the process count p � nb. Let pl = 4l denote the number
of processes involved in one level l merge operation, l =
1; :::; L. The operation requires redistribution between pro-
cess grids of sizes pl, 2pl and 4pl (see the example in Fig. 2).
Each process grid involves a PDGEMM function in PBLAS
to combine the low-rank products and a PDGESVD function
in ScaLAPACK to compute the new rank after the combina-
tion (see Fig. 1b). Let the pair [#messages, volume] denote
the communication cost including the number of messages
and the number of words transferred along the critical path.
Then the communication costs for each (BLACS) grid redis-
tribution, PDGEMM and PDGESVD during the hierarchical
merge are [O(1); O(nlsl=pl)], [O(sl); O(nlsl=

ppl)], and
[O(sllogpl); O(nlsllogpl=

ppl)], respectively. Recall that
nl = 2ln=pp and sl denote the size and rank of submatrices
at level l and note that nl � sl. Therefore the communica-
tion cost vm of the hierarchical merge (and H-BACA) can be
estimated as

vm =
LX

l=1

h
O(sllogpl); O

�nlsllogplppl

�i

=
LX

l=1

h
O(lsl); O

� lnslpp

�i
(19)

Consider the two cases of rank distributions, i.e., sl = r
and sl � 2l�Lr, the overall communication costs of H-
BACA are vm = [O(rlog2p); O(nrlog2p=pp)] and vm =
[O(rlogp); O(nrlogp=pp)], respectively (see Table 1).

Numerical Results
This section presents several numerical results to demon-
strate the accuracy and ef�ciency of the proposed H-BACA
algorithm. The matrices in all numerical examples are gener-
ated from the following kernels: 1. Gaussian kernel: Ai;j =
exp(�kxi�xjk

2

2h2), i; j = 1; :::; 2n. Here h is the Gaussian
width, and xi 2 R8�1 and R784�1 are feature vectors in one
subset of the SUSY and MNIST Data Sets from the UCI
Machine Learning Repository Dheeru and Karra Taniskidou
(2017), respectively. Note that the Gaussian kernel permits
low-rank compression as shown in Wang et al. (2017);
Bach (2013); Musco and Musco (2017) 2. EFIE2D kernel:
Ai;j = H(2)

0 (k kxi � xjk) resulting from the Nystr¤om dis-
cretization of the electric �eld integral equation (EFIE) for
electromagnetic scattering from 2-D curves. Here H(2)

0 is
the second kind Hankel function of order 0, k is the free-
space wavenumber, xi; xj 2 R2�1 are discretization points
(15 points per wavelength) of two 2-D parallel strips of
length 1 and distance 1. 3. EFIE3D kernel: A is obtained
by the Galerkin method for EFIE to analyze electromag-
netic scattering from 3-D surfaces. 4. Frontal3D kernel: A
is a dense frontal matrix that arises from the multifrontal
sparse elimination for the �nite-difference frequency-domain
solution of the homogeneous-coef�cient Helmholtz equation
inside a unit cube. 5. Polynomial kernel: Ai;j = (xtixj +
h)2. Here xi; xj 2 R50�1 are points from a randomly gener-
ated dataset, and h is a regularization parameter. 6. Product-
of-random kernel: A = UV with U 2 Rn�r and V 2 Rr�n
being random matrices with i.i.d. entries. Note that the
EFIE2D, EFIE3D and Frontal3D kernels result in complex-
valued matrices. Throughout this section, we refer to ACA
as a special case of BACA when d = 1. In all examples
except for the Product-of-random kernel, the algorithm is
applied to the offdiagonal submatrix A12 = A(1 : n; 1 + n :
2n) assuming rows/columns of A have been properly per-
muted (e.g., by a KD-tree partitioning scheme). Note that the

Prepared using sagej.cls

8 Journal Title XX(X)

permutation may yield a hierarchical matrix representation
of A, but in this paper we only focus on compression of one
off-diagonal subblock of A with H-BACA. All experiments
are performed on the Cori Haswell machine at NERSC,
which is a Cray XC40 system and consists of 2388 dual-
socket nodes with Intel Xeon E5-2698v3 processors running
16 cores per socket. The nodes are con�gured with 128 GB
of DDR4 memory at 2133 MHz.

Convergence
First, the convergence of the proposed BACA algorithm
is investigated using several matrices: Gaussian-SUSY
matrices with n = 5000, h = 1:0; 0:2, an EFIE3D matrix for
a unit sphere with n = 21788 and approximately 20 points
per wavelength, and a Frontal3D matrix with n = 1250 and
10 points per wavelength. The corresponding �-ranks are r =
4683; 1723; 1488; 718 for � = 10�6. The residual histories
versus revealed ranks rk, at each iteration k of BACA with
1 � d � 256 are plotted in Fig. 3. The residual error is
de�ned as kUkVkkF = kUV kF from (12). As a reference,
the singular value spectra �(k; k)=�(1; 1) computed from
[U;�; V; r] = SVD(A; �) are also plotted.

For the Gaussian-SUSY matrices, the baseline ACA
algorithm (d = 1) behaves poorly with smaller h due to the
exponential decay of the Gaussian kernel. As a result, the
matrix becomes increasingly sparse and coherent for small
h particularly for high dimensional data sets. In fact, ACA
constantly selects smaller pivots and the residual exhibits
wild oscillations particularly for smaller h (e.g., when h =
0:2 in Fig. 3b). Similarly, the analytical and numerical
Green’s functions respectively for the EFIE3D (Fig. 3c)
and Frontal3D (Fig. 3d) matrices are not asymptotically
smooth for ACA to converge rapidly. For all examples
in Fig. 3, signi�cant portions of the residual curves lie
below the singular value spectra which causes premature
iteration termination for certain given residual errors.
In stark contrast, the proposed BACA algorithm (d =
32; 64; 100; 128; 256) shows increasingly smooth residual
histories residing above the singular value spectra as the
block size d increases. Although BACA may overestimate
the matrix ranks particularly for larger d, the SVD re-
compression step mentioned in Section Blocked Adaptive
Cross Approximation can effectively reduce the ranks.

Accuracy
Next, the accuracy of the H-BACA algorithm is demon-
strated using the following matrices: two Gaussian-SUSY
matrices with n = 5000, h = 1:0; 0:2, one EFIE3D matrix
for a unit sphere with n = 1707 and approximately 20 points
per wavelength, and a Frontal3D matrix with n = 1250 and
10 points per wavelength. The relative Frobenious-norm
error kA� UV kF = kAkF is computed for changing number
of leaf-level submatrices nb and block size d. When h = 1:0
for the Gaussian-SUSY matrix (Fig. 4a), the H-BACA algo-
rithms achieve desired accuracies (� = 10�2; 10�6; 10�10)
using the baseline ACA (d = 1), and BACA (d = 32) when
nb = 1 and the hierarchical merge operation only causes

slight error increases as nb increases. However when h = 0:2
for the Gaussian-SUSY matrix (Fig. 4b), all data points
for H-BACA with d = 1 fail due to the wildly oscillat-
ing residual histories. In contrast, H-BACA with d = 32
achieves signi�cantly better accuracies for most data points
particularly as nb increases. For the EFIE3D (Fig. 4c) and
Frontal3D (Fig. 4d) matrices, H-BACA with d = 32 achieves
comparable accuracies as H-BACA with d = 1 for most data
points. Note that d = 32 is signi�cantly better than d = 1
when the prescribed residual error is large (� = 10�2). This
agrees with the residual histories in Fig. 3c and Fig. 3d as
they lie below the singular value spectra when iteration count
k is small.

Ef�ciency
This subsection provides six examples to verify the com-
putational complexity estimates in Table 1. H-BACA with
leaf-level ACA (d = 1) and BACA (d = 8; 16; 32; 64; 128)
is tested for the following matrices: one Gaussian-SUSY
matrix with n = 50000, h = 1:0, � = 10�2, one Gaussian-
MNIST matrix with n = 5000, h = 3:0, � = 10�2, one
EFIE3D matrix for a unit sphere with n = 26268, � = 10�6

and 20 points per wavelength, one Frontal3D matrix with
n = 1250, � = 10�6 and 10 points per wavelength, one
Polynomial matrix with n = 10000, h = 0:2, � = 10�4, and
one Product-of-random matrix with n = 2500, � = 10�4.
The corresponding �-ranks are 298, 137, 1488, 788, 450 and
1000, respectively. It can be validated that the hierarchical
merge operation attains increasing ranks for the Gaussian,
EFIE3D and Frontal3D matrices, and relatively constant
ranks for the Polynomial, and Product-of-random matrices.
All examples use one process except that the Gaussian-
SUSY example uses 16 processes. The CPU times are
measured and plotted in Fig. 5.

Table I predicts that H-BACA exhibits increasing (with
a factor of

p
nb) and constant time when sl stays constant

and increases, respectively. Note that the rank assumption
sl � r leading to the O(

p
nb) computational overhead may

not be fully observed for practical values of nb and n. Given
one matrix, sl may stay approximately constant for a limited
number of subdivision levels l. For example, sl stay constant
for bottom levels of EFIE3D and Frontal3D matrices, and top
levels of Polynomial and Product-of-random matrices. This
agrees with the observed scalings (w.r.t nb) in Fig. 5c - 5f. As
a reference, the O(

p
nb) curves are plotted and only small

ranges of nb exhibit the O(
p
nb) overhead. For the Gaussian

matrices, we even observe non-increasing CPU time w.r.t. nb
when nb is not too big. (see Fig. 5a and 5b).

The effects of varying block size d also deserve further
discussions. First, larger block size d can signi�cantly
improve the robustness of H-BACA for the Gaussian
matrices. For example, H-BACA does not achieve desired
accuracies due to premature termination for all data points on
the d = 1 curve in Fig. 5a and d = 1; 8 curves in Fig. 5b. In
contrast, H-BACA with larger d attains desired accuracies.
Second, larger block size d results in reduced CPU time
for the Polynomial and Frontal3D matrices due to better
BLAS performance (see Fig. 5d and 5e). For the other tested
matrices, no signi�cant performance differences have been
observed by changing block size d. However, for matrices

Prepared using sagej.cls

Liu, Sid-Lakhdar, Rebrova, Ghysels and Li 9

(a) Gaussian-SUSY (h = 1:0) (b) Gaussian-SUSY((h = 0:2)

(c) EFIE3D (d) Frontal3D

Figure 3. Convergence history of BACA for the (a) Gaussian-SUSY kernel with h = 1:0, n = 5000, � = 10�6, r = 4683, (b)
Gaussian-SUSY kernel with h = 0:2, n = 5000, � = 10�6, r = 1723, (c) EFIE3D kernel for a unit sphere with n = 21788,
� = 10�6, r = 1488 and (d) Frontal3D kernel with n = 1250, � = 10�6, r = 718

(a) Gaussian-SUSY (h = 1:0) (b) Gaussian-SUSY (h = 0:2)

(c) EFIE3D (d) Frontal3D

Figure 4. Measured error of H-BACA with � = 10�2; 10�6; 10�10 for the (a) Gaussian-SUSY kernel with h = 1:0, n = 5000, (b)
Gaussian-SUSY kernel with h = 0:2, n = 5000 (c) EFIE3D kernel for a unit sphere with n = 1707 and (d) Frontal3D kernel with
n = 1250.

Prepared using sagej.cls

10 Journal Title XX(X)

(a) Gaussian-SUSY (b) Gaussian-MNIST

(c) EFIE3D (d) Frontal3D

(e) Polynomial (f) Product-of-random

Figure 5. Computation time of H-BACA with varying nb and d for the (a) Gaussian-SUSY kernel with h = 1:0, n = 50000,
� = 10�2, r = 298, (b) Gaussian-MNIST kernel with h = 3:0, n = 5000, � = 10�2, r = 137, (c) EFIE3D kernel for a unit sphere
with n = 26268, � = 10�6, r = 1488, (d) Frontal3D kernel with n = 1250, � = 10�6, r = 788, (e) Polynomial kernel with h = 0:2,
n = 10000, � = 10�4, r = 450, and (f) Product-of-random kernel with n = 2500, r = 1000. Note that the data points where the
algorithm fails are shown as triangular markers without lines.

with ranks s0 � d, larger d and nb can introduce signi�cant
overheads.

Parallel Performance
Finally, the parallel performance of the H-BACA algorithm
is demonstrated via strong scaling studies with the EFIE2D,
EFIE3D, Product-of-random and Gaussian matrices with
process counts p = 8; :::; 1024. For the EFIE2D matrices,
n = 160000 and the wavenumbers are chosen such that the
�-ranks with � = 10�4 are 937 and 107, respectively. For
the EFIE3D matrices for a unit square, n = 21788 and the
wavenumbers are chosen such that the �-ranks with � =
10�6 are 1007 and 598, respectively. For the Product-of-
random matrices, n = 10000 and the inner dimension of
the product is set to r = 2000 and 800, respectively. For
the Gaussian matrices with a randomly generated dataset

of dimension 50 and n = 10000, we choose h = 1:0 and
h = 1:6 such that the �-ranks with � = 10�3 are 2106 and
191, respectively. In all examples, the block size and number
of leaf-level subblocks in H-BACA are chosen as d = 8
and
p
nb = dppe. The ScaLAPACK block size is set to

64� 64. As the reference, we compare to a straightforward
parallel implementation of the baseline ACA algorithm
which essentially parallelize every operation in ACA with
collective MPI communications.

For all examples, the parallel ACA algorithm stops scaling
when p is suf�ciently large (see Fig. 6). In contrast, the
proposed parallel H-BACA algorithm scales up to p =
1024. In most examples, H-BACA achieves better parallel
ef�ciencies with larger ranks due to better process utilization
during the hierarchical merge operation. We also note
that ACA outperforms H-BACA for the Product-of-random

Prepared using sagej.cls

Liu, Sid-Lakhdar, Rebrova, Ghysels and Li 11

(a) EFIE2D (b) EFIE3D

(c) Product-of-random (d) Gaussian

Figure 6. Computation time of H-BACA with varying process counts for the (a) EFIE2D kernel with n = 160000, � = 10�4,
r = 107; 937 (b) EFIE3D kernel for a unit square with n = 21788, � = 10�6, r = 598; 1007, (c) Product-of-random kernel with
n = 10000, r = 800; 2000, and (d) Gaussian kernel for a randomly generated dataset with h = 1:0; 1:6, � = 10�3, r = 2106; 191.
Note that for the Guassian matrix with r = 191, ACA fails to provide accurate results and is not plotted.

matrices with small process count p (and nb). This is partially
attributed to the O(

p
nb) overhead observed in Fig. 5f.

Overall, the parallel H-BACA algorithm can achieve
reasonably good parallel performances for rank-de�cient
matrices with modest to large numerical ranks. Not
surprisingly, the parallel runtime is dominated by that
of ScaLAPACK computation and possible redistributions
between each re-compression step as analyzed in Section
Cost Analysis. Also note that the leaf-level BACA
compression is embarrassingly parallel for all test cases.

Conclusion
This paper presents a parallel and purely algebraic ACA-
type matrix decomposition algorithm given that any matrix
entry can be evaluated in O(1) time. Two proposed
strategies, BACA and H-BACA, are leveraged to improve
the robustness and parallel ef�ciency of the (baseline) ACA
algorithm for general rank-de�cient matrices.

First, the BACA algorithm searches for blocks of
row/column pivots via column-pivoted QR on the col-
umn/row submatrices at each iteration. The blocking nature
of BACA provides a closer estimation of the true residual
error and reduces the chance of selecting smaller pivots
when compared to ACA. Therefore, BACA exhibits a much
smoother and more reliable convergence history. Moreover,
blocked operations also bene�t from higher �op performance
compared to non-blocked ones. For a rank-de�cient matrix
with dimension n and �-rank r, the computational cost of

BACA is O(nr2) assuming the block size constant and
iteration count O(r).

Second, the H-BACA algorithm divides the matrix into
nb similar-sized submatrices each compressed with BACA
and then hierarchically merges the results using low-rank
arithmetic. Depending on the rank behaviors of submatrices
during the merge, the H-BACA may have a computational
overhead of O(

p
nb) yielding the overall computational

cost at most O(nr2pnb). The H-BACA algorithm can be
parallelized with distributed-memory machines by assigning
each process to one submatrix and leveraging PBLAS
and ScaLAPACK for the hierarchical merge operation.
Such parallelization strategy yields a much more favorable
communication cost when compared to the straightforward
parallelization of ACA/BACA with collective MPI routines.
Not surprisingly, good parallel performance can be achieved
for matrices with modest to large numerical ranks which
increases process utilization for each merge operation.

In contrast to the baseline ACA algorithm, the proposed
algorithms exhibit improved robustness and favorable
parallel performance with low computational overheads for
broad ranges of matrices arising from many science and
engineering applications.

Declaration of con�icting interests

The author(s) declared no potential con�icts of interest with respect
to the research, authorship, and/or publication of this article.

Prepared using sagej.cls

12 Journal Title XX(X)

Funding

The author(s) disclosed receipt of the following �nancial support
for the research, authorship, and/or publication of this article:
This research was supported in part by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Of�ce of Science and the National Nuclear
Security Administration, and in part by the U.S. Department
of Energy, Of�ce of Science, Of�ce of Advanced Scienti�c
Computing Research, Scienti�c Discovery through Advanced
Computing (SciDAC) program through the FASTMath Institute
under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley
National Laboratory.

Acknowledgements

This research used resources of the National Energy Research
Scienti�c Computing Center (NERSC), a U.S. Department of
Energy Of�ce of Science User Facility operated under Contract No.
DE-AC02-05CH11231.

References

Bach F (2013) Sharp analysis of low-rank kernel matrix
approximations. In: Proceedings of the 26th Annual
Conference on Learning Theory, Proceedings of Machine
Learning Research, volume 30. Princeton, NJ, USA: PMLR,
pp. 185�209.

Balzano L, Nowak R and Recht B (2010) Online identi�cation
and tracking of subspaces from highly incomplete information.
In: 2010 48th Annual Allerton Conference on Communication,
Control, and Computing (Allerton). pp. 704�711. DOI:10.
1109/ALLERTON.2010.5706976.

Bebendorf M (2000) Approximation of boundary element matrices.
Numerische Mathematik 86(4): 565�589. DOI:10.1007/
PL00005410.

Bebendorf M and Grzhibovskis R (2006) Accelerating Galerkin
BEM for linear elasticity using adaptive cross approximation.
Mathematical Methods in the Applied Sciences 29(14): 1721�
1747. DOI:10.1002/mma.759.

Blackford LS, Choi J, Cleary A, D’Azevedo E, Demmel J, Dhillon
I, Dongarra J, Hammarling S, Henry G, Petitet A, Stanley
K, Walker D and Whaley RC (1997) ScaLAPACK users’
guide. Philadelphia, PA: Society for Industrial and Applied
Mathematics. ISBN 0-89871-397-8 (paperback).

Boutsidis C, Mahoney MW and Drineas P (2009) An improved
approximation algorithm for the column subset selection
problem. In: Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’09. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, pp.
968�977.

Cand�es EJ and Recht B (2009) Exact matrix completion via convex
optimization. Foundations of Computational Mathematics
9(6): 717. DOI:10.1007/s10208-009-9045-5.

Cheng H, Gimbutas Z, Martinsson P and Rokhlin V (2005) On the
compression of low rank matrices. SIAM Journal on Scienti�c
Computing 26(4): 1389�1404. DOI:10.1137/030602678.

Dheeru D and Karra Taniskidou E (2017) UCI Machine Learning
Repository. URL http://archive.ics.uci.edu/ml.

Feng Y, Xiao J and Gu M (2018a) Low-rank matrix approximations
with �ip-�op spectrum-revealing QR Factorization. ArXiv e-
prints .

Feng Y, Xiao J and Gu M (2018b) Low-Rank Matrix
Approximations with Flip-Flop Spectrum-Revealing QR
Factorization. arXiv e-prints : arXiv:1803.01982.

Foster LV (1997) The growth factor and ef�ciency of gaussian
elimination with rook pivoting. Journal of Computational and
Applied Mathematics 86(1): 177 � 194. Dedicated to William
B. Gragg on the ocassion of his 60th Birthday.

Grasedyck L and Hackbusch W (2003) Construction and
arithmetics of H-matrices. Computing 70(4): 295�334.

Grasedyck L and Hackbusch W (2005) Hybrid cross approximation
of integral operators. Numer. Math. 101(2): 221�249.

Gu M and Eisenstat S (1996) Ef�cient algorithms for computing
a strong rank-revealing QR factorization. SIAM Journal on
Scienti�c Computing 17(4): 848�869. DOI:10.1137/0917055.

Hackbusch W, Grasedyck L and B¤orm S (2002) An introduction
to hierarchical matrices. Mathematica bohemica 127(2): 229�
241.

Heldring A, Ubeda E and Rius JM (2014) On the convergence of
the ACA algorithm for radiation and scattering problems. IEEE
Transactions on Antennas and Propagation 62(7): 3806�3809.
DOI:10.1109/TAP.2014.2316293.

Heldring A, Ubeda E and Rius JM (2015) Stochastic estimation of
the Frobenius norm in the ACA convergence criterion. IEEE
Transactions on Antennas and Propagation 63(3): 1155�1158.
DOI:10.1109/TAP.2014.2386306.

Liberty E, Woolfe F, Martinsson PG, Rokhlin V and Tygert M
(2007) Randomized algorithms for the low-rank approximation
of matrices. Proceedings of the National Academy of Sciences
104(51): 20167�20172. DOI:10.1073/pnas.0709640104.

Mahoney MW and Drineas P (2009) CUR matrix decompositions
for improved data analysis. Proceedings of the National
Academy of Sciences 106(3): 697�702. DOI:10.1073/pnas.
0803205106.

Martinsson PG, Quintana-Orti G and Heavner N (2017) randUTV:
A blocked randomized algorithm for computing a rank-
revealing UTV factorization. ArXiv e-prints .

Musco C and Musco C (2017) Recursive sampling for the Nystrom
method. In: Advances in Neural Information Processing
Systems 30. Curran Associates, Inc., pp. 3833�3845.

Rebrova E, Chavez G, Liu Y, Ghysels P and Li XS (2018) A
study of clustering techniques and hierarchical matrix formats
for kernel ridge regression. 2018 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW)
: 883�892.

Voronin S and Martinsson PG (2017) Ef�cient algorithms for
CUR and interpolative matrix decompositions. Advances in
Computational Mathematics 43(3): 495�516.

Wang R, Li Y and Darve E (2017) On the numerical rank of radial
basis function kernels in high dimension. ArXiv e-prints .

Xiao J, Gu M and Langou J (2017) Fast parallel randomized QR
with column pivoting algorithms for reliable low-rank matrix
approximations. In: 2017 IEEE 24th International Conference
on High Performance Computing (HiPC). pp. 233�242. DOI:
10.1109/HiPC.2017.00035.

Zhao K, Vouvakis MN and Lee JF (2005) The adaptive cross
approximation algorithm for accelerated method of moments
computations of EMC problems. IEEE Transactions on
Electromagnetic Compatibility 47(4): 763�773. DOI:10.1109/
TEMC.2005.857898.

Prepared using sagej.cls

http://archive.ics.uci.edu/ml

Liu, Sid-Lakhdar, Rebrova, Ghysels and Li 13

Zhou H, Zhu G, Kong W and Hong W (2017) An upgraded ACA
algorithm in complex �eld and its statistical analysis. IEEE
Transactions on Antennas and Propagation 65(5): 2734�2739.
DOI:10.1109/TAP.2017.2670607.

Author Biographies

Yang Liu is a research scientist in the Scalable Solvers Group of the
Computational Research Division at Lawrence Berkeley National
Laboratory, in Berkeley, California. Dr. Liu received the Ph.D.
degree in electrical engineering from the University of Michigan
in 2015. From 2015 to 2017, he worked as a postdoctoral fellow
at the Radiation Laboratory, University of Michigan. From 2017
to 2019, he worked as a postdoctoral fellow at Lawrence Berkeley
National Laboratory, in Berkeley, California. His main research
interest is in computational electromagnetics (including fast time-
domain integral equation solvers, fast direct integral and differential
equation solvers, and multi-physics modeling), numerical linear
and multi-linear algebras (including sparse solvers, randomized
low-rank, butter�y and tensor algebras), and high-performance
scienti�c computing. Dr. Liu authored and co-authored the Sergei
A. Schelkunoff Transactions Prize Paper, APS 2018, second place
student paper, ACES 2012, and the �rst place student paper, FEM
2014.
Wissam Sid-Lakhdar is a postdoctoral researcher in the Scalable
Solvers Group of the Computational Research Division at Lawrence
Berkeley National Laboratory (LBL). He is currently working on
the development of autotuning algorithms and software supported
by the Exascale Computing Project (ECP). Before joining LBL,
he was a postdoctoral fellow in the PARASOL laboratory in the
Computer Science and Engineering Department of Texas A&M
University. He was then working on autotuning batched QR
factorization kernels on GPUs. He obtained his Ph.D. at Ecole
Normale Superieur of Lyon, where his work targeted the scalability
of sparse linear algebra methods on heterogeneous architectures.
Elizaveta Rebrova is an Assistant Adjunct Professor in the
Department of Mathematics of the University of California in Los
Angeles. In Summers 2017 and 2018 she worked on the interplay
between machine learning and numerical linear algebra in the
Scalable Solvers Group of the Computational Research Division
at Lawrence Berkeley National Laboratory. She received the Ph.D.
degree in mathematics from the University of Michigan in 2018.
Her main research interests are high-dimensional probability and
random matrix theory, and their applications to high-dimensional
data science and linear algebra.
Pieter Ghysels is a research scientist in the Scalable Solvers Group
of the Computational Research Division at Lawrence Berkeley
National Laboratory, in Berkeley, California. His main interests are
in High Performance Computing (HPC) and linear algebra. Pieter
has expertise in both iterative methods and direct methods for the
solution of systems of linear equations. He is the main developer
of the STRUMPACK software library which offers a direct solver
and preconditioners for large sparse linear systems as well as
memory ef�cient representations of structured dense matrices.
Pieter Ghysels received an engineering degree (in 2006) and
completed a PhD in engineering Sciences, both at the (Flemmish)
Catholic University in Leuven, Belgium. From 2010-2013, Pieter
worked at the Universiteit Antwerpen (University of Antwerp,
Belgium) and at the Intel Exascience Lab Flanders.
Xiaoye Sherry Li is a Senior Scientist in the Computational
Research Division, Lawrence Berkeley National Laboratory.

She has worked on diverse problems in high performance
scienti�c computations, including parallel computing, sparse
matrix computations, high precision arithmetic, and combinatorial
scienti�c computing. She has (co)authored over 110 publications,
and contributed to several book chapters. She is the lead
developer of SuperLU, a widely-used sparse direct solver, and
has contributed to the development of several other mathematical
libraries, including ARPREC, LAPACK, PDSLin, STRUMPACK,
and XBLAS. She has collaborated with many domain scientists
to deploy the advanced mathematical software in their application
codes, including those from accelerator engineering, chemical
science, earth science, plasma fusion energy science, and materials
science. She earned Ph.D. in Computer Science from UC Berkeley
in 1996. She has served on the editorial boards of the SIAM J.
Scienti�c Comput. and ACM Trans. Math. Software, as well as
many program committees of the scienti�c conferences. She is a
SIAM Fellow and an ACM Senior Member.

Prepared using sagej.cls

View publication statsView publication stats

	Introduction
	Notation
	Algorithm Description
	Cost Analysis
	Numerical Results
	Convergence

	Conclusion

