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ABSTRACT

The Search for Exotic Baryons at the HERMES Experiment

by
Wouter Deconinck

Chair: Wolfgang B. Lorenzon

One of the interesting questions of Quantum Chromodynamics, the theory that governs the interactions between
quarks and gluons, has been whether it is possible to observe hadrons which can not be explained as a combination of
only two or three valence quarks. In numerous searches the existence of these exotic hadrons could not be confirmed.
Recently, calculations based on the quark soliton model predicted the narrow exotic baryons Θ+ and Ξ−−. A narrow
resonance identified as the Θ+ was observed by several experiments at the predicted mass of 1540 MeV, but later
followed by several dedicated experiments that could not confirm these positive results.

At the HERMES experiment a search for the quasi-real photoproduction of the exotic baryon Θ+ on a deuterium
target and the subsequent decay through pK0

S → pπ+π− revealed a narrow resonance in the pK0
S invariant mass

distribution at 1528 MeV. In the search for the corresponding antiparticle Θ− the result is consistent with zero events.
In this thesis we present the search for the exotic baryon Ξ−− on a deuterium target in the data sample used for the

observation of the Θ+. An upper limit on the cross section of the exotic baryon Ξ−− is determined. The search for the
exotic baryon Θ+ on hydrogen and deuterium targets at the HERMES experiment is extensively discussed. The event
mixing method can be used to estimate the distribution of background events. Several difficulties with this method
were addressed, but the background description in the case of the exotic baryon Θ+ remains unconvincing. Between
the years 2002 and 2005 the HERMES experiment operated with a magnetic holding field around the hydrogen target.
A method for the reconstruction of displaced vertices in this field was developed. The data collected during the years
2006 and 2007 offer an integrated luminosity that is several times higher than in previous data sets. After investigating
all data sets collected with the HERMES experiment on hydrogen and deuterium targets, we are not able to observe a
resonance peak at an invariant mass of 1540 MeV consistent with the exotic baryon Θ+.
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CHAPTER I

Introduction

In the Standard Model of particle physics the fundamental fermionic constituents of matter are organized in three
progressively more massive generations. Each generation of particles consists of two quarks with electromagnetic
charge + 2

3 and − 1
3 (up u and down d, charm c and strange s, top t and bottom b), a lepton with by definition electro-

magnetic charge −1 (electron e, muon µ, tau τ ), and the corresponding neutral neutrino (νe, νµ, ντ ). The particles are
subjected to the four fundamental forces: the gravitational force, the electromagnetic interaction responsible for elec-
tricity and magnetism, the weak interaction which is important in nuclear processes such as β-decay, and the strong
interaction that binds the protons and neutrons in the atomic nucleus. Even though gravity is the most apparent force
at macroscopic scales, it is much weaker than the other forces at microscopic scales and will be ignored here.

The fundamental forces act by the exchange of force-mediating particles or gauge bosons. The massless photon
γ mediates the electromagnetic force between electrically charged particles. The theory of Quantum Electrodynamics
(QED) describes the interactions mathematically as the abelian U(1)em gauge theory. Because of the small value of
the electromagnetic coupling constant α ≈ 1

137 , the theory of QED lends itself well to perturbative expansion. This
allows for the calculation of experimental observables to a very high precision.

The weak force is carried by the three massive vector bosons W± and Z0 and acts on all fermionic fundamental
particles listed above.1 Because the W± bosons are charged, they are affected by the electromagnetic interaction. The
masses of vector bosons are generated by spontaneous symmetry breaking at energies below approximately 102 GeV.
Above this energy the electromagnetic interaction and the weak interaction are unified in the electroweak interaction
with the symmetry group SU(2) ⊗ U(1)Y , where Y is the hypercharge. Just as the electromagnetic charge, the
hypercharge of a particle indicates how strongly it will couple to the electroweak gauge bosons. At lower energies the
electroweak symmetry is spontaneously broken down to U(1)em by the Higgs mechanism, which not only generates
the masses of the Goldstone bosons W± and Z0 but also of all other fermions in the Standard Model, because the
interaction of the Higgs field is proportional to the fermion mass.

In addition to the electromagnetic charge and the hypercharge, the quarks (but not the leptons and neutrinos)
carry a color charge which can take on one of the values red r, green g, or blue b, the sum of which cancels out.
The antiquarks carry an anticolor charge r, g, or b. The eight massless and electromagnetically neutral gluons g
mediate the strong force by coupling to the color charge of the quarks. The gluons carry a combined color-anticolor
charge. The interaction of the gluons with the quarks, and of the gluons with each other, is described by the theory of
Quantum Chromodynamics (QCD), a non-abelian gauge theory with color symmetry group SU(3)c (for a review see
reference [1]).

The self-interaction of gluons, a feature of the SU(3) group structure of QCD that is not present in the simpler
U(1) structure of QED (at least at tree level), causes the interaction between two quarks to become weaker when the
quarks are closer to each other, and stronger when they are further apart. This is opposite to the behavior of QED,
where the effect of electromagnetic charge screening reduces the interaction at larger distances. This particular effect
of QCD is called asymptotic freedom, because at short distances the quarks are quasi-free. Similarly, due to the

1Naively the strength of the interaction is inversely proportional to the squared mass of the mediating boson. The larger mass of the weak bosons
is responsible for the weakness of the weak force.
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2increase of the interaction at large distances, it is impossible to remove a colored object from a colorless bound state,
a property known as color confinement. QCD only allows colorless free objects; all colored objects have to be in a
bound state such that their total color charge is canceled.

1.1 Mesons and baryons

The colorless bound states of quarks, antiquarks and gluons in QCD are called hadrons. The simplest colorless
combinations of quarks and antiquarks are the mesons consisting of a quark and an antiquark (qq) and the baryons
composed of three quarks (qqq). These two or three quarks, which carry most of the hadron’s momentum, are called
the valence quarks. Solely these two or three valence quarks determine the physical observable quantum numbers of
the bound state (such as the spin J and the strangeness S). In addition, the valence quarks are embedded in a sea
of qq pairs, which have no net contribution to the quantum numbers of the bound state, but which can be probed in
deep-inelastic scattering experiments. For example, a proton consists of one d and two u valence quarks but ss pairs
are created and disappear constantly in the quark sea.

Because the masses of the c, b and t quarks are large compared to the masses of the u, d and s quarks (mu ≈ 3 MeV,
md ≈ 6 MeV, ms ≈ 100 MeV, mc ≈ 1.24 GeV, the masses for the b and t quarks are even larger [1]), they are usually
ignored in treatments of the lightest hadrons. When only the three lightest quarks u, d and s are considered, the flavor
symmetry group SU(3)f describes the hadronic bound states. All hadronic states in a perfect symmetry group are
expected to have the same energy. SU(3)f is not an exact symmetry owing to the larger mass of the s quark, but very
useful as an approximation. When we also include the c quark, we obtain the badly broken SU(4)f flavor symmetry.
In this work we will limit ourselves to the light quarks only and consider the flavor symmetry group SU(3)f .

Following the group-theoretical relation 3 ⊗ 3 = 8 ⊕ 1 in the flavor symmetry group SU(3)f , the nine possible
quark-antiquark combinations qq can be grouped in a singlet and an octet of light mesons. Because the s quark has a
larger mass than the u and d quarks, the symmetry is not perfect and the mesons with non-zero strangeness are heavier
than the mesons without strangeness.2 Mesons with equal strangeness are approximately degenerate in mass, because
of the SU(2) isospin symmetry between u and d quarks. When we include the c quark, we obtain a 15-plet according
to 4⊗4 = 15⊕1. The mass splittings are now even larger, and the states with charm content are largely independent
of the states already obtained in the SU(3)f singlet and octet.

If we limit ourselves to the ground states without orbital excitations, in other words to bound states with ` = 0, the
total spin J = `+ s of the mesons can be J = 0 or J = 1 for antiparallel or parallel quarks spins (the sum of the spins
is represented by the lower case s, to avoid confusion with the strangeness S). In both spin configurations the meson
states can be classified in a singlet and an octet. In figure 1.1 the J = 0 states or pseudoscalar mesons are shown in
the left panel and the J = 1 states or vector mesons are shown in the right panel. The isoscalar singlet state and the
two isoscalar states at the center of the octet mix with each other because they have identical quantum numbers (i.e.
Q = 0, S = 0).

The multiplets for the baryons consisting of three quarks are determined similarly to the classification scheme of
the mesons. The relation 3 ⊗ 3 ⊗ 3 = 10S ⊕ 8M ⊕ 8M ⊕ 1A, however, does not produce separate ground state
multiplets with and without angular momentum `. By treating the quarks with spin up and spin down independently
the flavor-spin symmetry group SU(6)fs can be used to determine the ground state multiplets. The baryons are now
described by the relation 6⊗6⊗6 = 56S ⊕70M ⊕70M ⊕20A and the ground state 56-plet decomposes according
to 56 = 10 ⊕ 8 in an octet with spin J = 1

2 and a decuplet with spin J = 3
2 . In figure 1.2 the ground state baryon

octet is shown on the left and the decuplet on the right. As in the case of mesons, the masses of baryons with the same
strangeness S are almost identical because of isospin symmetry. The differences between the masses of baryons with
different strangeness is larger.

Because the strong coupling constant αS is of the order of unity at the energies of the lightest bound quark states, a
perturbative approach to QCD is not applicable to calculate the masses of the lightest mesons and baryons.3 At higher
energies (and thus shorter distance scales) the strong coupling constant decreases and reaches a value αS(MZ) = 0.12
at the mass of the Z boson. At higher energies perturbative QCD can be used for high-precision tests of QCD, similar

2The strangeness S of a hadron is proportional to the number of strange quarks. It follows the convention that the flavor of a quark has the
same sign as its electromagnetic charge. Because the strange quark has negative electromagnetic charge − 1

3
, the strangeness of the s quark itself is

S = −1.
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Figure 1.1: The ground state singlets and octets of the light J = 0 pseudoscalar mesons (left panel) and J = 1 vector
mesons (right panel) made of only u, d and s quarks without angular momentum (` = 0).
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Figure 1.3: The ground state antidecuplet of the exotic J = 1
2 baryon states, as predicted by the chiral quark soliton

model (see section 2.2.4).

to what is possible in QED. In the non-perturbative region several phenomenological approaches can be used for the
determination of the hadronic masses. In the constituent quark model (CQM) the quarks are ‘dressed’ or given a larger
mass (mu/d,CQM ≈ 350 MeV, ms,CQM ≈ 470 MeV) and their interaction in a hadronic potential is determined [2].

1.2 Exotic hadrons

QCD does not prohibit the existence of colorless hadronic states with more than two or three quarks. In fact, studies
of the nucleon structure point to a significant contribution from quark-antiquark pairs to the total momentum and spin
of the nucleon. The naive quark model with bound states of only two or three valence quark seems incomplete. When
one realizes that the quarks in mesons and baryons are bound together by the gluons, also gluons should play an
important role in the description of bound states.

The hadrons that fall outside of the expectations of the naive quark model are called manifestly exotic hadrons.
Their quantum numbers can not be explained by a bound state of only two or three quarks. Crypto-exotic hadrons
are composed of more than two or three quarks, but mix with a regular hadron with the same quantum numbers. The
exotic mesons can be classified as glue balls (gg), hybrids (qqg), and tetraquarks (qqqq). Pentaquarks (qqqqq) are
examples of exotic baryon states.

For mesons the quantum numbers for the total spin J , the parity P , and the charge conjugation eigenvalue C are
only allowed to have a limited set of values. The configurations JPC = 0−−, 0−+, 1−+, 2+−,. . . cannot be obtained
in the naive quark model. The observation of several states with JPC = 1−+ since the 90s points unambiguously to
the existence of exotic mesons, although the exact nature of these exotic mesons is still unknown.4

The charge conjugation eigenvalue C is not a good quantum number for baryons, and all combinations of the total
spin J and the parity P are allowed. However, an exotic baryon can be identified with a combination of the charge Q
and the strangeness S. Since no three-quark baryons with positive strangeness exist, a baryon with charge Q = +1
and strangeness S = +1 must have the minimal quark configuration uudds. This exotic baryon will be referred to as
Θ+. Similarly, the minimal quark content of the exotic baryon Ξ−− with charge Q = −2 and strangeness S = −2
is ssddu. In the chiral quark soliton model, discussed in section 2.2, the lightest exotic baryons with spin J = 1

2 are
organized in an antidecuplet, shown in figure 1.3. Due to mixing of the internal member of this antidecuplet with a
non-exotic octet, the only manifestly exotic baryons are located on the corners of this antidecuplet.

3The advances in lattice QCD calculations make it possible to determine the masses of the bound states directly from the SU(3) Lagrangian of
QCD. This is however not up to par yet with the results from phenomenological quark models.

4If each of the reported 1−+ state were confirmed, it would result in an overpopulation of the 1−+ hybrid multiplet. The experiment GlueX at
JLab is proposed to investigate exotic mesons [3].



5So far, experimental searches for exotic baryons have been unsuccessful. Early experiments in the 1970s were
not able to confidently prove the existence of exotic baryons, although a number of (often contradictory) results in
kaon-nucleon scattering reported positive results. In recent years a new wave of positive experimental results and
contrasting null results about the exotic baryons Θ+ and Ξ−− has revitalized the discussion, but it is too early to draw
conclusions about the existence of these exotic baryons.

At the HERMES experiment in Hamburg, Germany, a search for the exotic baryons Θ+ and Ξ−− was performed [4,
5]. A resonance peak in the decay channel corresponding to the Θ+ was observed at a mass of M = 1528 MeV, but
no Ξ−− resonance could be found. Since these result were published in 2003 and 2004, a large amount of additional
data has been collected. This dissertation investigates the search for exotic baryons in these data.

1.3 Overview

In chapter II an overview will be given of the experimental and theoretical efforts to observe, refute or more broadly
understand exotic baryons. The evidence in favor of the recently observed exotic baryons Θ+ and Ξ−− is examined
and critically compared with null results. The theoretical efforts in hadronic physics have lead to a number of different
approaches in calculating the mass and the width of exotic baryons. The most well-known approach is without doubt
the chiral quark soliton model, but the diquark model and the diquark-triquark model are also presented.

The HERMES experiment is introduced in chapter III. It is located in the East Hall of the HERA collider at the
DESY laboratory, where energetic electrons or positrons are collided on a fixed gas target. The scattered lepton
and the collision fragments are detected in a conventional forward spectrometer with good particle identification
capabilities. Although the polarization of the lepton beam is not relevant for the analysis of exotic baryons, the
longitudinal polarimeter is discussed in the light of proposed future lepton polarimeter designs.

The analysis of the exotic baryons at the HERMES experiment is presented in chapter IV. Similar to the original
analyses of the exotic baryons Θ+ and Ξ−− at the HERMES experiment [4, 5], a search for the exotic baryon Ξ−−

is presented. The photoproduction cross section ratio of the Λ(1520) and Λ(1520) hyperons is used to determine the
expected number of observed Θ− baryons. For the analysis of the data collected with a transversely polarized hydrogen
target, a tracking algorithm was developed for displaced vertices in a homogeneous field. Finally, the technique of
event mixing for the determination of distributions of background events is discussed.

In the final chapter V the results of this work are summarized. The analysis method, involving several novel
aspects, is critically reviewed. The observation of exotic baryons at the HERMES experiment, in particular of the Θ+

and the Ξ−−, is assessed.



CHAPTER II

The Search for Exotic Baryons

The search for exotic baryons knows a long history, starting immediately after the formulation of the quark model
and development of the mathematical structure of QCD. The assumedly lightest five-quark exotic baryon, with a quark
configuration uudds and with positive strangeness S = +1, has been the focus of the majority of the experimental
searches, and it receives therefore also an important position in the theoretical models. In early searches exotic baryons
with strangeness S = +1 were referred to as Z∗ resonances, but in the recent results the symbol Θ+ has become the
accepted notation. The other manifestly exotic baryons in the antidecuplet composed of only u, d and s quarks are
denoted by Ξ−− for the ddssu quark configuration and by Ξ+ for the uussd quark configuration.1 Currently only one
experiment reported evidence for these states, in contrast with numerous null results.

In this chapter we review the experimental and theoretical results about the light exotic baryons, consisting of only
u, d and s quarks.2 In section 2.1 the older KN partial wave analyses and several recent spectroscopic results are
discussed, comparing the positive and null results where possible. In section 2.2 we review the theoretical predictions
for exotic baryons and the recent developments that aim to reconcile the seemingly contradictory experimental results.

2.1 Experimental results

Since the early days of QCD, experimental searches for baryons composed of more than three quarks have been
performed. In particular, the observation of a baryon with a positive strangeness S would be a clear signature of an
exotic baryon, because such a baryon can only be explained by the combination of five or more quarks.

2.1.1 Early controversy about exotic baryons

Using secondary charged kaon beams, a large amount of data has been collected in scattering of kaons on protons
and deuterons in the late 60s and 70s. Several indications for baryon resonances with positive strangeness, identified
as Z∗ resonances at that time,3 were observed in the partial wave analysis of these data, but none of the reports was
ever sufficiently significant to stand beyond the doubt created by contradicting experimental results [6]. The widths
of the observed Z∗ resonances were usually of the order of 100 MeV, both for the isoscalar resonances Z∗0 around
1800 MeV and for the isovector resonances Z∗1 at 1900 MeV and higher. Due to these large widths, the resonances are
now understood as non-exotic pseudo-resonances induced by the opening of KπN channels [7].

Starting with its 1986 edition of the Review of Particle Physics [8], the Particle Data Group decided to omit the
experimental results for the exotic baryons Z∗. The “general prejudice against baryons not made of three quarks” and

1The Particle Data Group [1] refers to the exotic baryons Ξ−− and Ξ+ with the symbol Φ, but this notation has not found a lot of adoption in
the experimental community. In this work we will continue to use the symbol Ξ to avoid inconsistencies with the cited sources.

2After the first reports of the observation of the exotic baryon Θ+ in 2003, similar exotic states with c or b quarks instead of the s quark were
predicted [9, 10, 11]. The experimental observation of a resonance decaying to D∗−p at the H1 experiment was interpreted as evidence for the
charmed exotic baryon Θ0

c [12], but in subsequent searches no other experiment was able to confirm this observation. This charmed exotic baryon
Θ0
c will not be discussed in this work.

3The isospin of the resonance is often indicated as a subscript, i.e. Z∗0 or Z∗1 .
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Figure 2.1: Change of the overall χ2 when including a narrow P01 resonance in a global partial wave analysis of the
KN scattering data is only acceptable for resonance widths Γ below a few MeV. The small vertical lines in the right
panel indicate the position of experimental observations of the exotic baryon Θ+(1540). In the right panel the values
for ∆χ2 at 1535 MeV are off-scale. Taken from reference [13].

“lack of experimental activity” were cited as reasons why a decision on the existence of exotic baryons was not to be
expected in the foreseeable future. The discussion indeed lay dormant for more than 15 years, until the first of the
most recent results was presented in 2003.

The K+p and K+d scattering databases were recently re-examined in the light of the evidence for a surprisingly
narrow exotic baryon resonance Θ+ with a mass of approximately 1540 MeV. An upper limit on the width of the
exotic baryon Θ+ of a few MeV was derived, based on fluctuations in the measured cross sections [14, 15, 16]. In a
re-examination of the partial wave analysis of the KN scattering data, the new narrow exotic baryons were included
and the difference in the goodness-of-fit parameter χ2 was determined [13]. In figure 2.1 the change of the overall χ2

of a global fit to the KN scattering data is shown when including a narrow P01 resonance. For intrinsic resonance
widths Γ above 2 MeV, the increase of the total χ2 is too large, and only for widths below a few MeV the inclusion of
a narrow resonance is possible. Similarly, when including a narrow S01 or P03 resonance only a width below 1 MeV
is consistent with the KN scattering data. This puts a strong constraint on the theoretical models trying to explain the
observed exotic baryons.

2.1.2 Experimental results since 2003

Prompted by the theoretical predictions of the chiral quark soliton model [17], a new series of experimental results
claiming the observation of the exotic baryon Θ+ at a mass of approximately 1540 MeV has been published since 2003.
This resonance with positive strangeness S = +1 can only be explained as a five-quark state with configuration uudds,
and corresponds to the Z∗ resonances discussed in the 70s. Following common practice for baryons, the determined
mass is added to the symbol of the resonance to distinguish it from other resonance with the same structure and thus
the same symbol, but with a different mass due to orbital excitations. When discussing the observed exotic resonance
state around 1540 MeV we will therefore write Θ+(1540). The isospin structure of the exotic resonance Θ(1540)
has not been determined conclusively experimentally, with most experiments unable to observe a possible isopartner
Θ++(1540) but some results pointing to the existence of the isospin partner [18]. In the chiral quark soliton model the
exotic baryon Θ was predicted to be an isoscalar (as the Z∗0 state).

Initially, the positive results created a lot of enthusiasm in the hadron spectroscopy community. The number
of theoretical papers published on the subject, trying to reconcile the different observed masses and attempting to
determine the possible production mechanisms rose quickly. However, slowly null results began to trickle in, most
of them with better statistical precision and placing strict limits on the allowed cross section or intrinsic width. The
apparent disagreement between the positive results and the null results turned around the initial enthusiasm for the
experiments that presented evidence in favor. A few experiments could not repeat their previous results with data



8collected in very similar conditions. Only a small number of experiments has presented additional data in different
reaction channels or kinematic regimes in which they confirmed their earlier sightings.

Now, when looking back at the large amount of experimental results, some positive, several null, we can draw
some conclusions. Some experimental results were already discarded as invalid, others are in the process of being
confirmed or refuted. In this section some experimental results are discussed in more detail. Completeness was not
pursued, only experimental results deemed interesting or significant in the eyes of the author were included. Since
it is difficult to order the experiments consistently according to any experimental characteristic, they are presented
chronologically. But because some experiments published several results, the chronological line has been broken at
several points.

2.1.3 Photoproduction on neutrons at the LEPS experiment

In the beginning of 2003, the first recent claim for the observation of the exotic baryon Θ(1540) was presented by
the Laser-Electron Photon experiment at SPring-8 (LEPS) in Japan. At the LEPS experiment high-energetic photons
are produced by Compton back-scattering of laser photons from the 8 GeV electrons in the SPring-8 synchrotron [19].
The frequency of the 351 nm Ar laser limits the Compton photon energy to values below 2.4 GeV. The photon energy
is determined by measuring the momentum of the scattered electrons using one of the bending magnets of the SPring-8
storage ring. Only for photons with an energy above 1.5 GeV, the scattered electron can be detected.4

The photons strike a fixed target cell and the reaction products are detected by the LEPS spectrometer. The design
of the spectrometer is optimized for the detection of photoproduced φ mesons at forward angles. A silicon strip vertex
detector and three drift chambers are used to track charged particles in a magnetic dipole field and determine their
momentum. A time-of-flight (TOF) scintillator detector and a Čerenkov counter are used to distinguish electrons from
pions.

For the first publication on exotic baryons at the LEPS experiment [20], a 0.5 cm thick plastic scintillator (SC)
with an approximately equal number of hydrogen and carbon nuclei was used as the target for the photon beam.
This scintillator target was located downstream from the actual liquid hydrogen (LH2) target for the study of the
photoproduction of φmesons. In 2003 the LH2 target was replaced by a longer target cell which could also hold liquid
deuterium (LD2), to allow for the study of reactions on neutrons without the need for a complicated Fermi motion
correction [21, 22].

First results on the scintillator target

For the analysis of the first data sample, collected on the SC target, events with a K+K− pair in the detector were
considered [20]. The scattered nucleon was reconstructed from the missing mass MM(γK+K−), and a veto on a
scattered proton track was used to suppress the photo-nuclear reaction γp→ K+K−p off protons in the H or C atoms.
Assuming the reaction γn(12C)→ K+K−(n) the missing mass MM(γK±) corresponds now to the invariant mass
M(nK∓). The Fermi motion of the target neutron in the atomic nucleus leads to smearing of the kinematic variables
and is corrected for.5

In the distribution of the missing massMM(γK+), shown in the left panel of figure 2.2, the Λ(1520) resonance is
not visible in the sample with the proton veto (solid lines), but becomes visible when a proton hit is required (dashed
lines) as expected for the reaction γp(12C) → Λ(1520)K+ → pK−K+. The distribution of the missing mass
MM(γK−), shown in the right panel of figure 2.2, for events originating in the SC target (solid lines) exhibits a peak
at a mass of 1540± 10 GeV with a width smaller than 25 MeV and a naive significance of S√

B
= 4.6σ.6 The structure

disappears when the events are not required to originate in the SC target, but instead in the LH2 target (dotted lines).

4Because of energy conservation, photons with a lower energy correspond to scattered electrons with an energy closer to the beam energy. The
separation between the scattered electron and the electron beam after the first dipole magnet in the synchrotron is then too small and the electron is
outside the acceptance of the tagging counter.

5Only after the Fermi motion correction a clean separation of the Λ hyperon at 1115 MeV and the Σ− hyperon at 1190 MeV, both decaying to
K+π−, is possible due the improvement in the resolution.

6Several expressions are used to calculate the statistical significance of experimental results. The statistical significance of a hypothesis represents
the probability that the observation is a random fluctuation, and is usually expressed in units of standard deviations for a normal distribution. The
naive estimator S√

B
for the significance of a peak with S events on top of B background events is only valid when the background B is known
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Figure 2.2: The distribution of the missing masses MM(γK+) (left panel) and MM(γK−) (right panel) for events
originating in the SC target and corrected for Fermi motion in the C nucleus (solid line in both panels). When an
additional proton track is required in the final state, the Λ(1520) resonance becomes visible in the left panel (dashed
line). In the right panel, the background contribution is estimated using events with the initial vertex in the LH2 target
(dotted line). Taken from reference [20].

Dedicated setup with the liquid deuterium target

In 2003 the target system at the LEPS experiment was upgraded to allow for data collection on liquid hydrogen
and liquid deuterium targets with increased thickness [22]. The hydrogen target allowed to estimate the background
distributions for reactions on the neutrons, and coherent reactions on deuterons could now be studied without the need
for a complicated Fermi motion correction.

The original result for photoproduction on neutrons was confirmed with higher statistical precision, as shown in
figure 2.3. This result still depends on the correction for the Fermi motion of the neutron in the deuterium atom. In the
left panel the distribution of the missing mass MM(γK+) with a prominent Λ(1520) peak is shown. The distribution
of the missing mass MM(γK−) is shown in the right panel with an excess of events at 1.53 GeV. The dashed line
represents the mixed event background, presumably normalized in the invariant mass region below 1.5 GeV.

Inspired by the analysis method used at the CLAS experiment (see section 2.1.6), the LEPS experiment also
searched for the Θ(1540) in the coherent reaction γd → pK−X on a deuterium target using the missing mass
MM(γpK−). When only events are selected with an invariant mass M(pK−) in the region corresponding to the
Λ(1520) hyperon, the distribution for the missing mass MM(γK−p) in figure 2.4 is obtained. The total background
(indicated by the red line) has a component modeled by the sidebands of the Λ(1520) hyperon (blue line) and a
component from Λ(1520) production estimated from the LH2 data (green line). A peak structure at 1.53 GeV and a
broad bump at 1.6 GeV are observed.

In summary, the LEPS experiment currently claims evidence for the exotic baryons Θ(1540) in several different
reaction channels. The results seem to indicate simultaneous production of the non-exotic Λ(1520) hyperon and the

and large. It overestimates the true statistical significance by assuming that the resonance is there, by ignoring the uncertainty in the background
description and the change from Gaussian to Poisson distributions for a low number of events. The alternative expression S√

B+S
is sometimes

used to avoid the assumption that the resonance exists. Only a fully correlated statistical treatment of peak and background allows to calculate the
expression S

δB
, where δB is now the uncertainty in the number of background events in the peak region.
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Figure 2.3: The missing mass distributions of MM(γK+) (left panel) and MM(γK−) (right panel) in the new
data, corrected for Fermi motion in the deuterium nuclei of the LD2 target (solid lines). The values on the horizontal
axis are in GeV, with unspecified bin size. The mixed-event background is shown as the dashed line. Taken from
references [22, 23].

exotic baryon Θ(1540).

2.1.4 Charge-exchange reaction K+Xe → K0
SpXe′ at the DIANA experiment

The bubble chamber of the DIANA experiment is filled with liquid Xe and is exposed to a beam of positive kaons
K+ with an energy of 850 MeV separated from the ITEP proton synchrotron. Charged particles are photographically
detected by the ionized tracks they leave in the bubble chamber. Using special stereo-projectors the tracks can be
fully reconstructed. The momentum of the particles is derived from the range the track covers in the liquid Xe. The
strangeness of the final state is fixed to S = +1 by the incoming kaon K+.7

First half of the available data sample

The invariant mass M(K0
Sp) was measured using to the charge-exchange reaction K+n(Xe)→ K0

Sp(Xe′) where
the neutral kaon decays inside the chamber to two pions, K0

S → π+π− [24]. Rescattering in the Xe nucleus was
suppressed by requiring the proton p and neutral kaon K0 to be in the forward direction and in opposite azimuthal
regions with respect to the incoming kaon K+. A narrow resonance was found at a mass of 1539 ± 2 MeV with a
width smaller than 9 MeV, visible in the left panel of figure 2.5. The naive statistical significance was determined to
be 4.4σ.

Full data sample

In 2006 the DIANA collaboration finished the analysis of the full data sample [25]. The new results confirm the
earlier results (see right panel in figure 2.5), and increase the naive statistical significance of the observed Θ(1540)

7The decay of the neutral kaon K0 does not allow to determine the sign of the strangeness, since both the neutral kaon K0 and antikaon K0

decay to a pion pair π+π−.
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Figure 2.4: The missing mass distribution of MM(γK−p) on the deuterium target. A peak structure at 1.53 GeV and
a broad bump at 1.6 GeV are observed above the background (indicated by the red lines). The values on the horizontal
axis are in GeV, with unspecified bin size. For a description of the background model refer to the text. Taken from
references [22, 23].
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peak. The intrinsic width of the Θ(1540) resonance peak could be determined from the ratio of resonant and non-
resonant events as Γ = 0.36± 0.11 MeV.

The upper limits on the intrinsic width Γ of an exotic baryon, as determined from the re-analysis of the NK
scattering data, is consistent with the width determined at the DIANA experiment.

2.1.5 Photoproduction on protons to nK+K0
S at the SAPHIR experiment

At the SAPHIR experiment [26], similar to the CLAS experiment below, energetic photons are produced by brems-
strahlung when 2.8 GeV electrons from the continuous mode Electron Stretcher Accelerator (ELSA) strike a copper
foil radiator. The energies of the scattered electrons are measured in the tagging system, and allow the determination
of the photon energies between 0.9 GeV and 2.7 GeV. The photon beam then passes through a liquid hydrogen target.

The hydrogen target is located in the center of a cylindrical drift chamber. The momentum of charged particles
is determined from their motion in the field of a C-shaped magnet. The central drift chamber is surrounded by a
scintillator wall to measure the time-of-flight. In the forward direction a planar drift chamber is used for tracking.

In the reaction γp → Θ+K0
S → nK+π+π− the kinematic parameters of the neutron were determined from

missing energy and momentum. In the distribution of the invariant mass M(nK+) a peak is observed at 1540 ±
4(stat) ± 2(sys) MeV with a width smaller than 35 MeV. The cross section is estimated to be similar to that of φ
photoproduction, but a factor 4 smaller than final states with open strangeness [27], or around 0.2µb [28].

Recent null results in the same reaction channel by the CLAS experiment [29, 30], with a very similar geometrical
acceptance and a statistical precision far exceeding that of the SAPHIR results, have cast a shadow of doubt on the
result of the SAPHIR experiment. The upper limit for this reaction channel determined at the CLAS experiment is
0.8 nb, almost three orders of magnitude smaller than the value determined at the SAPHIR experiment.

2.1.6 Photoproduction on protons and deuterons at the CLAS experiment

At the CEBAF Large Acceptance Spectrometer (CLAS) experiment on the 6 GeV CEBAF race-track accelerator
at the Thomas Jefferson National Accelerator Facility (JLab) high-energetic electrons or tagged photons are scattered
on fixed, light nuclear targets [31]. The tagged photons are produced by colliding the accelerated electron beam with
an energy of up to 6 GeV on a thin bremsstrahlung radiator. The tagged photons have energies from 3 to 5.5 GeV.

The detector is, as indicated by its name, a large acceptance device with a toroidal magnetic field and drift cham-
bers for particle tracking, and Čerenkov counters and scintillation time-of-flight detectors for particle identification.



13Electromagnetic calorimeters are used to detect electrons, photons, and neutrons (although neutron detection is not
used in the analyses described here).

The CLAS experiment has published several results on exotic baryons, all in photoproduction reactions on light
nuclei. The first two positive results contributed largely to the initial acceptance of the Θ(1540) baryon, whereas the
later null results were considered by some as the proverbial ‘nail in the coffin’ of the Θ(1540) baryon.

Photoproduction on deuterons (g2a and g10)

The CLAS experiment obtained its first exotic baryon results with the reaction γd → K+K−p(n) [32]. In this
reaction on the neutron, the proton can be regarded as a spectator. It has only a small transverse momentum and is
normally not detected by the CLAS spectrometer. Relying on the spectator model for the determination of the neutron
momentum is an approximation that increases the number of background events. Therefore, only those events were
used where the proton and the K− have a final state interaction (FSI) and the proton is scattered into the acceptance
of the detector by the K−. This technique allowed for a reduction of the background.

The kinematic parameters of the neutron were reconstructed from the missing energy and momentum of the re-
action. In the distribution of the invariant mass M(nK+) a resonance with a naive significance of 5.2σ was found
at 1542 ± 5 MeV, with a width compatible with the experimental resolution. The background was modeled with a
Gaussian function.

A repetition of this measurement at the CLAS experiment, with more than six times higher statistical precision
and in very similar conditions,8 could not confirm the existence of a resonance peak in this channel. The background
had been underestimated substantially in the first result. In the left panel of figure 2.6 the data points of the original
g2a result are compared to the newer results, represented by the solid line. The upper limit of the cross section in the
channel γn→ K−Θ+ was estimated at 3 nb [33].

In the newer data sample, a search for exotic resonances was also performed in the distribution of the invariant
mass M(K+n) in the reaction γd → ΛK+(n). The requirement of a Λ hyperon in the final state explicitly tags the
strangeness of the reaction. As shown in the right panel of figure 2.6, no resonance was observed and an upper limit
on the cross section of 5 nb was determined.

To summarize the results of the CLAS experiment on a deuterium target, we conclude that no exotic resonances
could be observed in different reaction channels, and strict upper limits on the production were determined.

Photoproduction on the proton (g6)

A second analysis investigated the reaction channel γp → π+K−K+(n) on a proton target [34]. Again, the
neutron was reconstructed from the missing energy and momentum, and in the distribution of the invariant mass
M(nK+) a resonance peak at a mass of 1555 ± 10 MeV with a naive significance 7.8σ was found, as shown in
figure 2.7. The inset of figure 2.7 was obtained with relaxed event selection requirements. The experimental resolution
was also here dominant over the width of the resonance. No resonance structure corresponding to the decay Θ++ →
pK+ was found.

A repetition of this positive experiment is scheduled for the first half of 2008. The g12 run will collect a higher
number of photoproduction events on protons, and should either confirm this result with high precision or refute it
with a strict upper limit on the allowed cross section.

Photoproduction on the proton with increased statistics (g11)

In 2005, new results on a proton target were presented by the CLAS experiment, once again with very high
statistical precision. In the reaction channels γp → K

0
K0p [29] and γp → K

0
K+(n) [30] a search was performed

for a resonance with decay channels Θ+ → K0
Sp and Θ+ → K+n, but no resonance could be observed. The results

are reproduced in figure 2.8. A combined analysis of both channels allows to estimate an upper limit on the production

8One substantial difference was the movement of the target 25 cm upstream of the center of the spectrometer. For one half of the data collection,
a lower value for the magnetic field of the CLAS spectrometer was chosen. This was done to increase the acceptance for forward angle, negatively
charged tracks. For the comparison with the previous results, only the half of the data set taken at the same magnetic field value was used.
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Figure 2.6: The results of the g10 run at the CLAS experiment. The data points collected during the g2a run are
compared to the distribution obtained in the g10 run, represented by the solid line (left panel). In the search for
associated production of the exotic baryon Θ(1540) and a Λ hyperon, no resonance could be observed (right panel).
Taken from references [33, 35].
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cross section γp→ K
0
Θ+ of 0.7 nb. Using several theoretical models, the width of a possible resonance is limited to

values below 3.2 MeV.
Due to the implemented hardware triggers and the lower photon energy, this data sample can not be used to confirm

or refute the earlier, positive result on a proton target in the reaction channel γp→ π+K−K+(n).
The previous results seem to be in disagreement with the results of the LEPS experiment. A detailed analysis,

taking into account the small differences in acceptance and kinematic coverage, indicates that the results are still
consistent for several possible theoretical scenarios for the exotic baryons [36].

It is possible that seemingly unrelated changes to the analysis method or selection criteria reduce the number of
observed exotic events, due to the interference with another process. A recent development in the search for exotic
baryons at the CLAS experiment exploits the interference between different reactions with identical final states [37,
38].

2.1.7 Quasi-real photoproduction at the HERMES experiment

The HERMES experiment will be described in detail in chapter III. Here we summarize the published evidence for
a narrow resonance compatible with the exotic baryon Θ+ in quasi-real photoproduction on a deuterium target through
the decay channel pK0

S → pπ+π− [4].
The distribution of background events is modeled using a simulation with the PYTHIA Monte Carlo generator,

which does not include several excited Λ∗ hyperon resonances that thus have to be added in by hand. The shape of
the mixed event background distribution agrees with the non-resonant contribution of the Monte Carlo simulation,
providing further justification of this method.9 In the left panel of figure 2.9 the distribution of the invariant mass
M(pK0

S) is shown with a fit of a Gaussian resonance shape on a background model composed of the Monte Carlo
simulation, mixed event distribution, and additional Λ∗ hyperon resonances. In the right panel of figure 2.9 the data
is fitted with the sum of a third order polynomial function and a Gaussian resonance shape, effectively reducing the
assumptions on the understanding of the distribution of background events.

A search for the exotic antibaryon Θ− was also performed at the HERMES experiment, but did not result in an
observation. In figure 2.10 the distribution of the invariant mass M(pK0

S) is shown. The number of events was

9The event mixing method that was used for this analysis is known to be incorrect. For a detailed discussion, refer to section 4.7.
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determined using the sum of a third order polynomial function and a Gaussian resonance shape. The result of 3 ± 6
events is consistent with zero.

2.1.8 Fixed-target proton-proton collisions with the COSY-TOF experiment

The COSY-TOF experiment is a time-of-flight detector at the cooler synchrotron proton storage ring COSY at FZ-
Jülich. Protons of 2.95 GeV are focused on a liquid hydrogen target and the reaction products are detected in several
time-of-flight hodoscopes. The momentum is reconstructed geometrically, without the use of a spectrometer magnet.
The investigation of the predictions of the chiral quark soliton model [17] was already in 1998 one of the objectives of
the COSY-TOF experiment.

In the exclusive reaction channel pp → Σ+K0
Sp, a narrow resonance was observed in the distribution of the

invariant mass M(pK0
S) at 1530 ± 5 MeV, with a width compatible with the experimental resolution [40]. The cross

section was estimated as 0.4± 0.1(stat)± 0.1(sys)µb.
More data was collected by the COSY-TOF experiment at marginally higher beam energy. Using three different

analysis methods, no Θ(1540) resonance could be observed in the new data with high statistical precision. An upper
limit on the cross section of σ(pp→ Σ+Θ+) < 0.15µb was determined (at 95% confidence level) [41].

2.1.9 Proton-proton collisions at the NA49 experiment

At the NA49 experiment at the CERN SPS accelerator complex protons with an energy of 158 GeV were collided
on a liquid hydrogen target. The reaction fragments were detected with four large time projection chambers. Particle
identification is achieved using the energy loss dE/dx.

By reconstructing the particles in the decay channel to Ξ−π− and further to Λπ−π−, the invariant mass distribution
in figure 2.11 is obtained. After subtracting the background determined by event mixing, a narrow peak is visible at a
mass of 1862 MeV. This resonance was interpreted as the exotic baryon Ξ−− [39].
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Figure 2.12: The distribution of the invariant massM(pK0
S) for inclusive DIS events at the ZEUS experiment. A clear

peak is visible at 1521.5 MeV.

2.1.10 Inclusive deep-inelastic scattering at the ZEUS experiment

The ZEUS experiment was the first collider experiment to provide evidence for the existence of the Θ(1540)
state. At the ZEUS experiment inclusive deep-inelastic scattering of electrons and protons at a center-of-mass energy
of about 310 MeV is studied. In the analysis at the ZEUS experiment resonance decays to K0

Sp are considered as
well. They can only be explained as an exotic baryon Θ with minimal quark content (uudds). A resonance at
1521.5±1.5(stat)±2.8(sys) MeV is observed. The width is consistent with the experimental resolution of 2 MeV [42].

2.1.11 Hadronic interactions at the SVD-2 experiment

At the SVD-2 experiment, the 70 GeV proton beam of the IHEP accelerator in Protvino, Russia, collides on a
fixed C, Si, or Pb target. The spectrometer was designed to study charm hadroproduction near threshold. It consists
of a high-precision microstrip vertex detector, a large-aperture spectrometer magnet with multi-wire proportional
chambers, and a threshold Čerenkov counter for separation of pion and proton tracks between 4 and 21 GeV. A narrow
resolution for several established resonances could be demonstrated.

The search for exotic baryons at the SVD-2 experiment concentrated on the inclusive scattering of protons from
nuclei pA → pK0

SX . Two results have been presented by the SVD collaboration, with partly overlapping data
samples. The first result presents a resonance in the distribution of the invariant mass M(pK0

S) at 1526 ± 3(sys) ±
3(stat) MeV [43]. One could argue that the resonance seems to exist of only a single data point.

A more recent analysis, with improved tracking algorithms, confirmed the earlier indications. An increase of a
factor 3 to 4 in total number of K0

S events was obtained. Moreover, the full data sample was separated in two distinct
kinematic regimes, depending on the location of the K0

S decay vertex. Even without event selection criteria, both
subsamples exhibit a peak at 1522.2 ± 3(stat) MeV or 1523.6 ± 3.1 MeV (see figure 2.13). The total proton-nuclear
cross section is estimated as 6µb.

2.1.12 Secondary kaons in the BELLE detector

Using the interaction of secondary kaons with the detector material of the BELLE experiment at the KEKB e+e−

collider, production of the exotic baryon Θ(1540) was studied [44]. Interactions in the inner Si vertex detectors were
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Figure 2.13: Recent results of the SVD-2 experiment. Both figures were obtained with statistically independent
subsamples.

used, and both inclusive and exclusive reaction channels were investigated. The result of the inclusive search for pK0

decays are shown in the left panel of figure 2.14. No structure is observed in the distribution of the invariant mass
M(pK0

S), but the Λ(1520) hyperon is clearly visible in the distribution of the invariant mass M(pK−). The estimated
upper limit on the ratios of the inclusive Λ(1520) and Θ(1540) cross sections is 2.5%.

Exclusive production of Θ(1540) baryons is studied in the reaction K+n → pK0
S . Since the (secondary kaon)

projectile is not reconstructed, assumptions have to be made about the contribution of other reaction channels to the
same final state. Destructive interference between different reaction channels is expected to be negligible, though.
The resulting distribution of M(pK0

S) is shown in the right panel of figure 2.14, but does not indicate any structure
at the position of the reported Θ(1540) baryon. The expected yield is indicated by the open points, and the signal
expected from the results of the DIANA experiment are indicated by the solid line. These results do not seem to
confirm the results of the DIANA experiment. The upper limit on the width of the Θ(1540) resonance is estimated as
Γ < 0.64 MeV.

2.1.13 Exotic baryons in e+e− annihilation at the BABAR experiment

At the BABAR experiment electrons and positrons are collided at a center of mass energy of
√
s = 10.58 GeV. An

inclusive search for the Θ(1540) and for most of the other members of the exotic antidecuplet was performed on the
very expansive data set with an integrated luminosity of 123 pb−1. Clear signals are observed for the known baryon
resonances, but no evidence is found for the production of exotic baryons.

In the left panel of figure 2.15 the distribution of the invariant mass M(pK0
S) is shown for events satisfying the

decay channel Θ(1540) → pK0
S . No Θ(1540) resonance is observed at a mass of 1540 MeV or anywhere else in

the distribution. Similarly, the existence of the exotic Ξ−−(1860), Ξ−(1860) and Ξ0(1860) resonances could not be
confirmed.

For the manifestly exotic baryons Θ+(1540) and Ξ−−(1860) upper limits on the production rate per e+e− →
qq interaction are determined to allow comparison with the regular baryons [45]. The comparison between regular
baryons (at two different center-of-mass energies) and the determined upper limits on the production rate for the
manifestly exotic baryons (for two assumptions on the width) is shown in the right panel of figure 2.15.

Although baryon production in e+e− collisions is known for the democratic production of hadrons with nonzero
strangeness (and other heavier quark constituent), depending only on the mass and the spin of the produced hadron
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Figure 2.14: Secondary kaon scattering with the Si vertex detectors at the BELLE experiment is used to study the
reaction K+n → pK0. In the left panel, the distributions of the invariant mass M(pK−), represented by the data
points with error bars with a prominent Λ(1520) resonance peak, and the invariant mass M(pK0), represented by the
solid histogram, are shown for inclusive events. In the right panel, the distribution of the invariant mass M(pK0) for
exclusive events is shown, with the expected yield indicated by the open symbols. Taken from reference [44].

but not directly on the specific quark content, the production of an exotic baryon such as the Θ+(1540) requires the
creation of five qq pairs out of the vacuum compared to only three for regular baryons. Comparing the production rates
of exotic hadrons to the expectations for regular hadrons could therefore appear unmotivated.

More recently an inclusive search for the Θ+(1540) was performed using the interactions of secondary hadrons and
of electrons or positrons in the beam halo with the beam pipe and the material of the inner tracking detectors [46, 47].
Again no evidence for the exotic baryon Θ+(1540) was found, but the results allow for a comparison with other
photo-, electro-, and hadroproduction (see figure 2.16).

2.1.14 Fixed target proton-tungsten collisions at the HyperCP experiment

The HyperCP experiment at Fermilab was designed to study CP symmetry violation in the decays of the cascade
hyperons Ξ− and Ξ+ [48]. A secondary beam is produced by 800 GeV protons striking a copper target, and the col-
limator channel immediately downstream of the target and embedded in a dipole magnet is used to select a positively
charged beam, consisting of mainly protons and pions with approximately 5% kaons, with a broad momentum distri-
bution between 120 and 220 GeV. Events produced in the tungsten exit region of the collimator were used in a search
for the exotic baryons Θ+(1540) [49].

The HyperCP experiment does not have dedicated particle identification detectors. For the identification of theK0
S

mesons the signature of their decay to two oppositely charged pions with a reconstructed invariant mass M(π+π−)
consistent with theK0 mass allows for a clean selection. Charged particles with more than 50% of the total momentum
were assumed to be protons, motivated by the high probability of being protons for these events. Thus, the search was
restricted to the exotic baryon decay Θ+(1540)→ pK0

S .
In the distribution of the invariant mass M(pK0

S) no peak was observed, as shown in figure 2.17. The distribution
is fitted with the expected resonance shape obtained in a Monte Carlo simulation. At most 0.3% of the pK0

S candidate
events could come from the decays of exotic Θ+ baryons. The same data sample contained over 140,000 combined
Ξ− and Ξ+ decays.

The high value and broad spread of beam momentum avoids the possibility of peaks generated by kinematic



21

M(pK )0
S

1540 MeV/c2

]2Mass [GeV/c
1.4 1.45 1.5 1.55 1.6

-2
E

ve
nt

s 
/2

 M
eV

c

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

Mass [GeV/c2]
M

ea
n 

ra
te

 p
er

 e
ve

nt
 / 

(2
J+

1) e+e-→Hadrons √s=92 GeV
√s=10 GeV

p

Λ

Σ
∆++

Ξ

Σ* Λ(1520)

Ξ* Ω

θ5

Γ=1 MeV

Γ=8 MeV

Assume Br(pKs0)=25%

Ξ5
- -

Γ=1 MeV
Γ=18 MeV

Assume Br(Ξ-π-)=50%

BaBar Pq search limits

For total particle+antiparticle rate:

×(2J+1)   where J=total angular momentum
×2   for particle+antiparticle states

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

0.8 1 1.2 1.4 1.6 1.8 2

Figure 2.15: Production of exotic baryons in e+e− annihilation at the BABAR experiment. In the left panel the
distribution of the invariant mass M(pK0

S) is shown. The expected position of the Θ+(1540) peak is indicated but no
structure is visible. In the right panel the production rates per e+e− → qq interaction are compared for the regular
baryons and for the determined upper limits on the production of the exotic baryons Θ+(1540) and Ξ−−(1860). Taken
from reference [45].

1.450 1.500 1.550 1.600 1.650 1.700
pKshort Mass             (GeV/c

2
)

0

10

20

30

40

50

60

C
an

di
da

te
s 

/ (
8 

M
eV

/c
2 ) 

   
  

HERMES

BaBar

Normalization region

e
±
D

e
−
Be

candidates

1171

227174

ECM

10.6 GeV

9.4

Q
2

~0

~0

1.450 1.500 1.550 1.600 1.650 1.700
pKshort Mass             (GeV/c

2
)

0

100

200

300

C
an

di
da

te
s 

/ (
5 

M
eV

/c
2 ) 

   
  

ZEUS

BaBar

Normalization
region

e
±
p

e
−
Be

candidates

14622

227174

ECM

300 GeV

9.4

Q
2

>20 GeV
2

~0

Figure 2.16: Electro- and hadroproduction of exotic baryons at the BABAR experiment. The results of the BABAR
experiment are compared with the results of the HERMES experiment (left panel) and the ZEUS experiment (right
panel). Taken from reference [47].



22

Figure 2.17: The search for Θ+(1540) decays at the HyperCP experiment. The expected resonance shape is shown in
the upper panel, and used in a fit to the distribution of the invariant mass M(pK0

S) in the lower panel. At most 0.3%
of the pK0

S candidates could come from an exotic decay Θ+(1540)→ pK0
S . Taken from reference [49].

reflections. Unfortunately, together with the mixed beam composition it precludes the estimation of limits on the
production cross section of the Θ(1540) baryons.

2.1.15 High-energetic proton-nucleus interactions at the HERA-B experiment

At the HERA-B experiment collisions of high-energetic protons in the halo of the 920 GeV HERA proton beam
with the nuclei of atoms in target wires were studied. The HERA-B detectors has a large acceptance, precision silicon
vertex detectors and particle identification detectors. The resonance decays K0

S → π+π−, Λ → pπ−, Λ(1520) →
pK−, and Ξ− → Λπ− are cleanly identified and reconstructed. In the selected momentum region between 22 and
55 GeV the misidentification of protons is less than 1%.

Using the decay channel to pK0
S an inclusive search for the exotic baryon Θ+(1540) was performed in the data

samples collected on carbon, titanium and tungsten wires. The three obtained invariant mass distributions are shown
in top panels of figure 2.18. Any structures in the distributions are consistent with statistical fluctuations. The upper
limits on the cross section for the production of Θ(1540) baryons are between 4 and 20µb per nucleon. The ratio
of the production rates of the exotic Θ+ to other hyperons is five times smaller than the value observed at the ZEUS
experiment, and two orders of magnitude smaller than the value observed at the HERMES experiment.

A search for the exotic baryon Ξ(1860) was performed in the decay channels to Ξ−π− and Ξ−π+ and the corre-
sponding antiparticle channels, but also there upper limits stronger than 4µb per nucleon could be determined. The
distributions of the invariant mass M(Ξπ) for the Ξ0(1860) and Ξ−−(1860) combinations (and their charge conju-
gates) are shown in the bottom panels of figure 2.18. A clear excess is visible at 1530 MeV corresponding to the
well-established Ξ0∗(1530) hyperon.

2.1.16 Discussion

In this experimental overview several observations of the exotic baryons Θ+ and Ξ−− have been discussed. Among
the original observations of the Θ+ there are several that are not valid anymore (SAPHIR, CLAS on deuterons, COSY-
TOF), and only the LEPS and SVD-2 experiments have been able to confirm the original analysis with additional data,
although these results have only been shown at conferences or published in proceedings. The observation of the exotic
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Table 2.1: A large number of experiments is unable to confirm the existence of the exotic baryon Θ+. These null results
are listed here alongside the limits they impose on the branching ratio (B.R.) or relative yield of other resonances.

Group Reaction Limit
BES [52] e+e− → J/Ψ→ ΘΘ < 1.1× 10−5 B.R.
BABAR [45, 53] e+e− → Υ(4S)→ pK0X < 1.0× 10−4 B.R.
Belle [44] e+e− → B0B

0 → ppK0X < 2.3× 10−7 B.R.
LEP [54] e+e− → Z → pK0X < 6.2× 10−4 B.R.
HERA-B [55] pA→ K0pX < 0.02× Λ∗

SPHINX [56] pC → K0Θ+X < 0.1× Λ∗

HyperCP [49] pCu→ K0pX < 0.3% K0p
CDF [57] pp→ K0pX < 0.03× Λ∗

FOCUS [58] γBeO → K0pX < 0.02× Σ∗

Belle [44] π + Si→ K0pX < 0.02× Λ∗

PHENIX [59] Au+Au→ K−nX (not given)

baryon Ξ−− has not been confirmed by any experiment. For the exotic baryon Θ+ a long list of experiments with null
results, often associated with upper limits on the branching ratios or cross sections, is shown in table 2.1.

A small number of experiments is or will be collecting data in very similar conditions as for their earlier observa-
tion. With this new data they are expected to confirm or refute the earlier results. At the ZEUS experiment the original
observation of the exotic baryon Θ+ only involved data collected during the HERA I running period until the year
2000. Since the luminosity upgrade and the installation of an improved vertex detector in 2001, the ZEUS experiment
has collected additional data in the HERA II running period until the year 2007. This data is still being analyzed.
The CLAS experiment will collect new data on a proton target during the first half of 2008. This will allow for the
refutation or confirmation of the observation of the exotic baryon Θ+ in the original data set collected during the g6
run [34].

In table 2.2 several observations are listed alongside with a repetition of the measurement with higher statistical
precision. This list is not intended to be complete, and it is certainly debatable whether some can be considered a
repetition, but it indicates that several of the original experiments with only a small and unconvincing number of
events have not stood up to the scruntiny of experiments with a very high statistical precision. In the few cases where
the original observation was confirmed, the precision of the repeated result is still not convincing.

2.2 Theoretical models

In this section the theoretical models for hadrons and more specifically exotic baryons are discussed. Since a
perturbative approach to QCD is impossible at the low energies of hadronic bound states, several phenomenological
models have been proposed in the past. The concept of constituent quarks is important in all of these models. A quite
different approach was taken by the chiral quark soliton model (χQSM), which provided the predictions of a narrow
exotic baryons that lead to the recent experimental search for exotic baryons [17].

Several theoretical reviews on exotic baryons have been published before [60, 61, 62], but the most important
theoretical approaches are summarized in this section.

2.2.1 The MIT bag model

A conceptually very simple model for hadrons is the MIT bag model [63, 64]. The massless (or very light) quarks
and gluons are confined in a finite region with constant energy density, the ‘bag’. Inside the bag the quarks do not
interact with each other, leading to the property of asymptotic freedom. Outside the bag the masses of the quarks
become infinitely large, and thus also the color confinement property of QCD is trivially satisfied. The content of the
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26bag can always be chosen as a color-singlet.
This simple model with a very limited number of parameters is surprisingly successful in the description of

hadrons, reproducing not only the masses of the light baryons but also the proton radius and even quark distribu-
tions in the nucleon. The bag model can be readily extended to include five or more quarks. For the mass of the
lightest exotic baryons values from 1700 to 2400 MeV were predicted [67].

2.2.2 Group theory of exotic baryons

To determine the configuration of exotic baryons states, we start from similar group theoretical arguments that
were used to explain the regular meson and baryon multiplets in chapter I. In the expansion of 6⊗ 6⊗ 6⊗ 6⊗ 6 the
exotic baryons end up in antidecuplets, 27-plets, and 35-plets [68, 69, 70].

When we limit ourselves to states without angular momentum (` = 0), the exotic baryons with the lowest energy
are organized in the antidecuplet (10) with spin and parity Jπ = 1

2

+. It is nearly degenerate with an octet (8) of
states with negative parity, but in the octet no manifestly exotic states are present. The antidecuplet 10 is shown in
figure 2.19, where the masses are predictions of the chiral quark soliton model. To determine numerical values for the
masses and widths of the exotic baryons, specific models have to be used.

2.2.3 The chiral structure of QCD

At low energies the chiral structure of QCD defines the dynamic behaviour of quarks, mesons and baryons [71, 72].
Because the u and d quarks are almost massless compared to the nucleon, the theory of QCD with only two flavors
is invariant under transformation in the chiral symmetry group SU(2)R × SU(2)L.10 Since we do not observe pairs
of hadrons with opposite parity, this chiral symmetry must be spontaneously broken down to the symmetry group
SU(2)V , where V refers to the invariant vector charge of the QCD ground state or vacuum. The three Goldstone
bosons associated with the symmetry breaking are the pions π−, π0 and π+. They are light but not massless due to
the small but non-zero masses of the u and d quarks. When we consider the s quark in addition to the u and d quarks,
the same mechanism of spontaneous chiral symmetry breaking occurs, but now eight massive Goldstone bosons are
formed (π−, π0, π+, K−, K0, K

0
, K+, η). The η′ is substantially heavier than the η because it is associated with the

broken U(1) axial symmetry.
The spontaneous symmetry breaking is accompanied by the formation of the gluon condensate GµνGµν and the

chiral quark condensate 〈qq〉, which fills the vacuum with quark-antiquark pairs. The light ‘bare’ quarks and antiquarks
that compose the mesons and baryons are ‘dressed’ in these fields and receive a momentum-dependent dynamical mass
(mu,d ≈ 350 MeV, ms ≈ 470 MeV). These so-called constituent quarks have now masses approximately one half of
the mass of the ρ meson or one third of the mass of the nucleon.

Baryons can now be described as three constituent quarks surrounded by a cloud of massless mesons. The inter-
actions between the constituent quarks and the meson cloud determine the properties of the baryon.

2.2.4 The chiral quark soliton model

In the 1960s a different approach was proposed by Skyrme to study the nucleon [73, 74] and, by extension to
SU(3)f , baryons with strangeness [75, 76]. At low energies the baryons are regarded as spherically symmetric soliton
solutions of the pion field or chiral field that forms due to the spontaneous breaking of the chiral symmetry of QCD.

This suggests a classification of the light baryons as rotational states. The minimal generalization of spherical
symmetry in a system with three isospin components (i.e. the three pions) is

πα(x) =
xα

r
P (r),

where P (r) is the spherically symmetric profile of the soliton. This implies that a space rotation of the field is
equivalent to a rotation in isospace. From the analogy of this situation with the classical spherical top, one sees that

10For massless particles the helicity h, defined as the projection of the spin σ on the direction of the momentum σ · ~p
|~p| , is an invariant. It is then

also referred to as the chirality or handedness. It can take the value +1 for right-handed or −1 for left-handed particles.
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Figure 2.19: The ground state antidecuplet of the exotic J = 1
2 baryon states, with the masses predicted by the chiral

quark soliton model.

the rotational states are (2J + 1)2-fold degenerate in spin and isospin. Applying this for J = 1
2 we find the four

nucleon states. For J = 3
2 we find the sixteen ∆ resonance states. The relations between the characteristics of the

states are generally within about 30% of the experimental values [77].
If extended to three quark flavors, the rotations are performed in ordinary space and in SU(3) space. Quantization

shows that the lowest baryon state is the octet of regular baryons with spin J = 1
2 and the second excitation is the

decuplet of regular baryons with spin J = 3
2 . The relations between the mass, width and branching ratio of the

members of the octet and decuplet are satisfied to an accuracy of up to one percent [17].
Already in 1987 the existence of the lightest exotic baryon with strangeness S = +1 at a mass of approximately

1530 MeV was predicted [78, 79].
The third rotational excitation in the SU(3) case is an antidecuplet with spin J = 1

2 (see figure 2.19). This
exotic antidecuplet can be alternatively considered in a primitive way as states made of three quarks plus a quark-
antiquark pair. The lightest member Θ+ can then be considered a K+n or K0p bound state. The advantage of the
chiral soliton model is that all concrete numbers follow from symmetry considerations and do not rely on a specific
dynamical realization. If one number is extracted from experiment, one can completely fix all the other members of
the antidecuplet, together with their widths and branching ratios.

By using the mass of the established neutron resonance N at 1710 MeV as the ‘anchor’ for the antidecuplet, the
mass of the Θ+ was predicted to be 1530 MeV and the width less than 15 MeV.11 These predictions partially motivated
the experimental searches for Θ+ and are in agreement with the results of the different experiments.

However, in this model the predicted width of N10 and Σ10 are both below the experimental values listed by the
Particle Data Group. ‘Anchoring’ the antidecuplet to these states increases the width of the Θ+ to exceed the bounds
set by experimental data [80].

2.2.5 The Jaffe-Wilczek diquark model

In an alternative positive-parity interpretation the exotic baryon Θ+ is a bound state of two highly correlated ud
diquarks and an s antiquark [81]. The quarks in the ud diquarks are necessarily in an antisymmetric color configuration
3c, otherwise no color singlet would be formed with the remaining antiquark. When the quarks have opposite spins,
then they are simultaneously in an antisymmetric color, flavor, isospin, and spin configuration. A strong correlation
between the quarks in the diquarks is then expected.

11After the first observations of the exotic baryon Θ+ a numerical mistake in the calculation of the width was discovered. The correct value of
the width following from the chiral quark soliton model is therefore closer to 30 MeV. Refer to references [82, 83, 84] in that order for a discussion
of this issue.
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Figure 2.20: In the diquark model exotic baryons consist of two highly correlated diquarks and an antiquark. In the left
panel the predicted J = 1

2 antidecuplet and J = 3
2 are shown. When the mass of the Θ+ baryon is fixed to the value in

the χQSM, the relative mass spectrum with the label “quark” in the right panel is obtained. Taken from reference [81].

While this models predicts the same exotic antidecuplet of states as the chiral quark soliton model in addition to a
crypto-exotic octet, there are distinct differences in the masses of the states. The exotic antidecuplet and crypto-exotic
octet of baryons is shown in the left panel, and the relative mass spectrum in the right panel of figure 2.20. Due to
the mixing of the antidecuplet and the octet, one crypto-exotic state with a mass below that of the Θ+ is formed. This
state was identified as the Roper resonance N(1440) in this model.

The diquark model predicts that the exotic baryon Ξ−− has a mass of 1750 MeV, when the mass of the Θ+ is fixed
at the observed value of 1540 MeV. Although no strong explanations for the narrow width are given, it may be possible
to explain the narrowness by the weak coupling of the Θ+ to the KN mode. However, the large width of the Roper
resonance in the same multiplet makes this highly non-trivial.

2.2.6 The Karliner-Lipkin diquark triquark model

A challenge for any exotic baryon model is to explain the positive parity predicted by the Skyrme model for the
Θ+ state, while the ‘standard’ pentaquark involves five quarks in an S-wave and therefore has negative parity. If Θ+

has indeed positive parity, then there is clearly one unit of angular momentum, which makes the calculations difficult.
In the diquark-triquark model two color nonsinglet clusters (a ud diquark and a uss triquark) are in a relative

P -wave and kept together by the color-electric force [85, 10]. The P -wave configuration ensures that the parity is
positive. The clusters are separated by a distance larger than the range of the color-magnetic force. The repulsive
hyperfine interaction between two quarks of the same flavor is then not felt between the clusters.



CHAPTER III

The HERMES Experiment

The HERMES experiment1 was designed to study the quark-gluon spin structure of the nucleon. This is accom-
plished by studying asymmetries in the cross section for deep-inelastic scattering (DIS) of longitudinally polarized
leptons on light nuclear targets. Several other experiments have provided accurate data for the inclusive cross section
asymmetry, i.e. when only the scattered lepton is detected. At the HERMES experiment, semi-inclusive deep-inelastic
scattering (SIDIS) processes are studied, i.e. some of the hadrons created in the fragmentation of the target nucleon or
the hadronization of the struck quark are detected as well. These data offer a way to determine the flavor of the struck
quark, and thus access the flavor-dependent spin structure functions. Along with the accurate determination of the
particle track and momentum, good particle identification (PID) is crucial for the HERMES experiment. It can identify
pions, kaons, protons, and leptons with high efficiency and low contamination.

The HERMES experiment is located in one of the four experimental halls of the lepton-proton collider HERA2 at
the research institute DESY3 in Hamburg, Germany. It only uses the lepton beam of the HERA collider. The lepton
storage ring can be filled with either electrons or positrons,4 which are accelerated to an energy of 27.6 GeV.

One of the characteristic properties of the HERA lepton storage ring is the large transverse self-polarization of the
lepton beam built up in the arcs of the accelerator. Before the leptons reach the HERMES experiment, a spin rotator
aligns the spin longitudinally, parallel or antiparallel to the beam direction. Behind the HERMES experiment the
polarization of the leptons is measured with the longitudinal polarimeter (LPOL). Finally, before the leptons continue
their way through the arcs of the HERA collider, their spin is rotated back transverse to the beam direction.

In the following sections the HERA lepton-proton collider, the HERMES target, and the HERMES spectrometer
are described in more detail. A section on Monte Carlo simulations of reactions at the HERMES experiment follows.
Finally, the operation of the longitudinal polarimeter (LPOL) of the lepton beam is discussed in light of high-precision
lepton beam polarimetry measurements at future collider experiments (in particular the electron-ion collider EIC).

3.1 The HERA lepton-proton collider

Until the end of operations in 2007, the HERA lepton-proton collider at the research institute DESY was one of the
world’s highest-resolution probes into the quark structure of the proton. At the HERA collider electrons or positrons
were accelerated to an energy of 27.6 GeV, and protons to an energy of 920 GeV. A schematic overview of the different
accelerator systems, including the pre-accelerator PETRA, at the research institute DESY is shown in figure 3.1.

At two interactions points the lepton and proton beams collided at a center-of-mass energy of approximately
300 GeV. At these two interaction points, located in the North and South Hall, the experiments H1 and ZEUS studied
deep-inelastic scattering reactions in the low-x region.5 The other two experimental halls of the HERA collider were

1HERA Measurement of Spin
2Hadron-Elektron Ringanlage, hadron-electron ring facility
3Named after the Deutsches Elektron Synchrotron, the first synchrotron built at the research institute, which accelerated its first electrons to

7.4 GeV on January 1, 1960.
4Since the analysis presented in this work is independent of the charge of the colliding leptons, positrons are included when the text refers only

to electrons, unless explicitly mentioned otherwise.
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Figure 3.1: The research institute DESY consists of several accelerator systems. After generation of a low-energetic
proton and lepton beam in the LINAC and DESY accelerators, the synchrotron PETRA was used as pre-accelerator
for the approximately 6.3 km long HERA storage rings. The electrons or positrons (red) were accelerated to 27.6 GeV,
the protons (blue) were accelerated to 920 GeV. At two interaction points (North and South) the leptons and protons
were brought in collision for the H1 and ZEUS experiments. The HERA-B experiment in the West hall used only
the proton beam. The HERMES experiment was located in the East hall and only used the electron or positron beam.
Taken from reference [86].



31occupied by fixed target experiments. The HERA-B experiment searched for CP -symmetry breaking in the decay of
B-mesons generated in the interactions of protons in the proton beam halo with movable metal wires. The HERA-B
experiment was terminated in 2003 and the HERA-B spectrometer was removed from the West Hall. The second fixed
target experiment at the HERA collider was, of course, the HERMES experiment. The HERMES experiment used only
the lepton beam of the HERA collider.

In the HERA lepton storage ring, electrons or positrons circulate in bunches with a length of 37 ps and separated
by 96 ns. At most 220 bunches can be filled simultaneously, although in practice rarely more than 185 bunches are
filled.6 The lepton bunches with an energy of 12 GeV are injected in several steps from the PETRA pre-accelerator
into the HERA lepton storage ring, until a current of approximately 45 mA is reached. They are then accelerated
to the full energy of 27.6 GeV. During data collection with polarized target gases, the lepton beam current decreases
exponentially with a life time of over 10 hours until it reaches approximately 15 mA. By injecting unpolarized gases
with higher density in the HERMES target the life time is then further reduced and one hour later the remaining leptons
are usually dumped. A new lepton beam is injected and data taking resumes. In a very similar fashion the HERA
proton storage ring is operated. Because the proton beam current decreases more slowly, up to three regular lepton
fills can be obtained for every proton fill.

Only very few leptons in the lepton beam interact in the HERMES target. Essentially, there is no influence of the
HERMES target on the lepton beam at the usual low densities. To remove the synchrotron radiation travelling with the
beam, two collimators are positioned upstream of the HERMES spectrometer.

A small asymmetry in the spin-flip amplitudes for leptons when emitting synchrotron radiation in a magnetic dipole
field is amplified by the repeated revolutions in the HERA lepton storage ring and enhances the population of the spin
state parallel (antiparallel) to the magnetic field for positrons (electrons), resulting in the transverse polarization of
the lepton beam, in particular vertically upwards for both electrons and positrons. This effect, known as the Sokolov-
Ternov effect [87], allows for a theoretical asymptotic self-polarization of the lepton beam up to 92.4% with a rise
time of 37 minutes [88]. Due to the interaction with the proton beam and various other depolarizing effects, the lepton
polarization obtained in the HERA storage ring was almost two times lower.

To perform physics experiments with longitudinally polarized lepton beams, the spin direction is rotated by 90◦,
before the leptons reach the HERMES experiment, to the direction parallel to the lepton beam. This is achieved in a spin
rotator, which consists of three consecutive pairs of dipole magnets [89]. The now longitudinally polarized leptons
interact with the target gas in the HERMES experiment, or with the proton beam in the collider experiments. The spin
direction is rotated back to the transverse direction in a second spin rotator, before the leptons leave the straight section
and enter the bending section again. During ther HERA I period until 2001, only one pair of spin rotators was installed,
positioned around the HERMES experiment. During this period the asymptotic lepton polarization was typically around
55% with a risetime of 23 minutes [90]. In 2001 spin rotator pairs were installed around the two collider experiments,
as part of the HERA II upgrade. After this upgrade, which resulted mainly in an increase of the collider luminosity,
the lepton polarization was typically only around 50%, due to the increased beam-beam interactions.

At two locations on the HERA lepton storage ring, the beam polarization is measured continuously. Both polarime-
ter systems are based on asymmetries in the Compton back-scattering cross section of polarized laser photons from the
lepton beam. Downstream from the HERMES experiment, but before the spin rotator, the longitudinal polarization of
the leptons is measured. The energy-asymmetry in the Compton cross section is used in the longitudinal polarimeter
(LPOL), which will be described in section 3.5. In a straight section without spin rotators, the transverse polarimeter
(TPOL) measures the spatial asymmetry of the back-scattered Compton photons. Both polarimeters provide polariza-
tion measurements with a statistical precision of approximately 1% and a systematic uncertainty of 1.6% (LPOL) and
3.0% (TPOL).

5In DIS reactions the variable x can be interpreted as the fraction of the total momentum of the nucleon that is carried by the struck quark or
gluon.

6Empty lepton bunches, not necessarily combined with a corresponding empty proton bunch, provide a convenient way of studying background
events. However, the real reason for the empty bunches is purely technical: A long bunch-free region is needed for the ramp-up kicker magnets of
the proton beam abort system.
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Figure 3.2: Schematic view of the HERMES target system. Taken from reference [91].

3.2 The HERMES target region

The HERMES target consists of a polarized or unpolarized gas in a storage cell internal to the HERA lepton storage
ring [92]. A schematic view of the target region is shown in figure 3.2. The target cell is constructed as a 40 cm long,
open-ended T-shaped tube that confines the gas atoms in a region around the lepton beam. The gas atoms leak out the
ends and are pumped away by a high speed pumping system. The requirement of data collection without significant
reduction of the lepton beam lifetime7 limits the target density. At the end of lepton fills unpolarized high density data
are collected with H2, D2, 3He, N2, Xe, or Kr gases, providing a substantial data sample for the study of unpolarized
reactions and nuclear effects.

Since the initial commissioning of the HERMES experiment in 1995, several target gases and target polarization
states have been used. In 1995, the gas in the storage cell was supplied by an optically pumped, longitudinally polarized
3−→He cell. In the period 1996–1997, an atomic beam source (ABS) was used to produce a longitudinally polarized

−→
H

target, and in 1998–2000 the ABS was modified for operation with longitudinally polarized
−→
D .

In 2001, the target region was modified substantially for the operation with the transversely polarized target gases
↑H and ↑D [93]. A magnet providing the transversely oriented holding field for the target gases was installed.8 The
synchrotron radiation generated by the deflection of the lepton beam limited the strength of the magnetic field to
approximately 297 mT. The variations in the volume of the storage cell were smaller than ∆Bx = 0.60 mT, ∆By =
0.15 mT, and ∆Bz = 0.05 mT. The variations outside of the storage cell volume were larger. The shift of the beam
position in the transverse holding field amounts to approximately 2 mm, an effect that can be observed easily in the
collected data.

At the end of 2005, the transversely polarized target system was removed. For the recoil data taking period 2006–
2007 only unpolarized target gases were needed. To accomodate the recoil detector, the length of the storage cell was
reduced to 15 cm. The elliptical cross section of 21× 9 mm2 was unchanged.

3.3 The HERMES spectrometer

The HERMES spectrometer is a forward spectrometer, a design typically used for fixed-target experiments. It
consists of several detector components to track and identify scattered and produced particles. The spectrometer is

7This is quantified by the requirement of a lepton beam lifetime larger than 45 hours if all other contributions to the lifetime are zero.
8A superconducting magnet, with longitudinal field direction, was installed during the years 1998–2000, but the effects of the transverse magnetic

field on the tracking of scattered particles are more important.
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Figure 3.3: Schematic view of the HERMES spectrometer during the years 2002–2005. The target is shown in yellow,
the spectrometer magnet in blue, the tracking detectors in red, and the particle identification detectors in green. Taken
from reference [91].

described in great detail in reference [91]. In this section, only the detector components most relevant for the analysis
of exotic baryons are described in detail.

The central component of the HERMES spectrometer is the H-shaped dipole magnet with an integrated field
strength of 1.3 T · m. In the symmetry plane of the spectrometer, a massive steel plate shields the lepton and pro-
ton beams as they pass through the spectrometer magnet, separated by a distance of 72 cm. Inside the shielding of the
positron beam pipe, a correction coil corrects for fringe fields and the imperfections of the magnet shielding. The coil
also serves to compensate the magnetic holding field of the target system when operating with transversely polarized
target gases.

The horizontal symmetry plane defined by the shielding plate inside the spectrometer magnet separates the spec-
trometer in two identical top and bottom halves. The steel plate limits the acceptance at small angles in the vertical
direction. A schematic side-view of the HERMES spectrometer during the years 2002–2005 is shown in figure 3.3.

The initial trajectory of the scattered particles is determined by the front tracking system, which consists of the
front drift chambers (DVC and FC). Behind the spectrometer magnet, the momentum measurement is completed by
the back drift chambers (BC). Inside the magnet, proportional chambers (MC) help match the front and back tracks,
and allow track reconstruction for low-momentum particles that do not reach the back region.

In the front region, the acceptance for the decay of Λ(1115) hyperons was increased in 2001 by the installation
of two silicon detectors just downstream of the target region [94, 95]. In the beginning of 2006 a recoil detector
was installed, adding acceptance for the recoiling target proton in DVCS events [96]. In the present analysis, these
detectors have not been used.

Particle identification (PID) is provided by scintillator hodoscopes (H1 and H2), a transition radiation detector
(TRD), a lead-glass calorimeter (CALO), and a ring imaging Čerenkov detector (RICH). The RICH detector identifies
pions, kaons, and protons. Combination of the signals in the particle identification detectors allow for a hadron
rejection factor of higher than 104. Until 1997, before the installation of the RICH detector, a single-gas radiator
threshold Čerenkov detector (CER) was installed. The threshold Čerenkov detector allowed only for limited separation
of pions from heavier hadrons.



343.3.1 The particle tracking detectors

The particle tracking system is used to determine the event vertex in the target cell and to measure the mo-
mentum and the angles of the scattered particles. The momentum resolution is better than 1.3%, and is limited by
bremsstrahlung in the walls of the target cell, the vacuum window, and the front tracking detectors. The resolution in
the scattering angle is better than 0.6 mrad and limited by multiple scattering in these materials.

The drift vertex chambers (DVC) and the front drift chambers (FC) provide the vertex reconstruction in the tar-
get cell and the definition of the scattering angles. The back drift chambers (BC) measure the magnetic deflection
and hence the momentum of the detected particles. Proportional chambers inside the magnet (MC) are used for the
momentum analysis of low energy decay products that are deflected too strongly to reach the back chambers.

The horizontal length of the drift chambers precluded the use of long horizontal wires. All planes use one of three
wire orientations, either vertically (X) or tilted 30◦ right or left from the vertical axis (U and V).

The drift chambers

The drift chambers DVC, FC, MC, and BC are of the conventional horizontal-drift type. Each layer of drift cells
consists of a plane of alternating anode and cathode wires between a pair of cathode foils. The charged particles passing
through the detector generate an ionization avalanche, which is detected by the wires spun across the chambers. The
chambers are assembled as modules consisting of six layers in three coordinate doublets (UU’, XX’ and VV’). The
X’, U’ and V’ planes are staggered by half the cell size in order to help resolve tracking ambiguities.

To ensure redundancy in the front tracking system and to provide a larger acceptance for muon detection, the drift
vertex chamber DVC was constructed and installed after one year of HERMES operation. They are followed by the
front chambers FC1 and FC2, providing good spatial resolution immediately in front of the spectrometer magnet.

The three magnet chambers MC are located in the gap of the spectrometer magnet and were originally intended to
help resolve multiple tracks in case of high-multiplicity events. Since low backgrounds have made this unnecessary,
their primary function is now the momentum analysis of particles with energies below 2 GeV, for example from the
decay of the Λ hyperon. With the MCs particle tracks with a momentum as low as 0.5 GeV can be reconstructed.

Finally, the four back chambers BC are located behind the spectrometer magnet.

Track reconstruction

The HERMES track reconstruction program uses a tree-search algorithm for fast track finding and a look-up table
for fast momentum determination of the tracks. Except for small curvatures caused by the magnetic fringe fields,
the track projections are approximately straight lines outside of the magnetic field region. The basic idea of pattern
recognition using the tree-search algorithm is to look at the whole hit pattern of the detectors with increasing resolution.
In each step of the iteration, the algorithm checks if the pattern (at a given resolution) contains a sub-pattern that is
consistent with an allowed track.

All allowed patterns are generated at the initialisation of the program. They are stored in a database. Because a
given pattern at one resolution constrains the number of allowed patterns at a lower resolution, it is possible to reduce
the CPU time involved. Symmetry is used to reduce the number of patterns that have to be stored.

To avoid the CPU intensive task of tracking a particle in a magnetic field, a large look-up table is generated during
the initialization of the tracking program using the measured magnetic field map. It contains the momentum of a given
track as a function of the track parameters in front and behind the magnet.

Transverse magnet correction After the installation of the transversely polarized target in 2001, the existing
tracking algorithm was updated to take into account the slight deflection of the scattered particles in the transverse
target magnetic field. Two algorithms were developed to perform this correction [97]. The first method (TMC1)
is based on a transfer-matrix approach, the second method (TMC2) uses reference tracks. Both algorithms return
the corrected, reconstructed interaction point of the track with the lepton beam. For secondary vertices, which are
displaced from the lepton beam, these methods are not applicable.



353.3.2 The particle identification detectors

The HERMES particle identification (PID) system discriminates between positrons, pions, kaons, and protons. The
PID system consists of four subsystems: two plastic scintillator hodoscopes, a transition radiation detector, a lead-glass
calorimeter, and a dual radiator ring imaging Čerenkov detector. The scintillator hodoscopes and the electromagnetic
calorimeter are also used in the first level trigger to select which events to consider for further processing.

Forward trigger scintillator (H0)

While technically not a PID detector, the forward trigger scintillator (H0) is located directly upstream of the front
drift chamber to eliminate triggers from particle from the proton beam. A backward-going particle produces a pulse
that is displaced by 36 ns from the normal trigger condition.

Scintillator hodoscopes (H1 and H2)

A scintillator hodoscope (H1) and a preshower scintillator counter (H2) provide fast trigger signals and information
for particle identification. Both hodoscopes are composed of vertical, fast scintillator paddles of 1 cm thick and 9 cm
wide with 2–3 mm overlap between each paddle. The scintillation light is detected by photomultiplier tubes coupled
with light guides to the outer end of each scintillator paddle. In the passive radiator of the preshower scintillator
counter H2, consisting of two radiation lengths of lead, electromagnetic showers are generated. The energy deposit in
the scintillator paddles facilitates the discrimination between leptons and hadrons. Positrons typically deposit at least
ten times more energy than hadrons, allowing for a pion rejection of 10 for lepton detection.

The scintillator hodoscopes can also be used as a time-of-flight (TOF) particle identification detector for low
momentum hadrons [98]. This complements the hadron identification capabilities of the RICH detector (see below).
The timing of the output signals in the PMTs of H1 and H2 are measured with respect to the bunch crossing time in the
center of the target cell. The path length of each track is calculated from the straight partial tracks in the front region
and the back region.9 To account for differences in cable length, the time-of-flight timings are calibrated with cleanly
identified electrons which move essentially at the speed of light. The (squared) mass of hadrons is then extracted from
the relativistic momentum

p = m
β√

1− β2
, (3.1)

where β is the relativistic speed v/c. The squared particle mass obtained from the timing in H1 is shown in figure 3.4
for hadrons with a momentum in the range 0.6–1.1 GeV (left) and 1.5–2.0 GeV (right). Kaon identification is limited
to momenta below 1.5 GeV, but pions and protons can be distinguished up to 2.9 GeV with efficiencies (contamination)
above 98% and 85% (below 4% and 6%).

Electromagnetic calorimeter (CALO)

The calorimeter provides a first level trigger and measures the energy of electrons, positrons, and photons, but
suppresses pions by a factor of more than 1000. It is composed of two times 420 lead-glass blocks of transverse
dimensions 9 × 9 cm2 and 18 radiation lengths long, viewed from the rear by a photomultiplier tube. Monitoring
of aging effect in the glass-blocks is achieved using a dye laser, which sends light through glass fibers to every
photomultiplier and a reference photodiode. Combining the preshower hodoscope (H2) with the electromagnetic
calorimeter, the pion rejection factor integrated over all energies is approximately 2.5 · 103.

Transition radiation detector (TRD)

The purpose of the transition radiation detector (TRD) is to provide a pion rejection factor of at least 100 at positron
energies higher than 5 GeV. At these energies, only electrons and positrons produce transition radiation in the form of
X-rays in the 6 cm thick two-dimensional matrix of dielectric fibers. The generated X-rays are detected in proportional

9This approximation is adequate because the deflection angle in the spectrometer magnet is only π/20.
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Figure 3.4: Time-of-flight hadron identification with the scintillater hodoscopes H1. Pions, kaons, and protons can be
separated in the distribution of the squared mass m2 for the momentum range 0.6–1.1 GeV (left). For the momentum
range 1.5–2.0 GeV pions and protons can be distinguished. Taken from reference [98].

wire chambers. Pions deposit energy directly in the chambers due to ionisation of the chamber gas, but leptons deposit
on average twice as much energy in addition to the energy in the X-rays. The average deposited energy of hadrons
and leptons is shown in figure 3.5. The pion rejection factor satisfies the design goals, and reaches a value of 80 even
below an energy of 5 GeV.

Single gas-radiator threshold Čerenkov counters (CER)

In the original setup of the HERMES spectrometer, used until 1997, pion identification was provided by a pair
(top and bottom) of single gas-radiator threshold Čerenkov counters (CER). The Čerenkov counters were located
between the back drift chambers, where the RICH was later installed. They were filled with freon, C4H10, and
the produced Čerenkov radiation were detected by an array of 20 spherical mirrors that focus the light on 12.7 cm
wide photomultiplier tubes. The momentum threshold was 3.8 GeV for pions, 13.6 GeV for kaons, and 25.8 GeV for
protons. The number of detected photoelectrons for a track allows to distinguish between pions and heavier hadrons,
but not between kaons and protons.

Lepton-hadron separation

The lepton-hadron separation of the separate detectors can be improved by combining the responses of the transi-
tion radiation detector (TRD), the Čerenkov counters (CER), the preshower hodoscope (PRE), and the electromagnetic
calorimeter (CALO) using a Bayesian probabilistic approach. For each detector the so-called parent distributions spec-
ify the probability Li to obtain a specific detector response for a given particle type i. They are determined from the
measured responses in each detector using stringent selection requirements on the other detectors. The probability P i

that a given detector response originates in a particle of type i is then defined as

P i =
φiLi∑
j φ

jLj
, (3.2)
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over all momenta. Taken from reference [91].
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calorimeter (left axis) and the deposited energy in the TRD detector (right axis) allows for separation of leptons (left)
and hadrons (right) with high efficiency and low contamination. Taken from reference [91].

where the sum runs over all particle types. The flux factor φi is the a priori probability that a track with given track
parameters originates from a particle of type i. These flux factors are determined from the collected data with an
iterative procedure starting from equal flux factors for all particle types.

The logarithm of the ratio of the probabilities Ph and P e is calculated for each detector,

PID = log10

P e

Ph
. (3.3)

The following sums of the particle identification detectors are defined:

PID3 = PIDCALO + PIDPRE + PIDCER, (3.4)
PID5 = PIDTRD. (3.5)

In figure 3.6 the variables PID3 and PID5 are shown for events collected by the spectrometer. The separation
between leptons (left) and hadrons (right) is clearly visible.

Usually, the sum PID3 + PID5 is required to be smaller than zero for hadrons and larger than zero for leptons.
In hadron samples obtained by requiring PID3 + PID5 < −1, the probability that a track originated from a hadron
is at least 10 times larger than the probability that it originated from a lepton.

Dual radiator ring imaging Čerenkov detector (RICH)

The dual radiator ring imaging Čerenkov detector (RICH) was designed to provide hadron identification for pions,
kaons and protons in the momentum range from 2 to 15 GeV. The RICH detector is described in detail in reference [99].
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the right panel. Taken from reference [99].

A schematic view of the detector setup is shown in the left panel of figure 3.7. It uses a wall of silica aerogel radiator
tiles and a gas radiator volume with freon, C4H10, and the whole detector is located in the same location of the previous
Čerenkov counter. The charged particles transversing the radiator materials emit Čerenkov radiation in a cone with an
opening angle depending on the momentum and the particle type.

A light-weight mirror array was constructed using aluminized epoxy-coated carbon-fiber segments. The light
substrate and support structure guarantees that the mirrors contribute negligibly to secondary scattering in the material
of the detector. Compared to the freon gas (5% ofX0), the aluminum entrance windows (3.0% ofX0), and the aerogel
tiles (2.8% of X0), the mirrors contribute only 1% of a radiation length X0. The alignment of the mirror array was
determined from the data using a large sample of pions with well-defined gas rings. The additional volume of the
RICH detector leads to a worse momentum resolution, reflected in an increase of the reconstructed K0

S resonance
width from 5.7 MeV to 6.2 MeV [91, 4].

The reflected Čerenkov light, which is emitted mostly at visible wavelengths with a component from the gas
radiator in the UV part of the spectrum, is detected in an array of 1934 photomultiplier tubes (PMT) that match the
Čerenkov spectrum. The 0.75 inch photomultipliers were arranged in a hexagonal closed packed matrix with a final
resolution of ∆θ ≈ 7.2 mrad. To increase the coverage of the photon detector surface from 38% to 91%, the dead
space between the photomultipliers was minimized by insterting small aluminized funnels in the entrance cones of the
PMTs.

The data of the RICH detector consist of a hit pattern for the top and bottom detector half. An example of a typical
three-track event is shown in the right panel of figure 3.7. Only a few photomultiplier tubes generate a signal for every
Čerenkov ring. When two or more rings are tangent, this can lead to ambiguities.

From the radius of the ring the opening angle θc of the Čerenkov cone is determined. Together with the particle
momentum p this allows particle identification. In the left panel of figure 3.8 the opening angles θc for pions, kaons,
and protons for radiation generated in either of the radiators are shown as a function of the momentum. Due to their
low mass the electrons or positrons always generate a Čerenkov cone with the asymptotic opening angle.
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Hadron identification

After the separation of hadrons and leptons, the hadrons are identification by the opening angle of the Čerenkov
cone in the RICH detector. As in the algorithm for the hadron-lepton separation, a likelihood is assigned for every par-
ticle type given the detector response. The particle is identified as the type with the largest likelihood. The logarithmic
ratio between the largest likelihood P 1 and second largest likelihood P 2,

Qp = log10

P1

P2
, (3.6)

is defined as a quality parameter for the type assignment.
A recent addition to the RICH particle identification algorithm is the determination of event-level likelihoods. All

the combinations of particle assignments for all tracks in one detector half are considered in this approach, instead of
handling each track separately. The ambiguities occurring when multiple Čerenkov cones overlap at the edges can be
reduced in this approach. This improvement of the particle identification capabilities of the HERMES spectrometer is
in particular relevant to processes with multiple hadrons in one detector half.

3.3.3 The trigger and readout system

The HERMES spectrometer is equipped with a single level event trigger system. The full readout of the spec-
trometer can be initiated by one of several trigger signals. Apart from physics triggers for the detection of physical
processes, several trigger signals are generated for calibration and monitoring of the detectors. An example is the gain
monitoring system (GMS) trigger which generates signals at a rate of approximately 3 Hz, synchronized with a laser
pulse to the scintillator paddles and calorimeter blocks of the spectrometer. This trigger is generated during a (lepton)
bunch-free period to avoid any effects from the lepton beam on the calibrations. Redundancy of the physics triggers
allows for the calculation of the detector efficiencies.

After a trigger signal has been generated, the detector is read out and unable to record new events until the readout
process is finished. This period of time is called the dead-time. A balance has to be found between high trigger



41rates and acceptable dead-times. Before the installation of the Lambda Wheels and the recoil detector, the HERMES
spectrometer was usually operated at trigger rates of 500 Hz with a dead-time of 10%. Due to the increase in event size
associated with the large number of channels, the trigger rate was more than two times lower in the period 2002–2007.

The most important physics trigger for the HERMES experiment is the DIS trigger, which indicates coincident
signals in the three scintillator hodoscopes and an energy deposit in two adjacent columns of the electromagnetic
calorimeter exceeding an adjustable threshold. During normal low-density data taking the calorimeter energy threshold
is set to 1.4 GeV, but to reduce the dead-time the threshold is increased to 3.5 GeV during high-density data taking.
For DIS events, which always have a high energetic lepton, this change is irrelevant, but for the detection of hadrons
with low energies it reduces the efficiency during high-density data taking.

The photoproduction trigger, which is relevant for the analysis of exotic baryons, is formed by a coincidence
of the three scintillator hodoscopes with two tracking planes, requiring that at least one track appeared in each of
the spectrometer halves. At the end of 2003, an additional ‘pentaquark’ trigger was implemented formed by two
independent coincidences in the three scintillator hodoscopes of one spectrometer half and one coincidence in the
scintillator hodoscopes of the other spectrometer half, combined with hits in the tracking planes of both halves. The
efficiency of this last trigger was unfortunately rather low, due to the requirement of three tracks in the spectrometer.
Monte Carlo studies showed that the width of the tracking detector segments reduced the efficiency for more than one
hit in the tracking detectors by an additional 25%.

3.4 Monte Carlo simulations at the HERMES experiment

The HERMES spectrometer is a forward detector and does not cover the full 4π geometrical acceptance (in the
center of mass frame of the decaying resonance) in which resonance cross sections are usually specified. Also the
selection criteria necessary to resolve resonances reduce the number of observed decay events. To determine the
combined effects of the detector acceptance and selection efficiency we use Monte Carlo simulations. Two different
Monte Carlo generators are used in this work.

3.4.1 The gmc dcay Monte Carlo generator

The toy Monte Carlo generator gmc dcay, developed at the HERMES experiment, is used to simulate pure samples
of decay events for one resonance only. With the gmc dcay generator, single resonance decay events are generated
with an invariant mass distributed according to a Breit-Wigner function with intrinsic width Γ around the resonance
mass M . The simulation takes into account the distributions of initial transverse and longitudinal momentum Pt
and Pz of the resonance. The initial momentum distributions, which are determined by the production mechanisms
of the resonance, can be specified using the parameters of an internal model, or they can be generated according to
distributions obtained from other sources.

The internal model of the gmc dcay generator is based on hyperon production in the fragmentation region and
consists of a Gaussian distribution for the transverse momentum Pt, and a monotonically falling distribution for the
longitudinal momentum Pz . The transverse and longitudinal momentum distributions are in agreement with what is
observed for the Λ(1115) hyperon at the HERMES experiment.

3.4.2 The PYTHIA Monte Carlo generator

The PYTHIA Monte Carlo generator [100], tuned to describe the results observed at HERMES kinematics [101,
102, 103], can also be used to simulate hyperon decays (though not all hyperons are implemented in the PYTHIA
generator). The PYTHIA generator simulates a wide range of processes, but only a small fraction of the simulated
events are relevant for the determination of the efficiency. Most of the simulated events are outside the detector
acceptance, or are discarded by the selection criteria.

The computational load to obtain a large sample of simulated events satisfying the selection criteria is much higher
with the PYTHIA generator than with the gmc dcay generator. The advantage of using the PYTHIA generator is
that the production mechanism of the generated resonances, and thus the momentum distributions of the resonances
before their decay, is simulated in detail. The PYTHIA generator is often used to generate realistic inital momentum



42distributions (in 4π acceptance) for the simulated resonance, which is then used as input for gmc dcay simulations.
PYTHIA simulations are also used to cross-check the order of magnitude of the efficiency determined in the gmc dcay
simulations.

After the generation of the resonance decay events, the decay products are tracked through a full GEANT model
of the HERMES spectrometer. The interactions of the particles with all materials of the detector are simulated, as well
as the responses in the detector components. The resulting Monte Carlo events are written to files that have the same
format as regular data files, and can be treated with exactly the same analysis code as the collected data.

3.5 The Longitudinal Polarimeter

As mentioned before, one of the characteristic properties of the HERA lepton storage ring is the large transverse
self-polarization of the lepton beam. The demonstration that this large transverse polarization could be achieved and
accurately measured was part of the requirements for the approval of the HERMES experiment in 1992. The transverse
polarimeter (TPOL) was commissioned in the West straight section in 1991. After the installation of a pair of spin
rotators around the HERMES experiment, the longitudinal polarimeter (LPOL) was commissioned in the East straight
section in 1996, at a location before the spin orientation of the leptons is rotated back from the longitudinal to the
transverse direction, and has since then provided an independent measurement of the polarization of the leptons until
the end of HERA operation in June 2007.

Both polarimeter systems make use of asymmetries present in the cross section for Compton back-scattering of
photons from an intense circularly polarized laser beam. The TPOL measures the small transverse spatial asymme-
try (≈ 60µm) between the Compton photons from left and right circularly polarized laser photons to determine the
transverse polarization. The TPOL system is described in detail in reference [104]. In the main mode of operation
the LPOL measures the integrated energy asymmetry between Compton photons from left or right circularly polar-
ized laser photons. In this section the LPOL system is described (although a detailed description of the longitudinal
polarimeter can be found in reference [90]), and the experience in the operation of this system is used to suggest a
possible setup for the lepton polarization measurement at the proposed electron-ion collider (EIC).

3.5.1 Polarization build-up

Due to the Sokolov-Ternov mechanism [87], based on the small asymmetry in the spin-flip amplitudes of leptons
when emitting synchrotron radiation, the transverse polarization P (t) builds up in time according to the expression

P (t) = P∞

(
1− e−t/τ

)
. (3.7)

The asymptotic polarization P∞ is approached with an exponential rise-time τ , determined by the characteristics of
the storage ring. In the absence of any depolarizing effects the maximum achievable polarization, obtained in a planar
storage ring, is P∞,th = 92.4%, with a rise-time of τth = 37 min for the HERA lepton storage ring with an energy of
Ee = 27.5 GeV [88]. The inherent non-flatness of a storage ring with spin rotators, and other depolarizing effects can
reduce the asymptotic polarization significantly. At the HERA storage ring the asymptotic polarization was typically
only 55%.10 Associated is a decrease of the rise-time, given by the expression

τ = τth
P∞
P∞,th

, (3.8)

to approximately 23 min.
A small number of filled lepton bunches are synchronized with an empty proton bunch at the interaction points

of the collider experiments. Consequently, the polarization of these non-colliding bunches is not affected by the
depolarizing beam-beam interaction, usually resulting in a higher polarization. Normally less than ten non-colliding
lepton bunches are present, compared to almost 180 colliding bunches. Since the depolarizing effects are different

10The average polarization during the HERA I running period until the luminosity upgrade in 2001 was approximately 55%, but due to the
increased beam-beam interaction during the HERA II running period the polarization was approximately 5% lower.
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Figure 3.9: Individual and averaged polarization for colliding and non-colliding bunches. In the left panel the measured
polarization for the individual lepton bunches is shown. In the right panel the bunch polarization is averaged and shown
as a function of time. The two panels were obtained during different fills. Taken from reference [90].

for colliding and non-colliding bunches, the polarization build-up behavior is different for both subsets. For a typical
lepton fill the polarization for colliding and non-colliding bunches is shown in figure 3.9. In the left panel the measured
polarization for the individual bunches is shown; in the right panel the polarization during a different fill is averaged
separately over all colliding and non-colliding bunches and shown as a function of time.

Measurements of the rise-time and the asymptotic polarization can be used to determine the absolute scale of the
polarimeters, when the theoretical values for P∞,th and τth are known [104]. This is usually done with non-colliding
bunches only to avoid the depolarizing effects from the proton beam. The theoretical uncertainties associated with
the value of τth

P∞,th
in a non-flat storage ring are only understood to a few percent, and have to be determined from

computational models and simulations. This method of calibration of the absolute scale also requires an unperturbed
machine during the polarization build-up, a situation which in practice requires the use of depolarizing resonance or of
an accelerator tune shift after the normal injection procedure. Accurate timing and non-zero initial polarization levels
can both complicate the calibration procedure. Nevertheless this procedure was successful in estimating the absolute
scale of the TPOL with one pair of spin rotators [104].

3.5.2 Polarized Compton scattering and Compton polarimetry

Compton scattering is the physical process of scattering a photon from a charged particle. For our purposes the
charged particle is a lepton in the HERA storage ring, which collides nearly head-on with a laser photon and scatters
it back in the direction of the high-energetic lepton. The following kinematic variables are useful in the discussion of
Compton scattering [105]. The incident photon with momentum k is scattered off the incoming lepton with energy
Ee. The outgoing photon has a momentum k′ � k, and the energy of the outgoing lepton is now E′e. Due to the large
Lorentz factor, Ee/me = 5.4 · 104 for the HERA lepton energy, the scattered photon and lepton are boosted forward
to very small angles in the laboratory reference frame, and leave the interaction point practically parallel to the lepton
beam. The maximum achievable Compton photon energy k′max is referred to as the Compton edge.

The differential cross section for the Compton scattering of circularly polarized photons from longitudinally po-
larized leptons is given by

dσ

dk′
=
dσ0

dk′
[1− PλPeAz(k′)] . (3.9)

In this expression dσ0
dk′ is the unpolarized Compton cross section, Pλ the circular polarization of the incident photons, Pe

the longitudinal polarization of the lepton beam, and Az(k′) the longitudinal asymmetry function of the cross sections
for left and right circularly polarized photons as a function of the energy k′ of the back-scattered Compton photon.11

In the LPOL system the circular polarization of the incident laser light is to very good approximation Pλ ≈ 100% · λ,
with alternating helicity λ = +1 for right and λ = −1 for left circularly polarized laser light. This corresponds to



44S3 = ±1 when expressed with the Stokes vector. Together with the helicity ± 1
2 for the leptons, the total spin for

antiparallel and parallel helicities is then 1
2 or 3

2 , respectively.
In the LPOL system the crossing angle of the laser beam and the lepton beam is 8.7 mrad, or almost head-on.

The laser photons with an energy k = 2.33 eV collide with the leptons in the HERA storage ring with an energy
Ee = 27.5 GeV. For these kinematic conditions the Compton edge is k′max = 13.6 GeV. The future electron-ion
collider will likely operate at lower lepton energies Ee ≈ 10 GeV, corresponding to lower values of the Compton
edge, which scales as k′max ∼ k · E2

e .
For perfect head-on collisions the differential Compton cross section is shown in the top panels of figure 3.10.

In the left panels the incident laser photons have an energy k = 2.33 eV and the lepton energy Ee is varied. The
right panels were obtained for different values of the incident laser photon energy k but with a fixed lepton energy
Ee = 27.5 GeV. The bottom panels of figure 3.10 present the asymmetries of the cross sections shown in the top
panels. The maximum asymmetry is reached at the Compton edge k′max. For lower lepton beam energies Ee the
asymmetry decreases as Amax ∼ k · Ee, but higher photon energies can be used to compensate for this effect.12

In the LPOL system, two alternative methods for the measurement of the polarization can be used exclusively.
In a differential polarization measurement (or single-photon mode) the energy of every scattered Compton photon
is measured, event by event. For each photon energy bin the asymmetry in the number of Compton photons dσ is
exploited to determine the polarization

As(k′) =
dσ 1

2
− dσ 3

2

dσ 1
2

+ dσ 3
2

= PePλA(k′). (3.10)

The lepton polarization is then determined as the weighted mean over all photon energy bins k′. An advantage of this
method is that the large asymmetry at the Compton edge can be exploited. Together with the asymmetry zero-crossing
point, the Compton edge is one of the two characteristic locations with a well determined energy that can be measured
in the energy spectrum. This allows for a calibration of the energy scale of the detector. However, in addition to the
Compton photons, synchrotron and bremsstrahlung photons will be detected, dominating the energy spectrum at lower
energies. A major disadvantage of this method in the LPOL system is the low counting rate. Since the laser is pulsed
at only 100 Hz and the intensity has to be reduced to ensure that only one interaction occurs per bunch crossing, it
takes an impractically long time to accumulate the required number of events for a precise polarization measurement.

In an energy-weighted integrated polarization measurement (or multi-photon mode) the polarization is determined
from the integrated asymmetry of the Compton cross section, weighted with the scattered photon energy k′. At high
laser intensity a large number of Compton reactions take place during one bunch crossing. More than 1000 Compton
photons are produced for every bunch crossing in the LPOL interaction region. Their energy k′ is distributed according
to dσ

dk′ , as shown in the top panels of figure 3.10. The energy deposition in the detector is distributed according to the
weighted cross section k′ dσdk′ , as shown in the left panel of figure 3.11,13 and increases the asymmetry at higher
scattering energies k′ relative to low scattering energies. When the response I of the detector is proportional to the
sum of the scattered photon energies, i.e. it integrates the Compton spectrum weighted with the energy, then the
experimental energy asymmetry

Am =
I 1

2
− I 3

2

I 1
2

+ I 3
2

= PePλAP (3.11)

can be used to determine the lepton polarization Pe. The analyzing powerAP of the process is determined analytically
by integrating the distribution of the scattered photon energy for left and right circularly polarized incident photons,
under the assumptions that the Compton photon detector is linear over the full operating range and that PePλ = 1. In
the right panel of figure 3.11 the analyzing power AP is shown as a function of the lepton beam energy and for three
different incident photon energies. The intersection of the dashed vertical line at the HERA energy of 27.5 GeV with
the curve for green incident laser light corresponds to the working point of the LPOL system.

11The sign of the longitudinal asymmetry function Az(k′) differs from the convention used in reference [105].
12This ignores the problems that exist with operating a high-power UV laser optical system and the reduced differential cross section.
13For antiparallel lepton and photon helicities (spin 1

2
) the energy-weighted differential cross section k′ dσ

dk′ is independent of the lepton energy
Ee and the incident photon energy k.
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panels the laser photon energy is varied and the lepton beam energy fixed at 27.5 GeV.
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the scattered photon energy k′, the analyzing power AP is obtained. The working point for the LPOL system is at the
intersection of the dashed vertical line with the curve corresponding to green laser light in the right panel.

The number of synchrotron or bremsstrahlung photons from a single bunch is small compared to the large number
of Compton photons, and their effect can be neglected. The drawback of an energy-weighted integrated polarization
measurement is the importance of the linearity of the detector; deviations from linearity change the weighting and a
different value of AP would have to be determined.

Until 2006 the LPOL system was routinely operated in the multi-photon mode, with the single-photon mode
reserved for tests and energy scale calibrations. With the installation of a laser cavity around the lepton beam line
and the commissioning of this LPOL-Cavity project, the sampling calorimeter (see below) was often operated in the
single-photon mode. Due to the continuous wave mode of the cavity laser system, the event rate was much higher than
with the regular LPOL system. Unfortunately the goal of routine data taking with the LPOL-Cavity system was never
reached.14

3.5.3 The LPOL system

The main components of the LPOL system are a high-power pulsed laser system with associated optics shown in
figure 3.12, a laser transport system to guide the laser beam to the interaction region shown in figure 3.13, and two
interchangeable calorimeters for the measurement of the Compton photon energy.

The laser and optical system

In figure 3.11 it was shown that, at a lepton beam energy of Ee = 27.5 GeV, the green laser photons (with an
incident energy of k = 2.33 eV) have a maximum analyzing power AP = 0.1838, which motivates the choice for
this type of laser in the LPOL system. The pulsed, frequency-doubled Nd:YAG laser with a wavelength of 532 nm
(corresponding to a photon energy of k = 2.33 eV) is located in the laser hut, six floors above the lepton storage ring.

14The LPOL-Cavity project was designed and commissioned completely independent of the regular LPOL system, without involvement of
members of the LPOL group.
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Figure 3.12: Schematic view of the LPOL laser optics in the laser hut. Taken from reference [90].

This choice of location was made to allow for easy maintenance of the laser system.15 The laser pulses with a length
of approximately 3 ns are fired at a rate of 100 Hz with a pulse energy of 200 mJ. The linearly polarized laser light is
transformed in circularly polarized laser light in a Pockels cell (PC). The PC is a crystal cell whose birefringence can
be changed by applying a voltage (of approximately 1700 V for our system). The voltage on the PC is reversed for
every pulse, generating alternating pulses of left and right circularly polarized laser light. The circular polarization
is maximized by scanning over the voltage range, but care is taken to have equal laser polarizations for left and right
helicity states. A misalignment of the PC can lead to spatially displaced left and right circularly polarized laser beams,
which can affect the location of the interaction point, or to large voltage differences for left and right polarization,
which leads to early degradation of the PC. Therefore a careful aligment procedure is applied.

To traverse the distance of 80 m between the laser system and the interaction point in the HERA tunnel, the laser
is guided in a vacuum system.16 Before the beam enters the transport system, the beam is expanded to decrease the
energy density on the optical elements and to reduce the effects of any irregularities on the optical surfaces. In the
laser transport system remotely controlled phase-compensated mirrors with CCD-cameras mounted behind them are
used to monitor and align the laser beam position.

Any depolarizing effects of the transport system are detected by a remotely-controlled polarization analyzer located
after the interaction point with the lepton beam in the HERA tunnel (see figure 3.13). This analyzer system consists
of a rotatable half wave plate and a Glan-Thompson prism. The reflected and transmitted laser beams are detected in
photodiodes. Comparing the measured polarization in the analyzer in the tunnel with a similar analyzer located directly
behind the Pockels cell (see figure 3.12) allows to determine any depolarizing effect. Problems with the alignment of
the optics in the analyzer box in the tunnel rendered the system useless for absolute measurements, but it allowed to
monitor changes in the polarization between manual measurements during exclusive accesses to the tunnel.

At the interaction point the laser pulses are focused to a transverse size of approximately 0.5 mm by guiding the
laser beam parallel to the vacuum pipe in exclusive access mode. With an accuracy of approximately 1 m the focusing
point is placed at the expected interaction region where lepton beam position monitors are located.

15The laser has operated reliably during the many years it was in operation. The monthly replacement of the laser flash lamp, responsible for
building up the population inversion in the Nd:YAG-doped crystals, was greatly facilitated by the easy access to the laser system.

16The vacuum system has several uses. It provides a closed path to the interaction point, necessary for the safe transportation of a high-power
laser beam, with detection of intrusion based on the air pressure inside. Moreover, it ensures a clean environment for the optical elements in the
laser path. Lastly, air flows between the laser system and the interaction point, caused by unequal heating, could influence the laser alignment.
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Figure 3.13: Schematic view of the LPOL laser transport system. Taken from reference [90].

For every laser pulse the intensity and the timing are measured with photodiodes in the laser hut. The timing jitter
between the laser trigger signal, generated in the electronics trailer on the ground floor of the East Hall, and the actual
laser pulse is approximately ±1.5 ns. Because the the 3 ns long laser pulse is much longer than the lepton bunch,
the leptons sample the different regions of the laser pulse. The laser intensity is not constant for the duration of the
laser pulse. The timing information from the photodiode and the corresponding response from the PMTs are used to
determine the laser pulse profile, as shown in figure 3.14. The signals are then normalized for the actual laser intensity
at the moment of the interaction.

Compton photon detection

Two different calorimeters were routinely used to measure the energy of the Compton photons. The original crystal
calorimeter is based on the generation of Čerenkov light in crystals; a newer sampling calorimeter was constructed
using alternating plates of radiator and scintillator material. The two calorimeters are positioned on a remotely con-
trolled table that allows for horizontal and vertical alignment with respect to the Compton photon cone. By moving
the table up and down, an operation that takes only minutes, either of the two calorimeters can be selected for the
measurements.

The theoretical value for the analyzing power AP with a perfectly linear photon detector is 0.1838, but non-
linearities in the detector can change this value. Due to shower leakage to the rear end of the calorimeter, the analyzing
power of the crystal calorimeter is 0.1929. This value was determined from measurements in a test beam at CERN,
and later confirmed by Monte Carlo simulations [106].

The crystal calorimeter The crystal calorimeter (CR) consists of a 2 × 2 array of 22 mm × 22 mm radiation-
hard NaBi(WO4)2 crystals with a length of 20 cm (19 radiation lengths), which are optically separated and each read
out by a photomultiplier tube (PMT). When a Compton photon exits the HERA beam vacuum, it enters the crystal
calorimeter through a set of two lead plates (each with a thickness of 1.1 radiation length). An additional tungsten plate
was added before the lead plates after synchrotron radiation emerging from the transversely polarized HERMES target
destroyed the crystals in 2004. The charged particles in the electromagnetic shower generated in the lead plates and
the crystals emit Čerenkov radiation which is detected in the PMTs. After normalization for the different PMT gains
the distribution of the deposited energy is used to automatically center the Compton photon beam with sub-millimeter
precision on the calorimeter.
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Figure 3.14: The laser pulse profile sampled by the lepton bunches. Due to the jitter in the laser triggering, the much
shorter lepton bunches sample different time slices of the laser pulse, resulting in different average intensities in the
photomultiplier tubes. The reconstructed laser pulse profile is used to normalize the laser intensity at the moment of
the interaction. Taken from reference [90].

The sampling calorimeter The sampling or sandwich calorimeter (SW) is composed of 24 layers of 2.6 mm thick
20 mm × 20 mm plastic scintillator material, alternated between 3 mm thick layers of tungsten. On the four sides
wavelength shifters and light guides transport the generated light to one photomultiplier tube (PMT) behind the stack
of plates. The sampling calorimeter is not position-sensitive, but is independent of the energy within 5% for Compton
cone positions up to 12 mm removed from the center. The custom-made PMT was designed to be linear over a very
wide dynamic range, allowing the same detector to be used in single-photon mode at high gain and in multi-photon
mode at low gain. Except for the years 2006 and 2007, the sampling calorimeter was used only occasionally, as an
independent test of the crystal calorimeter. To avoid radiation damage by synchrotron and bremsstrahlung photons it
was usually kept out of the cone of Compton photons. In 2006 and 2007 the sampling calorimeter was used in the
single-photon mode in conjunction with optical cavity around the lepton beam as part of the LPOL-Cavity project.

Both calorimeters experienced small problems with radiation damage. In 2004 an accidental beam loss in the
neighborhood of the crystal calorimeter destroyed the four crystals. The scintillator plates of the sampling calorimeter
were replaced approximately once per year, even though usually only some plates exhibited slight signs of radiation
damage.17

Data acquisition

The data acquisition cycle of the LPOL is limited to 200 Hz, twice the rate at which the laser can be fired. For
the measurement of the polarization of one lepton bunch, four events are considered. During the first two events the
Pockels cell is set for one helicity; the next two events are collected with the opposite helicity. For one of the two
events at a particular helicity the laser is fired, during the other event the laser stays off and no Compton photons
are expected. For the next lepton bunch this procedure is repeated. The helicity selection of the Pockels cell thus
alternates between left and right at a frequency of 100 Hz, and a signal is digitized alternatingly for laser on and laser
off at 200 Hz.

The response of the PMTs propagates to the electronics trailer in the East Hall and is read out by an analog-to-
digital convertor (ADC) with an integration window of 96 ns, which is set to contain the full energy deposition peak.
To remove baseline shifts and low-frequency noise components that are picked up in the 130 m of cable between the
calorimeters and the electronics trailer, the signal is split into two copies when it reaches the electronics trailer. Both
signals lines are digitized in an ADC channel, but in one of the lines a delay of 96 ns is introduced before it is digitized.

17Due to the electromagnetic shower profile in the sampling calorimeter the first scintillator plates never showed any signs of radiation damage.
The damage occurred mostly in the plates 4 until 10.



50The digitized signal in the delayed line will thus correspond to the 96 ns window before the energy deposition signal
arrived, and is an accurate estimate of the baseline contribution inside the signal window.

The trigger electronics of the laser system induces noise in the signal lines coming from the PMTs. This is
corrected for by comparing trigger events when the laser was on and when the laser was off, in the absence of lepton
beam events (i.e. for empty bunches). The shift in the integrated signal window was usually smaller than ten ADC
channels.

To account for differences in the gain of the four PMTs of the crystal calorimeter, a gain matching procedure is
used. By moving the Compton cone off-center until the Čerenkov light is mostly confined to one of the crystals, the
gain correction factors are determined approximately twice per year. Spatial information about the horizontal and
vertical location of the Compton cone on the front face of the crystal calorimeter is calculated from the asymmetry in
the energy deposition in the left and right, and top and bottom crystals. By moving the calorimeter table, the Compton
cone is kept centered on the calorimeter within a few millimeter.

Optical fibers connected to the HERMES gain monitoring system (GMS) are used to monitor degradations in
the gain of the crystals and scintillator plates. Due to variable light losses in the bends of the optical fibers when
entering the calorimeter, the response from a GMS laser pulse could not be used for the gain matching of the crystal
calorimeter. The changes in the response from each PMT separately provided relative gain information. A decrease
of approximately 10% in the response during each fill lead to the conclusion that the crystal or PMT temperature
influences the gain or fiber transmissivity. This does not influence the polarization measurement, because the PMTs
keep their linear behavior.

3.5.4 Evaluation of the systematic uncertainty

A full discussion of the systematic uncertainty of the polarization measurements of the LPOL is available in
reference [90].18 Although this treatment is still expected to be valid and complete, the systematic uncertainty of 1.6%
was inflated to 2% for the HERA II running period to account for changes in the running conditions (higher beam
currents, increase in synchroton radiation from the transversely polarized target) that were not foreseen in the original
calculations [107]. Since the crystal calorimeter was rebuilt with different crystals in 2004, the current calorimeter was
not used to perform the original test beam studies of the systematic uncertainty. The specifications of the new crystals
are identical to the original crystals.

The presence of two completely independent polarimeters for the HERA lepton storage ring not only increases
the availability of a polarization measurement when technical problems affect one of the polarimeters. A comparison
of the two polarimeters can give us also indications about unknown contributions to the systematic uncertainty. In
figure 3.15 the ratio of the LPOL and TPOL polarization measurements (averaged in 5 minute intervals) is shown for
the five six-month periods since the beginning of 2005.

In 2005 a dependence of the TPOL polarization measurement on the beam waist size at the interaction point was
discovered, which resulted in a 10% disagreement between the LPOL and TPOL measurements for all data collected
in the HERA II running period since the year 2002. The data in figure 3.15 is corrected for this effect.

In August 2005 a new period of disagreement at the 10% level started, visible in the second panel of figure 3.15.
After the startup in July 2005 the polarization measured by the LPOL was approximately 10% lower than the polar-
ization measured by the TPOL. After the flip of the lepton helicity in September 2005 the disagreement disappeared
after some initial problems with the TPOL visible in the figure. Even though the disagreement at first seemed to be
concentrated in only one month, the problem returned in October 2005 with a smaller disagreement in the opposite
direction and has since then plagued the polarimeter groups until the end of HERA operations in 2007. It sparked a
lot of hardware investigations and systematic studies, but although smaller effects were found the main source of the
disagreement has not been found until now.

During an extensive inspection of the hardware of the LPOL in the Winter shutdown in the beginning of 2006,
the laser transport system was vented and all optical components inspected. The mirrors M3 and M4 showed minor
signs of damage by the laser beam, in both cases one spot smaller than 1 mm in diameter, and they were replaced.

18When expressing the uncertainty on the polarization as a percentage, the fractional uncertainty dP/P is meant. A fractional uncertainty of
1% on a measured polarization of 50% corresponds to an absolute uncertainty of 0.5%. In this work the values of systematic uncertainties will
sometimes be given as fractional numbers to avoid confusion, i.e. 0.01.
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Figure 3.15: Comparison of the LPOL and TPOL polarization measurements from 2005 to 2007.



52Because the laser beam travels through the transport system with an expanded beam size the small spots would not
have affected the circular polarization or laser intensity, but due to the increased heat accumulation at these spots they
could grow and become a major nuisance at a less convenient time.

Due to a mistake mirror M3 was inserted with the coating backwards after the inspection of the laser transport
system. This introduced an unknown phase shift between the S and P waves, which strongly affected the circular
polarization. The problem with the mirror M3 rendered the LPOL measurements during the first half of 2006 highly
questionable. The HERA running schedule made access difficult, so the problem was only found and corrected af-
ter half a year. The disagreement between the LPOL and TPOL polarimeters inspired an ever growing number of
investigations into the LPOL system and different approaches to the analysis of the collected data.

After the problem with mirror M3 was solved in the shutdown at the end of June 2006, excursions in the ratio of
the LPOL and TPOL measurements exceeding 5% still occured in the second half of 2006 and the final period of data
taking in 2007. Often the disagreement would vary slowly during one lepton fill, hinting to an unknown systematic
influence on either the LPOL or TPOL, or both.

To search for the causes of this time-dependent disagreement between the LPOL and TPOL inspired a series of
systematic studies to explain differences of more than 2%, the order or magnitude of the total systematic uncertainty
of the polarimeters.

Compton cone centering

When the Compton cone is not centered correctly on the calorimeter, it is possible that part of the electromagnetic
shower leaks out sideways. Because the shower profile depends on the energy of the Compton photon, this would
induce a non-linearity in the detector. To investigate whether this effect has large influences on the polarization
measurement, spatial scans of the Compton cone were performed regularly.

During a spatial scan the position of the calorimeter is manually adjusted such that the Compton cone is intention-
ally offset from the center. The automatic calorimeter centering is turned off. The polarization measurements of the
TPOL are used as a reference during the scan. This measurement is only performed during periods of stable polariza-
tion to avoid sudden changes in the value of the polarization. In left panels of figure 3.16 the results of a spatial scan
in the horizontal and the vertical direction are shown. Each data point corresponds to an average of approximately 20
minutes. In the horizontal direction the movement of the calorimeter is limited by the lepton beam pipe. The horizontal
and vertical scan were not done simultaneously. During the vertical scan a constant disagreement between the LPOL
and the TPOL was presen during the entire measurement.

In the right panel of figure 3.16 the results of a measurement are shown for a period with large disagreement
between the LPOL and TPOL measurements. In the top right panels the polarization and the ratio LPOL and TPOL
indeed disagree by approximately 10% during the entire duration of the spatial scan. The middle right panels show the
evolution of the horizontal and vertical position of the Compton cone on the calorimeter. In the bottom right panels
the ratio of the LPOL and TPOL measurements is plotted versus the distance of the Compton cone from the center of
the calorimeter. No systematic correlation between the ratio and the position of the Compton cone on the calorimeter
can explain the disagreement of 10% that is observed.

Laser delay timing

Through the jitter in the laser triggering the laser pulse profile is determined, as shown in figure 3.14. The optimal
timing for firing the laser pulses is determined every minute by fitting the expected laser pulse profile to the collected
events. Using a variable delay inside the laser electronics a delay of up to 24 ns can be set to obtain the correct timing.
After one minute of data taking the chosen value can be compared to the optimal value for that minute. To avoid
setting the variable laser delay too frequently, the laser delay is only changed when the determined optimal value is
more than 2 ns lower or more than 1 ns higher. This difference is somewhat confusingly called the laser trigger delay.
The asymmetric boundaries are motivated by the asymmetric pulse profile in which shifts to lower timing result sooner
in a significant loss in interaction between photons and leptons.

During some fills it was observed that the optimal value would change erratically in the allowed range, or con-
sistently move upwards or downwards. The effect of this behavior on the polarization measurement was determined
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Figure 3.16: Results of a spatial calorimeter scan. In the top left panels the calorimeter was moved horizontally, in the
bottom left panel vertically. The horizontal movement was limited by the electron beam pipe at the indicated position.
In the right panel a similar measurement was performed during a period with a strong disagreement between the LPOL
and TPOL measurements.

by laser timing measurements. By comparing the measurements (or rather the ratio of the LPOL and TPOL measure-
ments) during minutes with a high laser trigger delay to minutes with a low laser trigger delay, a systematic effect
of this delay on the measured polarization can be determined. In figure 3.17 the result of one of these measurements
is shown. In the bottom panel the maximum deviation is only 1.3%. During other laser timing measurements the
deviation was small, or in the other direction. This indicates that this is not a systematic effect, but related to variations
in the beam polarization that are unrelated to the laser trigger delay.

Luminosity dependence

The disagreements between the two polarimeters LPOL and TPOL often varied slightly during a lepton fill, though
not consistently going up or down. A dependence on the beam current could explain this behavior. For the measure-
ments of the LPOL this translates to a luminosity dependence. To artificially create a different luminosity in the LPOL,
the laser intensity can be changed. When this is done during stable lepton beam conditions, any luminosity dependence
should immediately result in changes to the measured beam polarization.

Several times these luminosity scans were performed. One example of a measurement during the first period of
disagreement in August 2005 is shown in figure 3.18. By changing the intensity of the laser over almost one order of
magnitude, no systematic change of more than 1% in the measured polarization can be observed.

Comparison of LPOL polarization with crystal and sampling calorimeters

The presence of two calorimeters in the LPOL system allows for cross comparisons. In the left panel of figure 3.19
an example of such a comparison between the measurements of the crystal and sampling calorimeter is shown. In
the first panel the polarization value measured by the LPOL is shown. The data points collected with the crystal
calorimeter (the first and the last hatched intervals) are indicated in black, the data points collected with the sampling
calorimeter (the two hatched intervals in between) are indicated in blue. The ratio between the polarization values
measured with the LPOL (in the first panel) and the TPOL (in the second panel) is shown in third panel, averaged
over five-minute intervals. When the ratio of LPOL and TPOL is averaged for the hatched periods, the values in the
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Figure 3.19: Comparison of polarization measurements taken with the crystal and sampling calorimeters. A typical
example of a study by alternating the crystal and sandwich calorimeters is shown in the left panels. The black points in
the first panel on the left are obtained with the crystal calorimeter, the blue points with the sampling calorimeter. The
second panel shows the polarization measurements of the transverse polarimeter, taken as a reference for this study.
In the third panel the ratio per minute is shown, and after averaging over the red hatched intervals the fourth panel is
obtained. In the right panel, the results of fifteen similar studies are summarized.

fourth panel are obtained. The difference in each transition from crystal to sampling calorimeter is used to estimate
the systematic difference between the polarization measurements with the two calorimeters.

In the right panel of figure 3.19 several crystal/sampling calorimeter cross comparison measurements, collected
during approximately one year, are summarized. The average ratio of the polarization measurements with the crystal
and sampling calorimeter is 1.012± 0.008.

Linearity measurement of the sampling calorimeter

The linearity of the calorimeter over the entire Compton energy range is an important requirement for the po-
larimeter. To quantify any changes in the linearity, possibly introduced by the exchange of the crystals in 2004 or
by radiation damage in the scintillator plates, measurements in the test beam DESY T22 were repeated in 2005. The
maximum energy the test beam could provide was 6 GeV, but both calorimeters proved to be linear within 1% in this
range, as shown in figure 3.20.19

Other methods were used to confirm the linearity of the calorimeter and electronics. A rotatable quarter-wave
plate and Glan-Thompson prism before the Pockels cell were used to change the laser beam power over one order of
magnitude. The measured deposited Compton energy in the calorimeter was linear within 1%. This is related to the
luminosity scans described earlier.

3.5.5 Precision polarimetry at the Electron-Ion Collider

Since the end of operations at the HERA collider in 2007 there are no high energy electron-proton colliders left
in the world. The study of the spin-dependent properties of QCD with polarized electromagnetic probes continues at

19Due to the energy-weighted integration in multi-photon mode, linearity in the low energy part of the Compton spectrum is less important than
in the high energy part. Unfortunately no new measurements at the CERN test beam could be taken after the end of HERA operations.
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Figure 3.20: Demonstration of the linearity of the sampling calorimeter, as measured in the test beam at DESY in
2005.

the Jefferson Laboratory (JLab) by scattering polarized electrons of energies up to 6 GeV (and up to 12 GeV after an
upgrade planned for 2009) on the hadrons in (polarized) gas targets. In the RHIC collider at the Brookhaven National
Laboratory polarized proton beams are accelerated to energies of 250 GeV before they collide with each other in the
PHENIX and STAR experiments. Proton collisions are inherently less ‘clean’ because the energy of the colliding
parton (quark or gluon) is not exactly known but distributed according to the parton distribution functions.

At both the JLab and RHIC facilities the design of a new electron-hadron collider is in progress, extending the
hadronic component to light and heavy ions as already successfully applied at the RHIC facility. The current design
of this electron-ion collider (EIC) foresees collisions of 3–20 GeV longitudinally polarized electrons or positrons on
30–250 GeV protons or 50–100 GeV/u heavy ions (such as gold) at center of mass energies of 20–100 GeV. Bunch
separations of 3–35 ns are discussed to achieve machine luminosities in electon-proton collisions of approximately
1033–1034 cm−2 s−1. The EIC would not only operate with polarized electron and positron beams, but also with
polarized proton and light ion beams. The anticipated electron polarization is above 70% and needs to be measured
with a systematic uncertainty better than 0.01.

Several methods for the polarization measurement of the electron beams have been proposed. They all involve the
measurement of asymmetries in the cross section for the scattering of polarized electron beam from other particles.
In Mott polarimeters the spatial dependence of electrons back-scattered from nuclei is measured. This destructive
measurement is mainly used to measure the electron beam polarization at low energies between 30 keV and 5 MeV. In
Møller or Bhabha scattering the electrons or positrons collide on the electrons in an externally magnetized metal foil.
This polarimetry technique is applicable to beam energies between 100 MeV to many GeV, but is unfortunately also
destructive. For a continuous polarization measurement a non-destructive polarimeter concept is preferable or even
necessary. In a new idea Møller scattering would be measured non-destructively on polarized atomic hydrogen in an
ultra-cold magnetic trap, or with a hydrogen jet target.

Compton scattering of electrons or positrons and photons is not destructive and suitable for energies above 1 GeV
and ideal for energies above 10 GeV. It is the only non-destructive polarimetry technique that has been successfully
applied in high energy storage rings, and therfore a main contender in the design of a polarimeter for the EIC.

The main differences between the HERA storage ring and the proposed EIC collider are the lower energy which
translates in a smaller asymmetry (see figure 3.10). By using a laser with a higher photon energy this can be avoided,
but unfortunately this is difficult to achieve with the current UV laser technology. Progress in the new technology of
fiber lasers allows to reach a duty factor of almost 100% by only emitting laser light when electrons are passing by.
The use of a cavity around the interaction point also allows to increase the intensity of the laser photons, resulting in a
higher counting rate in the photon detector and thus higher statistical precision.

One of the problems in operating the HERA longitudinal polarimeter in single-photon mode was the background
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Figure 3.21: Schematic design for a hybrid Compton polarimeter at the EIC. Taken from reference [108].

rates from bremsstrahlung of remaining gas atoms in the beam vacuum. Another problem was posed by the constraints
on the movement of the calorimeter imposed by the beam pipe. Both these problems can be avoided when polarimetry
is incorporated in the design of the collider, by including a chicane with soft bends to minimize the synchrotron
radiation. In figure 3.21 a possible design of a hybrid Compton polarimeter is shown. By including a chicane the
bremsstrahlung would be reduced because the section of beam pipe from which bremsstrahlung enters the photon
detector is much shorter. The distance between the electron beam and the Compton photon cone can be increased,
which allows for much more freedom in the design of the calorimeter and could allow for the inclusion of a pair
spectrometer.

The use of multiple independent devices for the measurement of the polarization has definitely been an advantage
of the HERA storage ring. Disagreements between the LPOL and the TPOL led to the discovery of systematic effects
that would otherwise have remained unknown. For the design of an EIC polarimeter with chicane there are several
possibilities for the parallel measurement of the polarization. The scatter Compton electron can be detected in an
electron detector (a Si strip detector). The Compton photons can be detected in a position sensitive calorimeter similar
to the sampling calorimeter at the LPOL, with a wide dynamic range to allow for operation in the single- and multi-
photon modes. With the inclusion of a converter with a dipole pair spectrometer the energy of the photons is measured
using the coincident electron-positron pairs.

We are still in the early stages of the design of the EIC and many numerical simulations will have to be completed
before a decision can be made on a final design. At this point the qualitative experiences from working with the LPOL
can only provide some guidance and suggestions as to what should not be overseen.



CHAPTER IV

The Analysis of Exotic Baryons at the HERMES Experiment

In this chapter the search for the exotic baryons Θ+ and Ξ−− is presented using their decays to a proton p and a
neutral kaon K0

S , respectively a negative pion π− and a hyperon Ξ−. The neutral kaons and hyperons decay weakly
inside the HERMES spectrometer and the tracks of the daughter particles allow us to reconstruct their properties. After
separating for the different running conditions several data taking periods are considered, each characterized by the
target gas and the trigger setup, and influenced by improvements in the particle identification capabilities and the
introduction of the transverse target magnet. Since it is not a priori clear whether the independent data sets can be
added together, they are presented separately.

First we give a short overview of all the data sets that were used, with details about their characteristics. This
includes information about the triggers and target gases. Next the event selection criteria are introduced, as they are
very similar for the analyses that follow. Then we present the search for the exotic baryon Ξ−− using the same data
set in which the exotic baryon Θ+ was observed. In the next section we describe the analysis of the exotic baryon
Θ+ using low-momentum protons identified with the time-of-flight technique. The absence of a corresponding exotic
antibaryon Θ− is addressed using the cross section ratio of the Λ(1520) hyperon and antihyperon. A correction
method for hadrons decaying in the magnetic field of the transverse target is developed and used in the search for the
exotic baryon Θ+. The next section focuses on the mixed event method for the estimation of background distributions.
Finally all obtained results about the exotic baryon Θ+ are combined and discussed.

4.1 Overview of the analyzed data sets

For the analysis of the exotic baryon Θ+ all data sets collected since the start of the HERMES experiment in 1996
until its completion in 2007 were investigated. The search for the exotic baryon Ξ−− was performed on a subset
of this data. Due to differences in the target gases, the trigger system, and the setup of the experiment in the data
sets, it is difficult to combine all data sets. In this section the different data sets are presented separately with their
characteristics.

4.1.1 Low density and high density target gas

During regular operation of the HERA collider and the HERMES experiment, the first 10 to 12 hours of a lepton
fill were used for reactions on polarized gas targets. The low areal densities of the polarized gases have a small effect
on the beam lifetime. If the influence of the target gas could be isolated, the lepton beam lifetime would have been
typically 45 hours, far above the usual lifetime of 15 hours dominated by other factors. The last hour of every fill was
typically used for high density data taking with unpolarized gas targets. The lepton beam current was then usually
below 15 mA, but the high density of the target gas and the higher polarization of the leptons make these end-of-fill
runs very effective.

As already described in section 3.3.3, the main physics trigger requires an energy deposit in the electromagnetic
calorimeter above an adjustable threshold. During low density data taking that lasted through most of the lepton fill
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60the threshold was usually set to 1.4 GeV. However, during high density unpolarized data taking this energy threshold
would overwhelm the data acquisition system and thus lead to an unacceptably large dead time. To reduce the number
of events to acceptable levels the threshold was therefore increased to 3.5 GeV during the high density periods.

In most deep-inelastic scattering events the scattered lepton has an energy high enough to generate a trigger, even
with the increased threshold during high density data taking. In photoproduction events at the HERMES experiment
the momentum transfer from the colliding lepton to the target is too low for the deflected lepton to be detected by
the spectrometer. The deposited energy in the calorimeter has to come from one of the hadronic reaction products.
Because they have a much lower average energy,1 usually between 1 and 4 GeV, the increase in the required energy
deposit is detrimental to the collection of photoproduction events.

Due to the unfavorable trigger conditions during high density data taking the analysis presented in this work uses
exclusively the data collected during polarized data taking. In the overview section 4.8 the high density data sets are
included, but are expected to be featureless due to the suppression of photoproduction events. They can be used as an
estimate for the amount of non-photoproduction and background events.

4.1.2 Target gases

The HERMES experiment can operate with a variety of target gases (see section 3.2). For the analysis of exotic
baryons the focus has been on photoproduction reactions on hydrogen and deuterium nuclei. These target gases make
up the bulk of the available data. Reactions on the heavy nuclei such as Kr and Xe were collected exclusively during
high density data taking and suffer from unfavorable trigger conditions. Due to the absence of low density data and
limited number of collected events on these heavy nuclei they are ignored here.

4.1.3 The pre-RICH period (1996–1997)

During the first years after commissioning the HERMES experiment the RICH particle identification detector (de-
scribed in section 3.3.2) had not been installed yet. Instead, the threshold Čerenkov counters were available for the
separation of pions and protons. The reduced particle identification capabilities are mostly relevant in analyses which
depend on the presence of a kaon. In this work an identified proton track is required, which is possible with the
threshold Čerenkov counters.

4.1.4 The polarized deuterium period (1998–2000)

After the installation of the RICH detector the particle identification capabilities of the HERMES experiment im-
proved substantially.

During the years 1998, 1999 and 2000 the HERMES experiment operated with a longitudinally polarized deuterium
target during low density data taking, and collected an integrated luminosity of approximately 209.2 pb−1. In the
periods of high density data taking at the end of every fill several unpolarized target gases were alternated. This
longitudinally polarized low density data combined with the high density data collected on a deuterium target was
used for the published observation of the exotic baryon Θ+(1540) [4]. During the same period a high density data set
was collected on an unpolarized hydrogen target.

4.1.5 The transverse magnet period (2002–2005)

In the long shutdown in the year 2001 that marked the transition of the HERA I period to the HERA II period with
increased luminosity at the collider experiments H1 and ZEUS, a transversely polarized hydrogen target was installed
at the HERMES experiment. The bending effect of the magnetic holding field with a strength of 0.3 T on the charged
particle tracks leads to a significantly worse resolution of the spectrometer when no corrections are applied.

During the shutdown a silicon strip detector array for the study of the Λ0 hyperon polarization was installed
just downstream of the target region. These so-called Lambda Wheels are not integrated in the track reconstruction

1In figures 4.31 and 4.32 the distribution of the longitudinal momentum Pz for the Σ− hyperon is representative for the energies considered
here.



61algorithms. The wider acceptance of the Lambda Wheels overlaps partially with the acceptance of the forward spec-
trometer, depending significantly on the longitudinal position of the interactions in the target cell. The effects of the
Lambda Wheels on the resolution are small, but lead to a slight degradation of the momentum resolution for events in
the region of overlapping acceptance.

During the running period from 2002 until 2005, data were collected on transversely polarized hydrogen during
low density periods and on several unpolarized target gases during high density periods. For the analysis of the exotic
baryons in the data collected on the polarized target it is necessary to apply a transverse magnet correction. The
development of this correction will be described in section 4.6.

4.1.6 The recoil period (2006–2007)

For the last two years of the HERMES experiment, three new detectors were installed to detect and identify the
recoiling target proton in deeply-virtual Compton scattering events. Collectively called the recoil detector, they consist
of a silicon strip detector for vertex tracking, a scintillating fiber barrel tracker for momentum determination in a
solenoidal field, and a photon detector for particle identification. Consistent with to the goal of detecting the recoiling
protons, there is no overlap between the recoil detector and the main spectrometer [96].

As part of the recoil upgrade the length of the target cell was reduced from 40 cm to 15 cm and the entire cell was
moved 25 cm forward into the detector. This changed the geometrical acceptance for Θ+(1540) events by approxi-
mately 15%, a value that was determined with Monte Carlo simulations.

The recoil detector uses a completely independent tracking algorithm. Events that are detected by any of the recoil
subdetectors are not included in the presented analyses. Because of the kinematic regime that is covered by the recoil
detector, which requires detected particles to be produced with momentum pointing backwards, it is very unlikely that
it can be used for the analysis of photoproduction events. The tracks detected by the forward spectrometer can still be
analyzed independently.

At the time of writing the data set collected during this period is in the final stages of calibration. The calibration
process, involving input from all subdetectors, influences the momentum resolution and the particle identification
efficiency. The data set that was available for the analysis presented in this thesis was calibrated with the calibration
data of the year before. It is therefore safe to assume that the conclusions are valid, although small changes in the
selected events will occur when the calibrated data becomes available.

The resolution of several resonances in data collected during the recoil period seems to be worse than is expected
even for uncalibrated tracks. A detailed map of the small solenoidal magnetic field of recoil detector was measured,
including the fringe fields in the front region of the forward spectrometer. For the analysis of the exotic baryons no
correction for these fringe field has been applied. It is not clear yet whether the degradation of the resolution is mainly
attributable to the fringe field.

The installation of the recoil detector required the removal of the polarized target gas system. The separation
between low density and high density data taking was still maintained. The target gas was varied between hydrogen
and deuterium, with a preference for hydrogen that resulted in a five times large data set on the hydrogen target. The
recoil data set collected on the deuterium target is expected to be the most similar to the polarized deuterium data
set of the period 1998–2000. The only differences are the installation of the Lambda Wheels in the front region,
partially overlapping with the forward spectrometer, and the shift of the target cell which reduces the acceptance for
very forward events.

4.1.7 Overview

In table 4.1 the number of collected DIS events and the total integrated luminosity for each data set is summarized.
For the observation of the exotic baryon Θ+ in the data collected on a deuterium target between the years 1998 and
2000 an integrated luminosity of 209.2 pb−1 was used, corresponding to 9.4 million DIS events. The only other data
set with a comparable number of events on a deuterium target was taken during the years 2006 and 2007, and which is
expected to contain approximately twice as many events. An even larger number of events was collected on a hydrogen
target during that period.
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Table 4.1: Comparison of the number of deep-inelastics scattering (DIS) events and integrated luminosity L for all
data sets. For the years 2006 and 2007 the integrated luminosity is not available yet, and the number of DIS events
is only available for the year 2006, and for hydrogen not separated in low and high density periods. These values are
therefore given in parentheses.

Data period Gas type DIS (M) L (pb−1)
1996–1997 H (pol) 2.382 49.9
1996–1997 H (unpol) 2.797 56.6
1996–1997 D (unpol) 4.511 104.5

1997 N (unpol) 1.919 51.4
2000 H (unpol, hd) 6.850 132.5

1998–2000 D (pol, ld) 9.407 209.2
2002–2005 H (pol, ld) 7.439 150.2
2002–2005 D (unpol, hd) 10.29 158.1
2006–2007 H (unpol, ld) (30.58) n.a.
2006–2007 H (unpol, hd) (30.58) n.a.
2006–2007 D (unpol, ld) (7.07) n.a.

4.2 Event selection criteria

The HERMES experiment was designed as a multi-purpose experiment. The collision events are collected and
stored on tape or disk for a wide range of different analysis topics, ranging from deep-inelastic scattering (where only
the detection of the scattered lepton is required) to hadron photoproduction (which requires several hadrons in the
final state but where the lepton is not detected). The hardware event triggers described in section 3.3.3 are purposely
kept general and additional selection criteria have to be applied to remove events that are not relevant to the analysis.
A balanced set of selection criteria reduces the number of background events while maintaining an unbiased and
sufficiently large sample of signal events.

Because the analyses presented in the following sections are all rather similar with respect to the selection criteria,
this section describes them in detail. The selection criteria can be divided in two groups: track selection criteria
involve only information from a single track, and event selection criteria combine multiple tracks in order to restrict
the event topology.

4.2.1 Track selection criteria

We first consider the track selection criteria. Before discussing the different resctrictions that are placed on the
kinematic parameters of the tracks used in this work, it is helpful to divide the detected tracks in two categories
depending roughly on the momentum of the particle that created them.

Often, low momentum particles are bent outside the geometrical acceptance of the back tracking region by the
field of the spectrometer magnet. The magnet chambers located inside the spectrometer magnet were designed to
reconstruct the momentum of these so-called magnet or short tracks. Because the particle identification detectors are
in the back region, it is impossible to identify these tracks or even separate them in hadrons and leptons. Commonly,
short tracks are assumed to be created by pions (and thus hadrons), since they are by far the most frequent particle
type at this low momentum. Only in the search for the exotic baryon Ξ−− will these short tracks be used.

The higher-momentum long tracks leave a signal in the back tracking detectors and, if they reach the particle
identification detectors, lepton-hadron separation and hadron identification are possible.

Fiducial volume

To ensure that each track is sufficiently inside the active volume of the tracking detectors and, for long tracks,
particle identification detectors, and to reduce secondary scattering events on the spectrometer magnet field clamps



63and structural parts of the detectors, only tracks in the fiducial volume are selected. The acceptable track parameter
are delimited by several components of the spectrometer:

• the front field clamp: |xoff + 172.0 tan θ cosφ| < 31.0 cm,

• the shielding plate: |yoff + 181.0 tan θ sinφ| > 7.0 cm,

• the rear field clamp, determined using the front partial track and neglecting the small vertical bend by the
spectrometer magnet: |yoff + 383.0 tan θ sinφ| < 54.0 cm,

• the rear field clamp, determined using the back partial track: |xpos + 108.0 xslope| < 100.0 cm and |ypos +
108.0 yslope| < 54.0 cm,

• the volume of the electromagnetic calorimeter: |xpos + 463.0 xslope| < 175.0 cm and 30.0 cm < |ypos +
463.0 yslope| < 108.0 cm.

In these expressions the coordinates xoff and yoff refer to the intersections with the plane z = 0, while the angles θ
and φ are the polar angles of the front partial track. For the back partial track the intersection with the plane z = 0 is
given by the coordinates xpos and ypos, and the horizontal and vertical slopes by xslope and yslope. Since short tracks
do not reach the back region, they only have to satisfy the first three expressions.

For short tracks there are no other track selection criteria that can be applied. There is no particle identification
possible; the short tracks are all assumed to be pions. For long tracks we need to ensure that the tracks are hadrons
and have the correct hadron type (pion, kaon, or proton) required for the analysis.

Hadron separation and identification

Hadron tracks are separated from lepton tracks by combining the signals of the preshower detector, the transition
radiation detector, the electromagnetic calorimeter, and the Čerenkov counters or the RICH detector using the proba-
bilistic procedure discussed in section 3.3.2. In this work tracks are considered hadrons when the probability that the
track was generated by a hadron is larger than the probability for a lepton, using the detector responses generated by
the event. In other words, the parameter PID3 + PID5 is required to be negative for hadron tracks.

Before the installation of the RICH detector only the Čerenkov detector was available for the separation of pions
and protons. In the events collected during that period, we identify the hadrons with a momentum above 4 GeV and
with a Čerenkov response below a threshold value as protons; the remaining hadrons are identified as pions. The
momentum of the protons will therefore always be larger than 4 GeV.

After the installation of the RICH detector, hadron identification improved due to the ability to separate kaons
from pions and protons. The hadron (mis-)identification efficiencies for the identification of a hadron i as type j were
shown in the form of the P -matrices P ji in the right panel of figure 3.8. For pions the identification efficiency Pππ is
above 90% for the full momentum range up to 15 GeV. No momentum restrictions need to be imposed on the pion
tracks, although tracks below 1 GeV and above 15 GeV are excluded to avoid outliers.

For kaons and protons the identification efficiencies PKK and P pp are not smooth or consistently high over the full
momentum range. For both kaons and protons a cusp is visible in the efficiencies at 10 GeV, caused by the Čerenkov
threshold for kaons in the gas radiator. This affects the misidentification of kaons as protons adversely. At 10 GeV half
of the kaons are misidentified as protons, indicated by the value P pK ≈ 50%. To avoid contamination of the proton
tracks with misidentified kaons, the momentum of the proton tracks is limited to values below 9 GeV. A substantial
contribution of misidentified kaons could introduce reflections of resonance decays in other hadronic decay channels.
As PKπ and PKp are both below 20%, there is no large misidentification of pions or protons as kaons and no risk of
a high contamination of the kaon tracks above 10 GeV. For kaons the momentum is thus allowed to be as large as
15 GeV.

The Čerenkov threshold in the aerogel tiles determines the minimum momentum at which a particle can be iden-
tified. For kaons this threshold is 2 GeV, for protons 4 GeV. Below the momentum threshold the particle will not
generate any Čerenkov light and cannot be identified by measuring the opening angle of the Čerenkov cones. Between
2 and 4 GeV the absence of any Čerenkov light is used as an identifying factor to provide proton identification, but at



64a lower efficiency. Due of these physical considerations the momentum for kaons is required to be larger than 2 GeV
and for protons larger than 4 GeV to obtain optimal hadron identification. Only in the search for the exotic baryon
Ξ−− was the minimum momentum of protons lowered to 2 GeV to access the low momentum protons required for
this final state.

For every identified particle the particle identification algorithm of the RICH returns a quality parameter, as already
discussed in section 3.3.2. This is defined as the logarithm to base 10 of the probability ratio for the most likely and
next-most likely particle type assignment. To reduce misidentification effects for protons this parameter is required to
be larger than 1.5. In other words, the proton tracks are over 30 times more likely created by a proton than by anything
else. The calculation of the RICH quality parameter is not included in the Monte Carlo simulations. When the data
was compared to Monte Carlo simulations or when the event selection efficiency was determined using Monte Carlo
simulations, this requirement on the RICH quality parameter had to be relaxed.

For pions no requirement is placed on the RICH quality parameter. The discussion above is also only applicable
to the hadron identification with the RICH detector, and not to events collected with the threshold Čerenkov counter.
No quality parameter is calculated for tracks collected during that period.

Summarizing these track selection criteria, the momentum selection for hadron requires the momenta 1 < Pπ <
15 GeV, 2 < PK < 15 GeV, and 4 < Pp < 9 GeV. With the threshold Čerenkov counters no kaons can be identified,
but the momentum requirements for pions and protons are maintained. To further reduce misidentification of (mostly)
kaons as protons, the RICH quality parameter for protons was required to be larger than 1.5.

Combinatorics

For the exotic baryon analyses presented in this thesis a fixed number of tracks was required in every event: two
hadrons for the Λ(1520) hyperon, three for the Θ+ analysis, and four for the Ξ−− search. Many events consist of more
tracks than the necessary configuration. In these cases all possible combinations with the necessary number of tracks
are considered. For example, when an event contains two protons (p1 and p2) and three pions (π1, π2, and π3) but
only one proton and two pions are required, the following six combinations of tracks are considered: p1π1π2, p1π1π3,
p1π2π3, p2π1π2, p2π1π3, p2π2π3.

4.2.2 Event reconstruction

To select candidate events that contain a decaying resonance, for example, a K0
S meson decaying to two pions, we

need to combine information from the two pion tracks. Since the two decay particles are created at the same position,
their tracks have to intersect within the resolution of the track reconstruction. Adding the four-momenta of the decay
tracks, we can determine the four-momentum, and thus the invariant mass of the resonance. The decay vertex and the
reconstructed invariant mass allow us to impose event selection criteria.

Topological selection

To determine whether two tracks originate at the same position, we determine the distance of closest approach
between the two tracks. The midpoint of the segment connecting the two points of closest approach on the tracks is
then defined as the decay vertex. For straight tracks the distance of closest approach can be calculated analytically,
but in the case of helically curved tracks in a (quasi-)homogenous magnetic field an approximation has to be used,
or a numerical solution calculated with an iterative method. The development of this algorithm will be the topic of
section 4.6.

Several weakly decaying resonances considered in this work (K0
S , Λ, Ξ−) are relatively long-lived. This means

that the vertex where they are created and their decay vertex can be resolved as separate points by the spectrometer.
The distance between these two vertices is called the vertex separation or decay length. The decay length can be used
as a (rather ineffective) selection parameter. Requiring a decay length larger than the resolution of the spectrometer
will remove a large number of background events, but select many resonance events. Unfortunately also a substantial
number of these long-lived resonance events will decay within the tracking resolution of the spectrometer.

If we want to go up in the decay chain, in order to determine the vertex of the proton and K0
S tracks, we need to

require that the track of the K0
S meson reconstructed from the two pions has indeed a invariant mass that is consistent
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Table 4.2: Average horizontal and vertical positions of the production vertex pK0

S for all data sets.
Data period Gas type x0 (cm) σ(x) (cm) y0 (cm) σ(y) (cm)
1996–1997 D (unpol) −0.090± 0.002 0.125± 0.002 0.062± 0.002 0.152± 0.003
1996–1997 H (pol) −0.082± 0.002 0.136± 0.002 0.040± 0.002 0.174± 0.003
1996–1997 H (unpol) −0.067± 0.002 0.135± 0.002 0.051± 0.002 0.164± 0.002
1997 N (unpol) −0.060± 0.002 0.136± 0.002 0.037± 0.002 0.165± 0.002
1998–2000 D (pol, ld) −0.129± 0.003 0.222± 0.003 0.054± 0.004 0.253± 0.004
2000 H (unpol, hd) −0.119± 0.007 0.217± 0.007 0.040± 0.009 0.233± 0.008
2002–2005 H (pol, ld) e+: 0.046± 0.008 0.232± 0.009 0.06± 0.02 0.197± 0.02

e−: 0.359± 0.005 0.233± 0.007
2002–2005 D (unpol, hd) 0.236± 0.003 0.216± 0.005 0.057± 0.004 0.247± 0.005
2006–2007 D (unpol, ld) 0.191± 0.003 0.214± 0.004 −0.031± 0.003 0.237± 0.003
2006–2007 H (unpol, hd) 0.198± 0.003 0.209± 0.003 −0.033± 0.003 0.248± 0.004
2006–2007 H (unpol, ld) 0.189± 0.002 0.206± 0.002 −0.031± 0.002 0.244± 0.002

with the mass of the K0
S meson. To account for the effects of the spectrometer resolution σ or the width of the

resonance Γ, we select events with an invariant mass inside a sufficiently broad window around the resonance mass.
A window with a width of 3σ will select almost all resonance events, but if the resonance is distributed among a large
amount of background events, the proportional increase of the number of selected events when going from a 2σ to a
3σ invariant mass window is small. In the case of the K0

S resonance the number of background events can be reduced
sufficiently by requiring a small distance of closest approach between the two pion tracks.

Production vertex

When we have reached the hypothetical event production vertex after stepping up the decay chain, we require that
this event production vertex is inside the target cell in the longitudinal direction. In the transverse direction the tracking
resolution would allow us to put strict requirements on the production vertex because the lepton beam is approximately
10 times narrower than the target cell. Unfortunately small, unknown changes in the beam position force us to take a
more ad-hoc approach. For every data set the average transverse coordinates of the production vertex are determined.
The deviations from this average beam position are then required to be comparable to the width of the distributions, in
much the same way as with the invariant mass window around intermediate resonances.

The average beam positions of the different data taking periods and conditions are compiled in table 4.2. The
average production vertex positions and distribution widths for events collected on the polarized hydrogen target
during the years 2002–2005 are separated for positron beam (2002–2004) and electron beam (2005). The transverse
target magnetic field shifted the positron and electron beam in opposite directions. The difference between the average
vertex position for electrons and for positrons was approximately 3 mm.

In the search for the exotic baryon Θ+, decaying to a proton and K0
S meson, the selection requirements were

extensively studied during the analysis of the events collected on the deuterium target in the period 1998–2000. The
distance of closest approach between the two pions was required to be smaller than 1.0 cm. The decay length of the
reconstructed K0

S meson was required to be larger than 7.0 cm. Based on the width of the observed K0
S resonance

peak in the distribution of the invariant mass M(π+π−), a window between 485 and 509 MeV was chosen. When
combining the reconstructed K0

S track with the proton track, a distance of closest approach smaller than 0.6 cm was
required. This vertex was required to be inside the target region and within 0.4 cm of the lepton beam.

The selection criteria determined during the original analysis of the exotic baryon Θ+ were verified to be valid
in the other data sets. Differences in the experimental conditions of other data sets did not influence the distribution
of the selection parameters. Only the tracking algorithm developed for the treatment of resonances decaying in the
transverse magnetic field was plagued by a worse longitudinal resolution, which affected the decay length requirement
of the K0

S meson.
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Figure 4.1: The peak region (red shaded region) and the sideband region (blue shaded region) for the Λ hyperon.

The selection criteria used in the search for the exotic baryon Ξ−− were based on the previous selection criteria.
They were verified using events in the peak and the sidebands of resonance events, using a method presented in
section 4.2.3.

4.2.3 Optimization of event selection criteria

To determine the optimal values for the hard cut-off parameters in selection criteria, the distributions of the se-
lection variables are compared for events in the peak and sideband regions of well established resonance peaks. In
figure 4.1 this is demonstrated for the Λ hyperon. The peak region is usually defined as the ±3σ interval around the
mean position of the Gaussian peak. Smaller intervals are appropriate when there are many background events inside
the peak region. The sideband region is defined outside of an approximately ±5σ interval around the central value of
the Gaussian peak but not further away than 8σ. This region is chosen to remove all resonance events, but at the same
time keep the kinematic differences between events in the sideband region and background events in the peak region
small. The background events in the peak region are assumed have the same kinematic characteristics as events in the
sideband region.

When the distribution distsidebands of the selection variable for events in the sideband region is normalized to
unity, it is written as pdfbackground and can be interpreted as the probability distribution for background events to
have a specific value of the selection variable. After correcting the distribution distpeak for events in the peak region
for background events under the peak by subtracting a fraction of the sideband region from the peak region, and after
normalization, a similar probability distribution pdfsignal for signal events is constructed. The probability distributions



67of the selection parameter are then compared for both types of events. Mathematically, this can we summarized as

pdfsignal =
1

nsignal
(distpeak − nbackground

distsidebands
nsidebands

), (4.1)

pdfbackground =
distsidebands
nsidebands

. (4.2)

The region where values of the selection variable are more likely to occur for signal events than for sideband
events, is selected. Events outside of this region are discarded.

When the number of events in the signal and sideband region are of similar magnitude, this method gives a realistic
estimate for the optimal value. Changes in the optimal value will lead to addition of events that are more likely
background, or removal of events that are more likely signal. For situations where a small number of signal events has
to be selected from a sample with many background events, a stronger suppression of background events is beneficial.

4.3 Search for the exotic baryon Ξ(1860)

In October 2003 the experiment NA49 at CERN presented evidence for an exotic baryon Ξ(1860).2 At a mass of
1862 MeV a narrow resonance was observed in the particle and antiparticle final states corresponding to the decay of
the Ξ−−(1860) resonance to a Ξ−(1320) hyperon and a negative pion, and the decay of the Ξ0(1860) resonance to a
Ξ−(1320) hyperon and a positive pion [39]. The observed resonance was interpreted as the exotic baryon multiplet
Ξ(1860) with strangeness S = −2, predicted by the Chiral Quark Soliton Model [17], with a crypto-exotic quark
configuration ssudd for the Ξ0(1860) and a manifestly exotic quark configuration ssddu for the Ξ−−(1860). This
result has never been confirmed by other experiments.

In this section the search for the exotic baryon resonance Ξ(1860) at the HERMES experiment is presented. We
consider the decay of the neutral and of the doubly charged members of the Ξ(1860) multiplet, i.e. Ξ−−(1860) →
Ξ−(1320)π− and Ξ0(1860) → Ξ−(1320)π+. The results are compared to the Ξ0∗(1530) hyperon, which has the
same decay channel as the Ξ0(1860) resonance.

First the data set and trigger configuration used for this analysis are discussed, and basic event selection criteria
are described. Ghost tracks could influence the results of this analysis and have to be discarded. In addition, event
selection is performed using topological information about the different tracks in the event. After determining the
efficiency of event detection at the HERMES experiment in simulations, the results for the cross section are presented.

4.3.1 Data sets and event reconstruction

Trigger configuration

In the original Θ(1540) and Ξ(1860) analyses at the HERMES experiment [4, 5], both polarized and unpolarized
deuterium data collected during the years 1998, 1999 and 2000 were included. Later it was realized that the trigger
configuration for unpolarized high density data taking during these years suppressed photoproduction events, as de-
scribed in section 4.1.1. During high density data taking a minimum energy deposit in the electromagnetic calorimeter
of 3.5 GeV was required, compared to 1.5 GeV for low density polarized data taking. The effect of the unpolarized
high density data in the original analysis is limited to an increase of the number of background events, and the inclusion
does not change the number of events in the Ξ0∗(1530) resonance peak.

In this section the original Ξ(1860) analysis, described in detail in the release report [109] and published as
reference [5], is repeated using only the polarized deuterium data3 collected during the years 1998, 1999, and 2000
(corresponding more specifically to the latest offline data productions 98d0, 99c0, and 00d0). The data sample
contains a total integrated luminosity ofL = 209.2 pb−1, or approximately 9.4 M DIS events collected by the HERMES
detector.

2In its 2004 version of the Review of Particle Physics [110], the Particle Data Group has included this state under the name Φ(1860). We will
continue to use the name Ξ(1860) in this work, as it is commonly referenced as such in the literature.

3This includes both longitudinally and tensor-polarized deuterium data.
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Figure 4.2: The distributions of the invariant mass M(pπ−) (left panel) and M(pπ−π−) (right panel) for the particle
(blue) and antiparticle decay chains (red), and for the combination of both (black).

Reaction channels

In the search for the exotic baryons Ξ−−(1860) and Ξ0(1860) and the simultaneous analysis of the hyperon
Ξ0∗(1530), we considered the same decay chains as the NA49 experiment. The Ξ−−(1860) baryon decays to a
Ξ−(1320) hyperon and a negative pion π−. The Ξ0∗(1530) and Ξ0(1860) baryons both decay to a Ξ−(1320) hyperon
and a positive pion π+. The Ξ−(1320) hyperon in turn decays to a Λ(1115) hyperon and a negative pion π−. Finally,
the Λ(1115) hyperon decays to a proton p and a negative pion π−.

In the notation for the invariant mass and other variables, the required charges of the pions are indicated consis-
tently. The first pion always indicates the charge required for the decay pion from the Λ(1115) hyperon, the second
pion the charge required for the decay pion from the Ξ−(1320) hyperon, and the third pion the charge required for the
decay pion from the Ξ(1530) or Ξ(1860) hyperons. Using this notation, the event candidates from a Ξ0∗(1530) decay
are denoted as pπ−π−π+ and the candidates from a Ξ−−(1860) decay as pπ−π−π−.

Naturally, the decay chains of the antiparticles consist of the corresponding antiparticles. Whenever the charge
of the proton is not explicitely indicated, antiparticle events are considered together with the corresponding particle
events in all kinematic distributions. For example, when the invariant mass M(pπ−π−π+) for Ξ0∗(1530) candidate
events is shown, also Ξ

0∗
(1530) candidates decaying to pπ+π+π− are included. When the charge of the proton

p is indicated explicitely, only events with this proton charge are included. Anti-particle decay events contribute
for approximately 20% to the total number of collected events. In figure 4.2 the distributions of the invariant mass
M(pπ−) and M(pπ−π−) are shown for particle (blue) and antiparticle (red) decay chains separately.

Magnet tracks or short tracks

Due to the high track multiplicity required for this analysis, a significant fraction of the pions in the candidate
Ξ(1860) decay events have a momentum low enough to be bent outside of the geometrical acceptance of the spec-
trometer. These magnet tracks or short tracks still generate signals in the magnet chambers (MC), located inside the
spectrometer magnet, which allows their momentum to be reconstructed. They are not required to be outside of the
rear field clamp or inside the electromagnetic calorimeter, as is required for regular (or long) tracks.

Because the magnet tracks do no reach the particle identification detectors, we have to make assumptions as to



69the type of particle that generated the track. Since the majority of the low momentum particles at HERMES are pions,
magnet tracks are usually considered to be pions. Approximately 70% of the events selected for this analysis contain
at least one short pion track.

Track selection

For every event we require four or more hadron tracks in the spectrometer. Every event has to contain at least one
proton p or antiproton p, as identified by the RICH detector, and at least three charged pions π (either as identified
by the RICH detector, or as a magnet track). The charges of the proton and pion tracks determine in which reaction
channel the event will be counted.

In events with more than three charged pion tracks, all combinations with three pion tracks (pπ1π3π4, pπ2π3π4,. . . )
are considered as separate events. Different permutations of the three pion tracks are considered, assigning each pion
the roles of decay product from the Λ(1115), Ξ(1320), or Ξ(1860). In the rare event that multiple permutations pass
the selection criteria only one permutation is accepted in the distributions for the invariant mass M(pπ−π−π±) to
avoid double counting. All permutations correspond to the same invariant mass M(pπ−π−π±).

No explicit momentum requirements are imposed, but the minimal momentum for pions is 0.5 GeV for magnet
tracks due to the bending in the spectrometer magnet, and 1.0 GeV for identification in the RICH detector. Tracks with
a momentum below 2 GeV are never identified as protons by the RICH detector. Therefore, all protons will have a
momentum greater than 2 GeV.

Event reconstruction

To select only those events that can accomodate the full Ξ(1530) or Ξ(1860) decay chain, the invariant mass of the
proton and the first pion M(pπ−) is required to be in the±3σ window around the mass of the Λ(1115) hyperon. This
ensures that a Λ(1115) candidate was present in the event. Similarly, the invariant mass M(pπ−π−) should be in the
±2.5σ window around the mass of the Ξ(1320) hyperon. Because the distribution of the invariant mass M(pπ−π−)
has a significant contribution of background events under the Ξ(1320) hyperon peak, the invariant mass window is
chosen smaller. The numerical invariant mass ranges are determined in section 4.3.3.

The combination of the previous particle identification requirements and the invariant mass windows will be re-
ferred to as basic selection criteria. In figure 4.3 the distributions of the invariant masses M(pπ−), M(pπ−π−),
M(pπ−π−π+) and M(pπ−π−π−) are shown in black for events that satisfy the basic selection criteria.

The distributions of the invariant masses M(pπ−π−π±) are expected to be similar in shape, due to the parallels
between the decay chains Ξ0(1860) → pπ−π−π+ and Ξ−−(1860) → pπ−π−π−. From naive combinatorics we
expect the distribution of background events in the pπ−π−π+ spectrum to be three times larger than the background
in the pπ−π−π− spectrum. There are only two possibilities to have three equally charged pions, but six possibilities
when one pion has a different charge. In the lower panels of figure 4.3 we observe that the M(pπ−π−π−) distribution
is indeed lower than the M(pπ−π−π+) distribution, but by less than a factor three. However, this naive calculation
does not take into account other non-combinatoric contributions to the distribution of background events.

4.3.2 Ghost tracks

In the distribution of the invariant mass M(pπ−π−) for events with a Λ(1115) candidate, shown in the upper
right panel of figure 4.3 and reproduced in the right panel of figure 4.4, the Ξ(1320) hyperon is clearly visible at the
expected mass, but also a strong unphysical peak is present at approximately 1280 MeV.

When the invariant mass M(pπ−) is plotted versus the invariant mass M(pπ−π−), as shown in the left panel of
figure 4.4, the Λ(1115) hyperon is visible as a horizontal band with an accumulation of events corresponding to the
Ξ(1320) hyperon. In addition, an unphysical correlation between the two invariant masses shows up (between the
diagonal red lines). When only the events with an invariant mass M(pπ−) in the horizontal band are selected, the
Ξ(1320) hyperon is again clearly visible at the expected position in the distribution of the invariant mass M(pπ−π−).
When we select only the correlated events between the diagonal red lines, the distribution shown in red is obtained,
with an excess of events responsible for the unphysical peak.
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Figure 4.3: The distributions of the invariant mass M(pπ−) (upper left panel), M(pπ−π−) (upper right panel),
M(pπ−π−π+) (lower left panel) and M(pπ−π−π−) (lower right panel), before (black) and after (red) ghost tracks
are removed (see section 4.3.2) and when the invariant mass windows between the vertical red lines are used for
event selection (corresponding to the basic selection criteria). The expected position of the Ξ(1530) hyperon and the
Ξ(1860) resonance are indicated.
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Figure 4.4: The effect of ghost tracks on the distributions of the invariant massesM(pπ−) andM(pπ−π−). When the
invariant massM(pπ−) is plotted versus the invariant massM(pπ−π−) (left panel), an unphysical correlation between
the two invariant masses shows up (between the diagonal red lines). When only the events with an invariant mass in
the horizontal band corresponding to the Λ(1115) candidate are selected, the Ξ(1320) hyperon is clearly visible in the
distribution of the invariant mass M(pπ−π−) (right panel), but a strong unphysical peak at approximately 1280 MeV
forms. The distribution shown in red includes only the correlated events between the red lines.

In order to understand the correlation in figure 4.4, we selected events on the diagonal correlation line and dis-
covered that these events are indeed responsible for the unphysical peak in the distribution of the invariant mass
M(pπ−π−) (right panel of figure 4.4).

The two negative pions in the events responsible for the correlation are both magnet tracks, and they have almost
the same momentum P and track angles θ and φ. This can be observed without any event selection criteria, as shown
in figure 4.5. Magnet tracks are sometimes reconstructed twice in the same event with only slightly different track
parameters. We will refer to these spurious tracks as ghost tracks, a term also used in the literature [49].

In this analysis, the lower limit on the decay length of the Λ(1115) candidate indirectly removes most ghost tracks
from the selected events. When very similar pion track parameters are used to reconstruct the decay vertices of the
Λ(1115) and Ξ(1320) candidates, the vertices will be close together. Even though these decay length criteria will
remove most of the ghost track events from the sample of selected events, we constructed a dedicated test for ghost
track suppression based on the differences between the momenta ∆P , and the angles ∆θ and ∆φ for two like sign
pions in the event. Events are rejected when the differences ∆P , ∆θ, and ∆φ are in one of the two rectangular regions
delimited by

|∆P | < 0.1 GeV, (4.3)
|∆φ| < 0.3 rad, (4.4)
|∆θ| < 0.03 rad, (4.5)

|∆P | < 0.75 GeV, (4.6)
|∆φ| < 0.03 rad, (4.7)
|∆θ| < 0.005 rad. (4.8)

Additionally, two pions in an event are required to have intersection points with the z = 0 plane separated by a
distance larger than 0.0001 cm. This value, much smaller than the resolution of the track reconstruction, was chosen
such that no legitimate events have a smaller track separation, but ghost track have a separation of exactly zero. The
intersection of a track with the z = 0 plane his used as a track parameter in the HERMES data, and comes directly
from the track reconstruction algorithm.
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Figure 4.5: The difference of the track angles θ and φ, and the momentum P for two like sign pion tracks in the same
event indicates that the track reconstruction code introduces ghost tracks. The structure in the correlation of the angles
θ or φ, and the momentum difference for the two pions is not understood. The ghost track suppression regions (see
text) are indicated in red. To prevent overpopulation only a fraction of the events is drawn.

The effect of the ghost track suppression on the distribution of the invariant mass M(pπ−π−), before applying
the decay length and DCA selection criteria, is shown in figure 4.6. Not every trace of the fake peak has disappeared,
but since we select only events inside the Ξ(1320) peak, the possible effect of ghost tracks on this analysis will be
negligible.

With a similar layout as figure 4.3 before event selection, figure 4.15 presents the distributions of the invariant mass
M(pπ−), M(pπ−π−), M(pπ−π−π+), and M(pπ−π−π−) after event selection and ghost track suppression. In the
first figure the black distributions include ghost track events, and the red distributions were obtained after ghost track
suppression. The large effect in the upper right panel of figure 4.3 is drastically reduced when the selection criteria (in
particular the lower limit on the decay length) are introduced. The influence of ghost tracks on this analysis is assumed
to be removed.

In principle this ghost track problem should be resolved at the track reconstruction level, which is outside the scope
of this thesis. A remaining correlation seems to be present in the left panel of figure 4.6, but no particular anomaly for
events in that region could be determined.

4.3.3 Event selection

In addition to the basic selection criteria discussed in section 4.3.1, the topology of each event is used to select
candidate Ξ(1530) and Ξ(1860) decay events. Since the Ξ(1530) and Ξ(1860) resonances both have decay modes to
the Ξ(1320) hyperons, which in turn decays to Λ(1115) hyperons, these hyperons have to be reconstructed from the
detected final state. To select events which can accomodate the full decay chain, we used selection criteria based on
the distance of closest approach between two tracks, the decaylength of a resonance candidate (defined as the distance
between the production and the decay vertex), and the invariant mass of the intermediate resonances.

Method for determination of optimal selection parameters

In order to determine the optimal selection criteria, we studied each selection variable individually, while keeping
the other selection criteria unchanged. In the distributions of selection variables in the following subsection, events
are included that satisfy all but the criteria under study.

We used the optimization method described in section 4.2.3. The criteria were optimized using the well established
Λ(1115) and Ξ(1320) hyperons. For example, the distance of closest approach between the proton and pion tracks at
the Λ(1115) decay vertex was optimized using events in the Λ(1115) peak and sideband regions in the distribution of
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Figure 4.6: The suppresion of ghost tracks in the distributions of the invariant masses M(pπ−) and M(pπ−π−).
In the correlations between the invariant mass M(pπ−) and M(pπ−π−) (left panel), the unphysical correlation is
removed. In the distribution of the invariant mass M(pπ−π−) (right panel), the unphysical peak at 1280 MeV is
strongly reduced after ghost track suppression (red).

the invariant mass M(pπ−). Similarly, the distance of closest approach between the Λ(1115) and pion tracks at the
Ξ(1320) decay vertex was optimized using events in the Ξ(1320) peak and sideband regions.

Since the peak of the Ξ0∗(1530) hyperon in the distribution of the invariant mass M(pπ−π−π+) is not very
prominent (see figure 4.3), we used the same optimization technique but intentionally extend the allowed ranges to
values that are assumed to be safe. This avoids narrow kinematic selection when the motivation is not convincing.
Also, it allows the extrapolation of the selection criteria to the Ξ−−(1860) decay chain.

Λ(1115) selection

To select events containing a Λ(1115) candidate, we use the distance of closest approach DCA(p, π) between
the proton track and the pion track. The midpoint of the segment of closest approach defines the decay vertex of the
Λ(1115) candidate. Due to the long lifetime of the Λ(1115) hyperon, the longitudinal decay length ∆Z(Λ), defined
as the difference between the z-coordinates of the production and decay vertex, is required to be large. Finally, the
invariant mass M(pπ−) has to be inside a ±3σ window around the determined Λ(1115) mass.

Distance of closest approach between the proton and pion tracks In the left panel of figure 4.7 the normal-
ized distributions of the distance of closest approach DCA(p, π) between the proton and pion tracks for signal and
background events are shown. The signal events (red) have a narrow distribution compared to the distribution for the
background events (blue). The difference between the two distributions is shown in the right panel, and is used to
determine the value of the distance of closest approach below which an event is more likely a signal event than from
background. The upper limit for the distance of closest approach is chosen at 1.5 cm.

Longitudinal decay length of the Λ(1115) candidate In the left panel of figure 4.8 the normalized distributions
of the longitudinal decay length ∆Z(Λ) of the Λ(1115) candidate for signal and background events are shown. The
signal events (red) have longer decay lengths than background events (blue). Above 7.0 cm signal events are more
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Figure 4.7: The normalized distributions of the distance of closest approach DCA(p, π) between the proton and
pion tracks from the decay of the Λ candidate (left panel), for signal (red) and the background events (blue), and the
difference between signal and background distributions (right panel). The vertical lines indicate the maximum distance
of closest approach allowed by the selection criteria.

likely to be accepted than background events, so that value is used as the lower limit for the decay length of the
Λ(1115) candidate.

Distribution of the invariant massM(pπ−) In figure 4.9 the distribution of the invariant massM(pπ−) is shown.
When we fit the distribution with a Gaussian function on top of a second order polynomial background shape, the mean
value of the peak is 1115.79 ± 0.012 MeV and the width is 2.58 ± 0.018 MeV. The ±3σ interval around the central
value corresponds with the range 1.108 < M(pπ−) < 1.124 GeV.

Ξ(1320) selection

We proceed one step up the decay chain with the requirements for the Ξ(1320) candidate. The distance of closest
approachDCA(Λ, π) between the reconstructed Λ(1115) track and the pion track is used to select Ξ(1320) candidates.
The midpoint of the segment of closest approach defines the decay vertex of the Ξ(1320) candidate and the production
vertex of the Λ(1115) candidate. The longitudinal decay length ∆Z(Λ) of the Ξ(1320) candidate is required to be
large, again motivated by the long lifetime of the Ξ(1320) hyperon. The invariant mass M(pππ) has to be inside a
±2.5σ window around the determined Ξ(1320) mass.

Distance of closest approach between the Λ(1115) and pion tracks In the left panel of figure 4.10 the normalized
distributions of the distance of closest approach DCA(Λ, π) between the reconstructed Λ(1115) track and the pion
track for signal and background events are shown. The signal events (red) have a narrower distribution than the
background events (blue), although the difference is not as pronounced as for the Λ(1115) vertex. The difference
between the two distributions is shown in the right panel. The upper limit for the distance of closest approach is
chosen at 1.0 cm.

Longitudinal decay length of the Ξ−(1320) candidate In the left panel of figure 4.11 the normalized distributions
of the longitudinal decay length ∆Z(Ξ) of the Ξ(1320) candidate for signal and background events are shown. The
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Figure 4.8: The normalized distributions of the longitudinal decay length ∆Z(Λ) of the Λ(1115) candidate (left panel),
for signal (red) and the background events (blue), and the difference between signal and background distributions (right
panel). The vertical lines indicate the minimum decay length required by the selection criteria.
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Figure 4.9: The distributions of the invariant masses M(pπ−) (left panel) and M(pπ−π−) (right panel) after applying
event selection criteria, fitted with a Gaussian function on top of a second order polynomial background shape.
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Figure 4.10: The normalized distributions of the distance of closest approach DCA(Λ, π) between the Λ(1115)
candidate and the pion track (left panel), for signal (red) and the background events (blue), and the difference between
signal and background distributions (right panel). The vertical lines indicate the maximum distance of closest approach
allowed by the selection criteria.

signal events (red) have longer decay lengths than background events (blue). Above 10.0 cm signal events are more
likely to be accepted than background events, so that value is used as the lower limit for the decay length of the
Λ(1115) candidate.

Distribution of the invariant mass M(pπ−π−) In figure 4.9 the distribution of the invariant mass M(pπ−π−)
is shown for events. When we fit the distribution with a Gaussian function on top of a second order polynomial
background shape, the mean value of the peak is 1322.3 ± 0.4 MeV and the width is 5.0 ± 0.3 MeV. The ±2.5σ
interval around the central value corresponds with the range 1.309 < M(pπ−π−) < 1.335 GeV.

Ξ(1530) and Ξ(1860) selection

Finally, to select Ξ(1530) and Ξ(1860) candidate events, the distance of closest approach DCA(Ξ, π) between
the reconstructed Ξ(1320) track and the pion track at the Ξ(1530) or Ξ(1860) decay vertex can be used as a selection
variable. The midpoint of the segment of closest approach defines the production vertex of the Ξ(1320) candidate.

Distance of closest approach between the Ξ(1320) and pion tracks Due to the low number of events with
a Ξ(1320) candidate track, it is difficult to find an optimal value for the distance of closest approach DCA(Ξ, π)
between the Ξ(1320) and pion tracks. In figure 4.12 the normalized distribution of this variable is shown for signal
and background events. To avoid any bias, but at the same time remove unphysical events, we decide to select all
events with a distance of closest approach smaller than 2.5 cm. This removes only outliers in the distribution.

Event production vertex

The event production vertex is defined as the midpoint of the segment of closest approach between the lepton
beam and the reconstructed Ξ(1530) or Ξ(1860) track. In figure 4.13 the transverse and longitudinal coordinates
of the production vertex are shown for signal and background events in the Ξ0∗(1530) peak. The number of events
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Figure 4.11: The normalized distributions of the longitudinal decay length ∆Z(Ξ) of the Ξ(1320) candidate (left
panel), for signal (red) and the background events (blue), and the difference between signal and background distribu-
tions (right panel). The vertical lines indicate the minimum decay length required by the selection criteria.
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Figure 4.12: The normalized distributions of the distance of closest approach DCA(Ξ, π) between the Ξ− candidate
and the pion track from the decay of the Ξ0∗ candidate (left panel), for signal (red) and background events (blue),
and the difference between signal and background distributions (right panel). The vertical lines indicate the maximum
distance of closest approach allowed by the selection criteria.
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Figure 4.13: The normalized distributions of the transverse (left panel) and longitudinal (right panel) coordinates of
the production vertex of the Ξ0∗ candidate, for signal (red) and background events (blue).

in these distributions is very low and the low statistical precision makes it difficult to conclude on any meaningful
limits. We therefore decide to use the following commonly accepted selection criteria. By imposing a maximum
allowed transverse distance between the production vertex and the lepton beam of 0.6 cm, we ensure that the selected
events originate from beam-target interactions. We ensure that the production vertex is located inside the target cell by
requiring longitudinal coordinates between −18.0 cm and 18.0 cm.

Contamination from K0
S events

In figure 4.14 the distribution of the invariant mass of the oppositely charged pions M(π+π−) is shown for the
Ξ0∗(1530) candidate events. There is no peak visible at the mass of the K0

S resonance, indicating that there is negli-
gible contamination from this resonance. We decided not to discard events in an invariant mass windows around the
K0
S peak.

Summary of the event selection criteria

In figure 4.15 the invariant mass distributions of M(pπ−), M(pπ−π−), M(pπ−π−π+), and M(pπ−π−π−) are
shown for events satisfying the event selection criteria and ghost track suppression outlined in the previous sections.

4.3.4 Detector acceptance and selection efficiency

As described in section 3.4, the HERMES spectrometer is a forward detector and does not cover the full 4π geo-
metrical acceptance in which resonance cross sections are usually specified. In order to calculate the cross section (or
an upper limit) for the photoproduction of the baryons Ξ(1530) and Ξ(1860) from the observed events in the HER-
MES spectrometer, we need to determine the fraction of the produced events that are first detected in the spectrometer,
and also satisfy the selection criteria listed in section 4.3.3. The combined effect of the detector acceptance and the
selection efficiency will be referred to as the efficiency.

Since the production mechanism of Ξ(1860) baryons is unknown, we used the Monte Carlo generator gmc dcay,
described in section 3.4, and varied the parameters of the internal model. For the Ξ(1530) hyperon the initial momen-
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Figure 4.14: The distributions of the invariant mass M(π+π−) for the two oppositely charged pions in Ξ0∗(1530)
candidate events. No K0

S peak can be observed at the expected mass, indicated by the arrow.



80

M(pπ-) (GeV)

E
ve

nt
s 

/ 0
.5

 M
eV

0

1000

2000

3000

1.1 1.11 1.12 1.13
M(pπ-π-) (GeV)

E
ve

nt
s 

/ 2
.5

 M
eV

0

25

50

75

100

1.25 1.3 1.35 1.4 1.45

M(pπ-π-π+) (GeV)

E
ve

nt
s 

/ 1
0 

M
eV

Ξ0(1860)

0

10

20

1.4 1.6 1.8 2
M(pπ-π-π-) (GeV)

E
ve

nt
s 

/ 1
0 

M
eV

Ξ--(1860)

0

10

20

1.4 1.6 1.8 2

Figure 4.15: The distributions of the invariant mass M(pπ−) (upper left panel), M(pπ−π−) (upper right panel),
M(pπ−π−π+) (lower left panel) andM(pπ−π−π−) (lower right panel), after ghost tracks are removed. The expected
position of the Ξ0∗(1530) hyperon and the Ξ(1860) resonance are indicated.
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Table 4.3: The efficiency for Ξ−−(1860) events from gmc dcay Monte Carlo simulations with different values of the
width σ(Pt) of the transverse momentum distribution and the mean 〈Pz〉 of the longitudinal momentum distribution.

σ(Pt) (GeV) 0.2 0.3 0.4 0.4 0.4 0.4
〈Pz〉 (GeV) 3.95 3.95 3.95 3.67 3.95 4.22
efficiency (%) 0.022 0.027 0.031 0.028 0.031 0.027

tum distributions Pt and Pz from a PYTHIA Monte Carlo simulation were used as input for the gmc dcay Monte Carlo
generator.

Efficiency for Ξ−−(1860) events

With the gmc dcay Monte Carlo generator, Ξ−−(1860) events were generated with an invariant mass distribution
with mean M = 1862 MeV and finite but small intrinsic width Γ = 2 MeV. The unknown initial momentum distribu-
tion of the Ξ(1860) baryon was modeled as a Gaussian distribution with width σ(Pt) for the transverse momentum Pt,
and a monotonically falling distribution with mean 〈Pz〉 for the longitudinal momentum Pz . The Gaussian width σ of
the reconstructed mass peak is 10.2 MeV, defining the experimental resolution in the invariant mass M(pπ−π−π−).

We varied the parameters of the initial momentum distributions Pt and Pz to determine the effects on the efficiency.
Changing the width of the transverse momentum distribution σ(Pt) from 0.4 GeV to 0.2 GeV corresponds to a decrease
of 30% in the efficiency (a wider transverse momentum distributions Pt will lead to more events in the detector
acceptance). The average longitudinal momentum 〈Pz〉 was changed from the default value 3.9 GeV by 0.3 GeV in
both directions without a significant effect on the efficiency.

The efficiency for Ξ−−(1860) decay events with these momentum distributions is summarized in table 4.3. We
conclude that the final acceptance is quite insensitive to variations in the longitudinal momentum distribution Pz , but
varies mildly with the width of the transverse momentum distribution Pt. No simulations were performed for the
Ξ0(1860) baryon, and the efficiency is assumed to be equal as for Ξ−−(1860) decay events.

Efficiency for Ξ0∗(1530) events

For the Ξ0∗(1530) hyperon we repeated the same procedure as for the Ξ−−(1860) baryon. Since the Ξ0∗(1530)
is a P13 resonance with non-zero spin, and at the time of writing it was not possible to generate these states with
the gmc dcay Monte Carlo generator, we simulated only isotropic decays. Ξ0∗(1530) events were generated with the
gmc dcay Monte Carlo generator using a Gaussian mass distribution with width Γ = 2 MeV around the central value
1530 MeV. The Gaussian width σ of the reconstructed mass peak is 7.3 MeV, defining the experimental resolution in
the invariant mass M(pπ−π−π+).

The parameters of the initial momentum distributions Pt and Pz were varied. In table 4.4 the efficiency for
Ξ0∗(1530) baryons is summarized for the different parameters for the initial momentum distributions that were sim-
ulated. The variation of the efficiency with the average longitudinal momentum 〈Pz〉 is small, but for the Ξ0∗(1530)
hyperon the width of the transverse momentum distribution has more influence.

The Ξ0∗(1530) hyperon can also be simulated with the PYTHIA Monte Carlo generator. The generation of events
with the PYTHIA Monte Carlo generator is many times slower than with the gmc dcay Monte Carlo generator, and
only a small number of events in the detector acceptance could be obtained. A sufficiently large number of Ξ0∗(1530)
events could be simulated in the full 4π acceptance, but the small detector acceptance reduced this number enormously,
resulting in only a few candidate events after event selection. In figure 4.16 (left panel) the full simulated sample is
presented before and after event selection. The result for the efficiency for the Ξ0∗(1530) hyperon is summarized in
table 4.5, but this should only be considered as an order of magnitude, not as a precise value.

From the PYTHIA Monte Carlo simulation in the full 4π acceptance (with a sufficiently large number of events) we
extracted the initial momentum distributions of the Ξ0∗(1530) hyperon. These distributions were then used as input
for the gmc dcay Monte Carlo generator and the efficiency was extracted using a large number of simulated events.
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Table 4.4: The efficiency for Ξ0∗(1530) events from gmc dcay Monte Carlo simulations with different values of the
width σ(Pt) of the transverse momentum distribution and the mean 〈Pz〉 of the longitudinal momentum distribution.

σ(Pt) (GeV) 0.3 0.4 0.4 0.4 0.4
〈Pz〉 (GeV) 3.95 3.95 3.67 3.95 4.22
efficiency (%) 0.026 0.036 0.032 0.036 0.035
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Figure 4.16: The reconstructed Ξ0∗(1530) peak obtained with the PYTHIA Monte Carlo generator (left panel) and
with the gmc dcay Monte Carlo generator using the decay angular distribution obtained from the PYTHIA simulation
(right panel). The distributions in black are obtained with all simulated events, in red after event selection. In table 4.5
the number of generated and accepted events are summarized.

The determined efficiency for the Ξ0∗(1530) hyperon is given in table 4.5. In figure 4.16 the simulated Ξ0∗(1530)
peak is shown before and after event selection. The event selection criteria reduce the number of events by a factor
three.

4.3.5 Determining the number of Ξ(1530) and Ξ(1860) events

The distributions of the invariant masses M(pπ−π−π+) and M(pπ−π−π−) are shown as figure 4.17 for events
satisfying the selection criteria determined in section 4.3.3. A peak corresponding to the Ξ0∗(1530) hyperon is visible,
but in the region around 1860 MeV no structure is observed.

To determine the central value of the Ξ0∗(1530) peak and the upper limits on the number of Ξ0(1860) and
Ξ−−(1860) events in the region around 1860 MeV, we needed to estimate the number of background events. We
used the event mixing method to obtain a description of the background shape. Several precautions had to be taken
before a reliable estimate was obtain. A discussion of the event mixing method will be given in section 4.7. By com-
bining a Ξ(1320) candidate from one event with pions from other events, we obtain a statistically uncorrelated sample
of mixed events in which we do not expect to see any narrow resonances. We can use the distributions of the invariant
mass M(pπ−π−π+) and M(pπ−π−π−) for mixed events as estimates for the distributions of background events.
Because we can take a large number of mixing combinations, the statistical precision of the mixed event distributions
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Table 4.5: The results of the Monte Carlo simulation of the Ξ0∗(1530) with PYTHIA and with gmc dcay using the
decay angular distribution obtained from the PYTHIA simulation. The value obtained directly from the PYTHIA simu-
lation is based on only a handful of events for which all decay products were inside the acceptance of the spectrometer.
Due to the large statistical uncertainty it is therefore given in parentheses and only indicative of the order of magnitude.

Generator PYTHIA gmc dcay
Pt, Pz simulated from PYTHIA

efficiency (%) (0.15) 0.10
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Figure 4.17: The distributions of the invariant masses M(pπ−π−π+) (left panel) and M(pπ−π−π−) (right panel)
after event selection.
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Figure 4.18: The distributions of the invariant mass M(pπ−π−π+) and M(pπ−π−π−) after removing ghost tracks
and applying all selection criteria. The fit to the mixed event background (green) describes the distribution well in the
relevant region above 1.48 GeV. The fit was allowed to accommodate a Gaussian peak at 1862 MeV in both channels,
but the number of events is consistent with zero.

is considerable better than for the original distributions. The invariant mass distributions for mixed events was fitted
with the sum of a fourth order polynomial and a Gaussian with large width, which describes the shape sufficiently well
above 1.48 GeV.

To determine the number of Ξ0∗(1530) events, the shape of the mixed event distribution was fixed but the normal-
ization allowed to vary. Additionally, two Gaussian functions were added to describe the Ξ0∗(1530) hyperon and the
Ξ0(1860) resonance. For the Ξ0(1860) resonance we fixed the mass to 1862 MeV and the width to the resolution of
10.2 MeV, determined with Monte Carlo simulations (section 4.3.4). After fitting we find for the Ξ0∗(1530) a mass
M = 1536.5± 2.5 MeV and a width σ = 6.9± 1.6 MeV, consistent with the resolution determined with Monte Carlo
simulations (section 4.3.4). The number of events in the Ξ0∗(1530) peak equals 29± 8. For the Ξ0∗(1860) resonance
the number of events is 3± 3, consistent with zero.

Similarly, one Gaussian function with fixed mass and width was added to describe the Ξ−−(1860) resonance. For
the Ξ−−(1860) resonance the number of events in the peak is 0± 5, consistent with zero.

The uncertainty on the number of events is calculated from the fit results assuming a Gaussian uncertainty distri-
bution. For a small number of events, however, a Poisson distribution is more appropriate. With a 90% confidence
level, the actual number of events is less than 7.4 for the Ξ0(1860) resonance, and less than 2.4 for the Ξ−−(1860)
resonance [1].

4.3.6 Ξ(1530) and Ξ(1860) cross sections

The cross section σγN→ΞX for photoproduction of a the resonance Ξ on a deuterium target is given by

σγD→ΞX =
σeD→ΞX

Φ
, (4.9)

=
NΞ→pπππ
produced

Φ ·Br · L
, (4.10)

=
NΞ→pπππ
observed

Φ ·Br · L · ε
. (4.11)



85The photoproduction cross section is related to the electro-production σγN→ΞX by the photon flux factor Φ. At the
HERMES experiment the flux factor is Φ = 0.02 GeV−3. The electro-production cross section is calculated using the
integrated luminosity L = 209.2 pb−1, the branching ratio Br of the decay channel Ξ → pπππ, and the number of
produced decay events NΞ→pπππ

produced . To determine the number of produced events from the number of observed events
NΞ→pπππ
observed , the efficiency ε determined in section 4.3.4 is used.

For the decay of the Ξ0∗(1530) hyperon, the efficiency varies between 0.036% and 0.10%, depending on the model
for the production mechanism. The larger value was obtained from gmc dcay Monte Carlo simulations with initial
momentum distributions from PYTHIA Monte Carlo simulations, whereas for the smaller value the internal model of
gmc dcay was used. For the Ξ0(1860) and Ξ−−(1860) resonances, the efficiency is between 0.022% and 0.031%
depending on the parameters Pt and Pz of the initial momentum distributions.

For the decay of the Ξ0(1860) and Ξ−−(1860) resonances the branching ratio Br is equal to 1. The 90% confi-
dence level upper limit on the photoproduction cross section σγD→Ξ−−(1860)X is between 1.9 nb and 2.7 nb. For the
cross section σγD→Ξ0(1860)X we find an upper limit between 5.7 nb and 8.1 nb, depending on the kinematic model
used in determining the efficiency.

The decay of the Ξ0∗(1530) hyperon to Xi−π+ has a branching ratio Br = 2
3 . The photoproduction cross section

σγN→Ξ0∗(1530)X is then between 10.4± 2.9 nb and 28.8± 8.0 nb.
The main source of systematic uncertainty on the determined cross section and upper limits is the unknown pro-

duction mechanism for the Ξ0∗(1530), Ξ0(1860) and Ξ−−(1860) resonances. Although the Ξ0∗(1530) resonance is
simulated in the PYTHIA Monte Carlo generator, it is not clear whether a realistic model for its production mechanism
is used. The gmc dcay Monte Carlo generator makes assumptions on the momentum distributions Pt and Pz , which
are based on the extrapolation of the production mechanism of known hyperons.

4.3.7 Summary and conclusion

We have shown that at the HERMES experiment the neutral and doubly-charged members of the exotic baryon
multiplet Ξ(1860) could not be detected in the expected invariant mass region in a total integrated luminosity of
209.2 pb−1. The hyperon Ξ0∗(1530) is observed at an invariant mass of 1536.5± 2.5 MeV, compared to the the world
average value M = 1531.8 ± 0.3 MeV [1]. This difference between the determined mass and the world average is
very similar to the observed difference for Λ(1520) hyperons due to the effect of a variable acceptance in the mass
region around the peak.

After Monte Carlo simulations of the Ξ−−(1860) baryon, performed with the gmc dcay Monte Carlo generator,
we determined that the detector acceptance and selection efficiency for Ξ−−(1860) decay events is between 0.022%
and 0.031%. The yield of Ξ−−(1860) decay events is less than one event, corresponding to an upper limit (at 90%
confidence level) on the photoproduction cross section of 2.7 nb for the doubly-charged member, and 8.1 nb for the
neutral member of the Ξ(1860) multiplet, assuming equal detector acceptance and selection efficiency.

The cross section for photoproduction of the Ξ0∗(1530) hyperon was determined to be between 10.4 nb and 28.8 nb.
The large systematic uncertainty is due to the unknown production mechanism of the Ξ0∗(1530) hyperon.

4.4 Search for the exotic baryon Θ+ using time-of-flight identification

In this section we present the search for the exotic baryon Θ+ in the same data set used for the original analysis at
the HERMES experiment [4] but using events with a different kinematic behavior. The observation of the exotic baryon
Θ+ in these events could be considered a confirmation of the original observation. A null result would not contradict
the original analysis but provide important information on the production mechanism of the exotic baryon Θ+ if its
existence is confirmed by other experiments.

The proton identification capabilities of the RICH detector are significantly reduced at momenta below 4 GeV. This
can be observed in the identification efficiencies P ji in figure 3.8. For low momenta no Čerenkov rings are generated in
the radiator gas volume. The identification is completely determined by the rings generated in the aerogel tiles, which
are absent entirely for proton momenta below 3.6 GeV. In the published searches for exotic baryons at the HERMES
experiment proton tracks with a momentum below 4 GeV were excluded to avoid these inefficiencies [4, 5].



86The tracks of low momentum particles can be identified using the time-of-flight technique described in sec-
tion 3.3.2. This technique does not allow a full separation of pions, kaons, and protons at all momenta below 3 GeV,
but pions and protons can be distinguished. Due to the low number of kaons produced at the HERMES experiment,
this is not a limiting condition when no kaons are required in the final state.

The analysis presented in this section only includes the data set collected on the polarized deuterium target be-
tween 1998 and 2000. In the data taking period between the years 2002 and 2007, problems with double pulsing
of the scintillator hodoscope readout electronics prevented the identification of hadron tracks with the time-of-flight
technique.

4.4.1 Time-of-flight identification

As described in section 3.3.2, particle tracks are identified by the reconstructed mass calculated from the timing
difference between the bunch crossing and the detector signal in the scintillator hodoscopes H1 and H2. For each
hodoscope detector a squared mass m2

i is reconstructed, if the particle generated a response in the detector. For some
events only one of the two detectors generated a response. These events are not included in this analysis, but they only
represent a small fraction of the events.

To identify protons and pions, a rectangular region was defined in the space (m2
1,m

2
2). The boundaries of the

region were left to vary and their position was optimized on the number of reconstructed Λ(1115) → pπ− decays.
Only for tracks with a momentum below 2.7 GeV the time-of-flight identification is performed. Proton and pion tracks
with a higher momentum are very difficult to separate with this method.

The optimal identification was reached for the region shown in the left panel of figure 4.19. The boundaries are
defined by 1.3 < m2

1 + m2
2 < 2.5 and |m2

1 −m2
2| < 0.7. In figure 4.20 the distributions of the difference m2

1 −m2
2

and the summ2
1 +m2

2 are shown, with vertical lines indication these boundaries. The corresponding distribution of the
invariant mass M(pπ−) is shown in the right panel of figure 4.19. We experimented with different selection criteria,
for example a circular region in (m2

1,m
2
2) space, but they did not significantly improve the identification efficiency.

The misidentification of pions and kaons as protons using the time-of-flight method can be estimated from the right
panel of figure 4.20. It is large, but unfortunately unavoidable when using this method where only a limited amount of
information about each track is available.

4.4.2 Reconstruction of the K0
S meson and exotic Θ+ baryon

For the reconstruction of the K0
S meson and the exotic Θ+ baryons, events are selected with three hadrons, one

of which is required to be identified as a proton by the time-of-flight technique, but without particle identification
requirements on the other two hadrons. Due to the requirement that the proton is identified by the time-of-flight
technique, its momentum is restricted to be below 2.7 GeV. This selects a completely independent set of events as
compared to the original analysis.

The usual event selection criteria for the search for exotic Θ+ decays were used. They were discussed in sec-
tions 4.2.1 and 4.2.2.

The distribution of the invariant mass M(π+π−) for the reconstructed K0
S candidates is shown in the left panel of

figure 4.21. The K0
S resonance peak contains approximately 1500 events. We point out that many of these events are

three pion events where one pion is misidentified as a proton by the time-of-flight technique.
In the right panel the distribution of the invariant massM(pπ+π−) is shown. By selecting events that have different

average kinematic variables, the shape of the distribution has changed substantially. Unfortunately the number of
events in the relevant invariant mass region is reduced. The arrow indicates the position of the observed resonance in
the original analysis. In the inset the distribution is shown with error bars to indicate that the small excess of events is
completely consistent with a statistical fluctuation.

4.4.3 Monte Carlo simulation

The expected acceptance for decay events of an exotic Θ+ resonance with a mass of 1540 MeV with a low mo-
mentum proton was studied with the gmc dcay Monte Carlo generator described in section 3.4. In figure 4.22 the
momentum distribution of the proton is shown after generation, simulation and reconstruction of the detected tracks,
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Figure 4.21: The distributions of the invariant mass M(π+π−) (left) and M(pπ+π−) (right) when the proton is
identified using the time-of-flight technique for data collected during the years 1998–2000. No resonance is observed
in the region around 1.54 GeV (inset shows region between 1.50 and 1.58), or at the position of the previously reported
mass 1.528 GeV indicated by the arrow.

and after event selection. The number of events with a proton momentum below 2.7 GeV is small when compared to
the number of events with a proton momentum above 4 GeV.

The distribution of the proton momentum depends on the unknown production mechanism of the Θ+ baryon. For
this simulation the momentum distribution of the Ξ0∗(1530) hyperon obtained from a simulation with the PYTHIA
Monte Carlo generator was used as input for the momentum distribution of the Θ+(1540) baryon in the gmc dcay
Monte Carlo generator. The acceptance for Θ+(1540) decay events is not expected to change significantly for other
assumed production mechanisms.

4.4.4 Summary and conclusion

In this section the identification of low momentum proton tracks was presented using the time-of-flight technique.
By reconstructing the mass of the particles from the timing information in the scintillator hodoscopes, protons with a
low momentum can be identified. The method was demonstrated and optimized on the Λ hyperon. In the distribution
of the invariant mass M(pπ+π−) for events where the proton was identified using the time-of-flight technique no
resonance peak was observed, although the number of events is very small. Monte Carlo simulations confirm that the
acceptance for events originating in the decay of an exotic baryon Θ+ to a proton and K0

S meson is small.

4.5 Determination of the cross section of the hyperon Λ(1520)

Since the first publications in the recent wave of evidence for the exotic baryon Θ+ the interest in baryon spec-
troscopy has revived. Not only were there numerous theoretical and experimental studies on the properties of the
members of the predicted exotic baryon multiplet, but also non-exotic baryons have regained interest because they
might give us information on the exotic production mechanisms necessary to explain the experimental disagreement.
In particular hyperons with a mass close to the observed mass M = 1540 MeV of the exotic baryon Θ+, such as
the hyperon Λ(1520), have been the subject of several theoretical publications [66, 111, 112]. The values of the
production cross sections for hyperons and antihyperons, and their ratio, could help in determining the production
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Figure 4.22: The acceptance and efficiency for the detection of Θ+ decays using a the time-of-flight method was
determined using a Monte Carlo simulation. In black the generated momentum distribution of all proton is shown,
marked by a sharp increase at low momentum due to secondary particles. In green the momentum is shown for the
protons that are accepted by the detector acceptance and particle tracking algorithms. The vertical red line limits the
low momentum region where the TOF method is available for proton identification.



90mechanisms relevant in the observed exotic processes. Recent results presented by the LEPS experiment even point to
the simultaneous production of the exotic baryon Θ+ and the non-exotic baryons Λ(1520) [22].

The neutral hyperon Λ(1520), decaying into a proton p and a negative kaon K− with a branching ratio of 22.5%,
is a well established resonance with a mass M = 1519.5 ± 1.0 MeV and intrinsic width Γ = 15.6 ± 1.0 MeV [1].
It has the isospin I , spin J , and parity P given by the configuration I(JP ) = 0( 3

2

−). At the HERMES experiment
the Λ(1520) hyperon is clearly visible in the collected data. Its antiparticle Λ(1520), with the corresponding decay
channel to an antiproton p and a positive kaon K+, is more difficult to distinguish due to the lower number of detected
events with antiprotons. Additional event selection criteria are necessary to suppress background events.

In this section the photoproduction cross section of the Λ(1520) and Λ(1520) hyperons are determined. With the
ratio of the cross sections for particle and antiparticle the expected number of observed Θ− at the HERMES experiment
is calculcated, assuming similar production mechanisms.

4.5.1 Data sets and event selection

In the published analyses of the exotic baryons Θ+ and Ξ−− at the HERMES experiment [4, 5], both polarized
and unpolarized deuterium data collected during the years 1998, 1999, and 2000 were included. As described in
section 4.3.1, it was later realized that the trigger configuration for unpolarized high-density data taking suppressed
photoproduction events. In this analysis only low-density polarized deuterium data collected during the years 1998,
1999, and 2000 are included. The data sample, identical to the sample used in section 4.3, contains a total integrated
luminosity L = 209.2 pb−1 equivalent to approximately 9.4 M DIS events collected by the HERMES spectrometer.

Due to the general nature of the events collected with the HERMES spectrometer, we need to apply additional
selection criteria for the analysis of this data set. In the following paragraphs the selection criteria are summarized. It
is understood that the antiparticle decay channels are treated similarly as the corresponding particle decay channels,
except where explicitely mentioned otherwise. Details on the implementation of the following track and event selection
criteria can be found in section 4.2.

Basic selection criteria

For every event we require two or more long hadron tracks in the main spectrometer.4 When more than two long
hadron tracks are present, all combinations of two tracks are considered. For the selection of Λ(1520) events (Λ(1520)
events), every event has to contain one proton (antiproton), as identified by the RICH detector, with a momentum
between 4 and 9 GeV, and one oppositely charged kaon, also identified by the RICH detector, with a momentum
between 2 and 15 GeV. The momentum ranges are chosen such that the identification efficiencies are high and do not
change abruptly with varying momentum. Together, these criteria are referred to as the basic selection criteria in what
follows.

The efficiency of the particle identification algorithms was studied by the RICH group for the original analysis of
the exotic baryon Θ+ (see the discussion in section 4.2.1). The P -matrices were not determined explicitely for the
topology and kinematics of the Λ(1520) resonance decay to a two-hadron final state, but were assumed to be equal
in the relevant momentum region (4–9 GeV for p, and 2–15 GeV for K). The difference in track multiplicity (three
tracks for the decay of the exotic baryon Θ+, compared to two tracks in the decay of the Λ(1520) hyperon) will lead
to a higher probability for correct hadron identification in this analysis, since the number of possibly overlapping rings
in the RICH detector is smaller.

In this analysis no requirements are imposed on the value of the RICH quality parameter for the proton or kaon
tracks. As explained in section 3.3 the RICH quality parameter is defined as the logarithm to base 10 of the ratio of the
likelihoods for the particle type assignments that are most likely and next most likely to have produced the hit pattern
in the RICH detector. The effect of different quality parameter requirements was studied. Minimum values between
0 and 4 were investigated, corresponding to at least equal and to at least 104 times higher probabilities for the mostly

4Long tracks reach the particle identification detectors in the back region of the HERMES spectrometer. Short tracks or magnet tracks, on the
other hand, are bent outside of the spectrometer acceptance by the spectrometer magnet. These tracks, usually with low momentum, cannot be
identified in the spectrometer. More details about magnet tracks can be found in section 4.3.1.
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Figure 4.23: The momentum distribution of the protons p (left panel) and kaonsK (right panel) for different minimum
values of the RICH quality parameter. From light to dark the quality parameter is required to be larger than 0, 1, 2,
3, and 4. Inside the selected momentum range indicated by the vertical lines, there is a distortion of the shape of the
distributions. Consequently, no lower limit on the value of the quality parameter was imposed for the selection of
candidate Λ(1520) events.

likely particle type assignment compared to the other possible particle types.5 Higher values of the quality parameter
correspond to more reliably identified particle tracks, and thus cleaner data samples.

Only a small improvement in the resolution of the invariant mass M(pK) was observed for higher values of the
quality parameter. For a quality parameter value larger than 4 the resolution was 3.95 MeV, compared to 4.05 MeV
without any requirement on the quality parameter. The number of selected events was approximately three times lower
when requiring a quality parameter higher than 4, than without such a requirement.

By selecting events according to the quality parameter, an implicit momentum selection is introduced. Particles
with a higher momentum are more difficult to distinguish and have correspondingly lower values for the quality pa-
rameter. As shown in figure 4.23, an increase of the required minimum quality parameter changes the momentum
distribution in the relevant momentum range for both protons (left panel) and kaons (right panel). Neither this distor-
tion nor the shape of the quality parameter distributions itself could be reproduced in Monte Carlo simulations.

The requirements on the quality parameter were abandoned due to the associated implicit but unknown distortion
of the momentum distribution of the selected events. Since the determination of the detector acceptance and selec-
tion efficiency depends strongly on the correct description of the spectrometer in the Monte Carlo simulations (see
section 4.5.2), the results presented here are obtained without a lower limit on the value of the quality parameter.

Λ(1520) selection criteria

In addition to the basic selection criteria, which use only information from a single particle track, the topology of
the event is used to select candidate Λ(1520) decay events. The distance of closest approach DCA(p,K) between the
proton and kaon tracks is required to be less than 0.6 cm. The midpoint of the line segment of closest approach defines
the decay vertex of the Λ(1520) candidate. The production vertex of the Λ(1520) is defined as the midpoint of the

5The quality parameter is a strictly positive number. When two particle type assignments have equal likelihood, a situation that occurs trivially
for all short tracks, the track is considered not identified and is discarded in this analysis.



92segment of closest approach between the reconstructed Λ(1520) track and the lepton beam.6

Motivated by the longitudinal vertex resolution of the HERMES spectrometer of approximately 3 cm and the mean
lifetime of the Λ(1520) resonance cτ ≈ 12.6 fm, the distance ∆R between the production vertex and the decay
vertex of the Λ(1520) candidate is required to be less than 5 cm (and for causality the decay vertex is required to
be downstream of the production vertex). This means that, within the tracking precision of the spectrometer, the
production and decay vertices of the Λ(1520) hyperon are at the same position. It follows that the longitudinal
coordinate of the decay vertex should be inside the target cell, within the range −18.0 < z < 18.0 cm. The transverse
distance R(p,K) of the decay vertex to the average position of the lepton beam is required to be smaller than 4 mm.

A Monte Carlo simulation, discussed in section 4.5.2, was used to determine the parameters of these selection
criteria, which will be referred to as the Λ(1520) selection criteria.

Resonance suppression

Events from the resonance decays φ(1020) → K+K− and K∗/K
∗
(892) → K±π∓ are an important source of

background events in this analysis. One of the decay products of the φ(1020) or K∗(892) can be misidentified as the
proton from a Λ(1520) decay7, or it can be identified correctly and act as a third track in the event8.

The clearest contamination occurs when the two kaons from the φ(1020) resonance decay are selected as the two
decay particles of the Λ(1520) candidate, which means that one of the kaons is misidentified. In figure 4.24 the
distributions of the invariant mass M(K+K−) are shown for the charge combinations pK− (left panel) and pK+

(right panel), when the proton p is assigned the kaon mass. A clear resonance peak corresponding to the φ(1020)
meson indicates that kaon misidentification as protons is substantial.9 These events are easily removed by requiring
the invariant mass M(K+K−) to be outside the interval 1.01–1.03 GeV (as indicated on the figure). This is referred
to as the φ(1020) veto.

It is also possible that only one of the decay particles of the Λ(1520) candidate originated in a φ(1020) orK∗(892)
resonance decay. The second decay particle of the φ(1020) or K∗(892) escapes detection in the spectrometer, or is
detected as an additional particle in the final state. In the latter case, combinations with all other tracks in the detector
are considered and the invariant mass is required to be outside of a sufficiently broad window around the mass of
the φ(1020) or K∗(892). With this method we can reject all φ(1020) and K∗(892) decay events where a kaon is
misidentified as a proton and the other decay product identified correctly, and all φ(1020) and K∗(892) decay events
where both decay particles are correctly identified.10

In the left panel of figure 4.25 the effect of the simple φ(1020) veto and of the additional resonance suppression
criteria involving a third track is visualized. Before any resonance suppression is applied, the black distribution is
obtained. The entries in the filled blue distribution are removed by the φ(1020) veto and the open blue distribution is
obtained. The other resonance suppression criteria remove only the entries included in the filled red distribution. The
effect of the additional resonance suppression criteria is small compared to the simple φ(1020) veto. The number of
entries not removed by the φ(1020) veto is low and no structure is visible for these events in the invariant mass region
relevant for this analysis. Since the number of collected events decreases by approximately one order of magnitude
for every additional hadron in the acceptance of the HERMES spectrometer, this is in line with expectations. For this
analysis only the φ(1020) veto resonance suppression is used.

When looking at the Dalitz plot for the kaon track and proton/misidentified kaon track in the right panel of fig-
ure 4.25, it is clear that φ(1020) resonance events (corresponding to the vertical band) can not be completely removed
without sacrificing some Λ(1520) events (corresponding to the horizontal band). However, the effect is negligible

6The mean values of the transverse horizontal and vertical coordinates of the Λ(1520) decay vertex are x0 = −0.141 cm and y0 = 0.056 cm.
For this analysis the lepton beam was assumed to have transverse coordinates (0, 0). The selection criteria influenced by this transverse deviation
impose a limit that is more than three times the average deviation from zero. The results presented here are unlikely to be changed significantly
when the average beam position would be taken into account.

7Very few events are assumed to have two or more misidentified tracks.
8A third possibility, namely when one of the two decay particles escapes detection, cannot be removed by an event-based selection criterium.
9Due to the low probability for misidentification of pions as protons, as can be seen in the P pπ panel of the P -matrix in figure 3.8, the corre-

sponding contamination from K∗(892) resonance decays is negligible.
10The rejection ofK∗(892) decay events also takes into account the distance of closest approach and the decay vertex position. These additional

requirements prevent that too many legitimate events are removed.
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Figure 4.24: The distributions of the invariant mass M(K+K−) for events in the pK− (left panel) and pK+ (right
panel) samples, when the proton is assumed to be a misidentified kaon. All event selection criteria are applied, except
for the φ(1020) veto. A clear φ(1020) peak indicates that there is a substantial contamination of the protons. The
vertical red lines indicate the invariant mass region where events are suppressed by the φ(1020) veto.

because the bulk of the bands of the φ(1020) and Λ(1520) hyperons are well separated, and no peak is visible in the
filled blue distribution.

The effect of ghost track events was investigated here as well. No ghost tracks were observed among the selected
events (i.e. the number of events with momenta and angles close together was not larger than expected for physical
tracks). This is due to the different identification requirements for the two tracks. Thus, no ghost track suppression
was applied. The list of selected events was also checked for event double counting.

The lists of selected events for the Λ(1520) and Λ(1520) decay channels were cross-checked between two analyz-
ers, using different analysis platforms, with a nearly perfect agreement of 99.9%. All different events were manually
inspected and could be explained as numerical precision errors (for example, a decay length of 5.0001 cm versus
4.9999 cm).

4.5.2 Monte Carlo simulations

As described in section 3.4, the HERMES spectrometer is a forward spectrometer and does not cover the full
4π geometrical acceptance (in the resonance center of mass frame) in which resonance cross section are usually
specified. The event selection criteria necessary to resolve the Λ(1520) resonance peak reduce even further the number
of observed Λ(1520) decay events used in the determination of the cross section. We have to determine the combined
effects of the detector acceptance and the selection efficiency using Monte Carlo simulations. Additionally, the Monte
Carlo simulations help us to determine the detector resolution and the optimal selection parameters.

Because the Λ(1520) hyperon is not included in the PYTHIA Monte Carlo generator, the samples of Λ(1520)
and Λ(1520) decay events were generated with the gmc dcay Monte Carlo generator. Unless mentioned otherwise,
the simulations were performed around a central mass M = 1520 MeV with an intrinsic width Γ = 16 MeV, corre-
sponding to the world average value [1]. The initial momentum distributions Pt and Pz were obtained from PYTHIA
simulations, except when the details of the production mechanism were not expected to influence the results. Specifi-
cally, for the determination of the resolution and the study of the selection criteria, the internal model of the gmc dcay
Monte Carlo generator was used.
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Figure 4.25: The effect of the additional resonance suppression criteria on the distribution of the invariant mass
M(pK−) is investigated in the left panel. The distribution in black is obtained without suppression of events from
φ(1020) or K∗(892) resonance decays. The distribution in blue is obtained after applying only the φ(1020) veto. The
events removed by the φ(1020) veto are shown as the filled blue distribution. The filled red distribution consists of
the events that are only removed by all additional resonance suppression criteria. In the right panel the Dalitz plot is
shown for the kaon track and proton/misidentified kaon track.

Experimental resolution in the invariant mass M(pK)

To determine the experimental resolution in the invariant mass M(pK) of the HERMES spectrometer, Λ(1520)
and Λ(1520) decay events were generated with zero intrinsic width Γ = 0 MeV. In other words, all decay events were
generated with the same resonance mass M = 1520 MeV. In this simulated sample the resolution of the spectrometer
is responsible for any smearing of the reconstructed invariant mass. In the invariant mass region around 1520 MeV,
and after applying all selection criteria, the resolution is 4.05 MeV for the Λ(1520) events and 4.29 MeV for the
Λ(1520) events. Consequently, the binning for the invariant mass distributions is chosen as 4 MeV. The values for the
resolution will later be used to fit the invariant mass distributions of the selected data events with the convolution of a
Breit-Wigner function to describe the resonance and a Gaussian function for the spectrometer resolution.

Verification of the selection criteria

Using the Monte Carlo samples we investigated the validity of the selection criteria. Since the gmc dcay Monte
Carlo generator does not produce background events, we are not able to optimize the selection criteria by comparing
the background events with the signal events. However, the simulated Λ(1520) decay events allow us to determine
how many legitimate events would be removed by the selection criteria. Since the distributions in the recorded data
are wider due to the presence of events which are not described by our required event topology, we remove as many
background events as possible without removing a substantial fraction of the events from Λ(1520) decays.

The upper limit on the distance of closest approachDCA(p,K) between the proton and the kaon tracks was varied
from 0.1 cm to 1.0 cm, gradually weakening the requirement on the events. For each value the selection efficiency was
determined. The results are shown in the left panel of figure 4.26 for the Λ(1520) and Λ(1520) events. The upper
limit of 0.6 cm provides a good trade-off between selecting most of the Λ(1520) events and reducing the amount of
background events from unrelated events. The distribution of the distance of closest approach after all other selection
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Figure 4.26: The maximum distance of closest approach DCA(p,K) between the proton and the kaon track was
varied between 0.1 cm and 1.0 cm for events generated with the Monte Carlo generator gmc dcay. For every value of
the upper limit the percentage of selected events is shown in the left panel. In the right panel, the distribution of the
distance of closest approach between the proton and the kaon track is shown, before (blue) and after (red) applying all
selection criteria. An upper limit of 0.6 cm on the distance of closest approach with the upper limit (indicated by the
vertical line) selects most events.

criteria in the right panel of figure 4.26 also indicates that this upper limit selects the majority of the Λ(1520) events,
and removes only the small fraction of outliers.

Similarly, the optimal value for the decay length ∆R of the Λ(1520) candidate can be determined. The upper limit
on the decay length was varied from 1.0 cm to 10.0 cm and for every value of the upper limit the selection efficiency
was determined. In the left panel of figure 4.27 the results are shown for Λ(1520) and Λ(1520) events. The upper limit
of 5.0 cm removes some legitimate events (as can be seen on the right panel), but this stricter limit is motivated by the
distribution of the decay length in the data. The width of the fitted Gaussian with mean fixed at zero is σ = 2.7 cm,
which corresponds to the longitudinal distance resolution.

Finally, the optimal value for the distanceR(p,K) of the Λ(1520) decay vertex to the lepton beam was determined.
Also here the maximum distance was varied between 0.1 cm and 1.0 cm, and the efficiency was determined for every
value. The left panel of figure 4.28 shows the results for Λ(1520) and Λ(1520) events. The upper limit of 0.4 cm
removes very few legitimate events (as visible on the right panel), but reduces the number of background events
substantially.

Detector acceptance and selection efficiency for Λ(1520) events

To obtain the cross section for photoproduction of the Λ(1520) and Λ(1520) hyperons, we need to determine the
fraction of the produced Λ(1520) and Λ(1520) hyperons that decay inside the limited acceptance of the spectrometer
and, after track reconstruction, satisfy the selection criteria listed in section 4.5.1. The combined effects of the detector
acceptance and the selection efficiency, from now on for brevity referred to as the efficiency, are determined with Monte
Carlo simulations.

Because the Λ(1520) hyperon is not included in the PYTHIA Monte Carlo generator, we cannot determine the
efficiency for Λ(1520) and Λ(1520) events using a realistic model for the production of the Λ(1520) hyperon. Instead,
we used the gmc dcay Monte Carlo generator to simulate Λ(1520) and Λ(1520) decay events. The efficiency for
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Figure 4.27: The maximum decay length ∆R of the Λ(1520) candidate was varied between 1.0 cm and 10.0 cm for
events generated with the Monte Carlo generator gmc dcay. For every value of the upper limit, the percentage of
selected events is shown in the left panel. In the right panel, the distribution of the decay length of the Λ(1520)
candidate is shown, before (blue) and after (red) applying all selection criteria. An upper limit of 5.0 cm on the decay
length (indicated by the vertical line) discards a moderate number of events. The fit with a Gaussian function is used
to determine the resolution in the z direction as approximately σ = 2.7 cm.
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Figure 4.28: The maximum distance R(p,K) of the Λ(1520) decay vertex to the lepton beam was varied between
0.1 cm and 1.0 cm for events generated with the Monte Carlo generator gmc dcay. For every value of the upper limit,
the percentage of selected events is shown in the left panel. In the right panel, the distribution of the distance of the
Λ(1520) decay vertex to the lepton beam is shown, before (blue) and after (red) applying all selection criteria. An
upper limit of 0.4 cm on the distance (indicated by the vertical line) selects nearly all events.



97Λ(1520) and Λ(1520) events determined from the Monte Carlo simulations is assumed to be the same as for the data
events collected by the spectrometer.11

The unknown initial momentum distributions of the Λ(1520) resonances are needed to generate decay events with
the gmc dcay Monte Carlo generator. We used the momentum distributions Pt and Pz of several other hyperons
obtained from PYTHIA Monte Carlo simulations in the full 4π acceptance (the momentum distributions of the antihy-
perons were used for the simulations of the Λ(1520) hyperon). In table 4.6 the used hyperons are listed together with
their quark configuration and mass. It is assumed that the production mechanism of the Λ(1520) resonance is similar
to the production mechanisms of the other hyperons, and thus that the initial momentum distributions are indeed com-
parable. After determining the initial momentum distributions for the hyperons, we used the gmc dcay Monte Carlo
generator to determine the efficiency for Λ(1520) and Λ(1520) events.

To determine any systematic differences between proton and neutron targets, three different PYTHIA Monte Carlo
simulations in the full 4π acceptance were used. The first two samples were generated on a proton target (proton
sample) and on a neutron target (neutron sample), without any restrictions on the generated events. Due to their low
cross section, the heavier hyperons Σ∗ and Ξ∗ have a very low yield in the proton and neutron samples. When nuclear
effects are ignored, the deuterium target used in this analysis can be described by the average of the proton and neutron
samples.

In a third simulation, available only on a proton target, all generated events were required to contain at least one
Λ(1115) in the final state before simulation of the detector responses and track reconstruction.12 Since the simulation
of the particle tracks in the detector is the most computationally intensive step, this speeds up the simulation process
significantly and more events could be generated. All hyperons used in this analysis, except the Σ+ and Σ− resonances,
have dominant decay modes to Λ(1115), so in most cases the Λ(1115) requirement does not restrict the simulated
sample. This sample will be referred to as the selector sample.

Efficiency for the detection of Λ(1520) events In figure 4.29 the efficiencies for the detection of a produced
Λ(1520) or Λ(1520) hyperon are shown, when using the simulated momentum distributions of the indicated hyperons
on a proton sample (left panel) and the neutron sample (right panel) as input for the gmc dcay Monte Carlo generator.
In figure 4.30 the efficiencies obtained with the momentum distributions from the selector sample are shown.

The efficiencies for Λ(1520) events are equal on the proton and neutron targets, and rise slowly with the mass
of the antihyperon used as model for the initial momentum distribution. In the simulations, the average transverse
momentum Pt of the produced hyperons is higher for heavier hyperons, associated with more hyperon decay products
in the detector acceptance.

For the efficiency of the Λ(1520) resonance a similar general behavior is visible, although largely obscured by out-
liers due to the specific quark configuration of the hyperons.13 The detector acceptance depends strongly on the trans-
verse momentum of the produced hyperon, which is determined by the specific production mechanism. Lower effi-
ciencies are observed when the initial momentum distributions are modeled after the Λ(1115), Σ(1190) and Σ∗(1385)
resonances. This can be explained by the lower transverse momentum of hyperons which are produced as decay
product of a higher resonance, or where a diquark from the target is reused in the produced hyperon.

Effects of the resonance momentum distributions after production In figures 4.31 (proton sample) and fig-
ure 4.32 (neutron sample) the reason for the differences in efficiency for Λ(1520) and Λ(1520) events is illustrated in
the case of an initial momentum distribution from the Σ− hyperon. For the proton sample the momentum distributions
for the Σ− and Σ+ hyperons exhibit a similar behavior and the efficiencies for Λ(1520) and Λ(1520) events are of
similar magnitude. For the neutron sample the momentum distributions are very different, which is reflected in the
very different efficiencies for Λ(1520) and Λ(1520) events.

11Hardware trigger inefficiencies (in the order of a few percent) are not included in the Monte Carlo simulations, but the resulting differences in
efficiency between data events and simulated Monte Carlo events are negligible compared to the uncertainty caused by other effects.

12This Monte Carlo sample was generated for Λ(1115) polarization studies on the transversely polarized hydrogen target. A similar sample on
a neutron target was not available.

13Because the HERMES experiment uses a particle target, large differences between physical observables for particle or antiparticle final states
are common.
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Figure 4.29: The efficiency for Λ(1520) and Λ(1520) events, determined using initial momentum distributions taken
from the production of the indicated hyperons on a proton target (left panel) and a neutron target (right panel). For the
heavier hyperons (Ξ∗, Ω) not enough simulated events were available to determine the initial momentum distributions
and thus the efficiency.
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Figure 4.30: The efficiency for Λ(1520) and Λ(1520) events, determined using initial momentum distributions taken
from the production of the indicated hyperons on a proton target with at least one Λ(1115) hyperon involved in the
reaction process.
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Figure 4.31: The initial momentum distributions for the Σ− baryons produced on a proton target (proton sample)
determined in a PYTHIA Monte Carlo simulation. From top to bottom the parent Lund type, the Pt distributions, and
the Pz distributions are shown, for particles (left panel) and antiparticles (right panel). The total initial momentum
distributions is shown in black, the different production mechanisms are shown in colors.
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Figure 4.32: The initial momentum distributions for the Σ− baryons produced on a neutron target (neutron sample)
determined in a PYTHIA Monte Carlo simulation. From top to bottom the parent Lund type, the Pt distributions, and
the Pz distributions are shown, for particles (left panel) and antiparticles (right panel). The total initial momentum
distributions is shown in black, the different production mechanisms are shown in colors.
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Figure 4.33: The efficiency for Λ(1520) and Λ(1520) events, determined using initial momentum distributions taken
from the production of the indicated hyperons on a proton target (left panel) and a neutron target (right panel), when a
longitudinal momentum Pz larger than 6 GeV is required.

When the momentum distributions of the Σ± and Σ∗± resonances are ignored, the efficiencies for the Λ(1520) on
the proton and neutron targets are in agreement. The disagreement between proton and neutron targets is again caused
by the specific quark structure; one of the two d quarks of the Σ− state is not available in the proton. The creation of
a dd quark-antiquark pair leads to a higher transverse momentum Pt, corresponding to a higher detector acceptance.
Due to isospin symmetry, the detection of the produced Σ+ resonances on a neutron target is similarly suppressed.

When comparing the initial momentum distributions between the proton sample and the selector sample, almost all
agree very well. Only the Pz distribution of the Σ− and Σ+ resonances is very different (the Σ∗− and Σ∗+ resonances
agree though). The reason for this is that the Σ± decays only weakly to Λ(1115), with a branching fraction of 10−5.
What we might be seeing here instead are the initial momentum distributions for associated production of Λ(1115)
and Σ± hyperons, rather than the averaged distributions for all Σ± produced at the HERMES experiment.

Efficiency for the detection of Λ(1520) events with Pz greater than 6 GeV Due to the momentum requirements
for the proton (larger than 4 GeV) and for the kaon (larger than 2 GeV), the momentum of the reconstructed Λ(1520)
and Λ(1520) candidates will usually be larger than 6 GeV. Since the differences between the hyperon momentum
distributions resulting in large differences of the determined Λ(1520) efficiency are the largest in the low momentum
region, they are not relevant for the Λ(1520) resonance decays in this analysis. Therefore we limited the longitudinal
momentum Pz of the Λ(1520) resonance to values larger than 6 GeV, corresponding to the events collected by the
spectrometer, and determined the efficiency. The results are shown in figure 4.33 and figure 4.34.

The variations between the efficiencies obtained with different initial momentum distribution assumptions, are
reduced when only the longitudinal momentum region Pz > 6 GeV is considered. The hyperon mass dependence
is also less pronounced. We conclude that the detector acceptance and selection efficiency for Λ(1520) events is
3.8± 0.4% and for Λ(1520) events 4.2± 0.4%.

Influence of a possible Λ(1520) polarization

The Λ(1520) resonance is a hyperon with spin J = 3
2 . The detector acceptance for Λ(1520) and Λ(1520) hyperon

decays could be influenced by a possible polarization of the produced resonance. For every produced Λ(1520) two
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Figure 4.34: The efficiency for Λ(1520) and Λ(1520) events, determined using initial momentum distributions taken
from the production of the indicated hyperons on a proton target with at least one Λ(1115) hyperon involved in the
reaction process, and when a longitudinal momentum Pz larger than 6 GeV is required.

Table 4.7: Efficiency for different Λ(1520) and Λ(1520) polarization scenarios.
Polarization εΛ(1520) εΛ(1520)

Unpolarized 1.80± 0.013 1.81± 0.013
sin2 θ 2.15± 0.015 2.11± 0.014

1 + 3 cos2 θ 1.22± 0.012 1.18± 0.011

physically distinguishable spin orientations are possible. The projection of the spin on the quantization axis is either
equal to ± 1

2 , or equal to ± 3
2 . The corresponding distributions of the angle θ between the proton momentum and the

quantization axis in the Λ(1520) center-of-mass frame are given by 1 + 3 cos2 θ and sin2 θ.
The degree of polarization is determined by the fraction of Λ(1520) states that are produced in each of the two spin

sub-states. If the Λ(1520) states are mostly produced in one spin sub-state, the production is polarized and one of the
angular decay distributions will dominate. If both spin sub-states are equally likely to be produced, the production of
the Λ(1520) hyperon is said to be unpolarized. The angular decay distributions will then contribute equally and result
in an isotropic angular distribution 1 + cos2 θ.

Results of the LAMP2 experiment indicate the Λ(1520) is mostly produced in the spin sub-states ± 3
2 [113], but

there is no reason to assume that at the HERMES experiment this is also the case. Moreover, the degrees of polarization
can be different for particle and antiparticle, due to possibly different production mechanisms for the Λ(1520) and
Λ(1520) hyperons.

To estimate the effect of the different sub-states on the acceptance, the gmc dcay Monte Carlo generator was mod-
ified to include the angular distributions corresponding to the spin sub-states ± 1

2 (1 + 3 cos2 θ) and ± 3
2 (sin2 θ). The

initial momentum distributions Pt and Pz from the Ξ∗0 obtained with the PYTHIA Monte Carlo generator were used
for both the Λ(1520) and Λ(1520) hyperons. The results of the three simulations, two for fully polarized production
in each of the polarization states and one for unpolarized production followed by isotropic decay, are summarized in
table 4.7.

The effect of a possible polarization of the Λ(1520) hyperon in the spin sub-states ± 3
2 is an increase in acceptance



104of almost 20% compared to an unpolarized Λ(1520). If the Λ(1520) hyperons are produced predominantly in spin
substates ± 1

2 , the acceptance decreases by 30%. For equal initial momentum distributions, and assuming equal po-
larization after production, the effect on the detector acceptance is equal for particle and antiparticle. The degree of
polarization can still be different for the Λ(1520) and Λ(1520) hyperons.

Due to the large uncertainty on the detector acceptance and selection efficiency associated with the possible polar-
ization of the Λ(1520) and Λ(1520) hyperons, we do not include this effect in the quoted systematic uncertainty. It is
assumed that the degree of polarization is equal for particles and antiparticles, and small enough that this effect can be
ignored. In what follows we only consider isotropic Λ(1520) and Λ(1520) production.

4.5.3 Determination of the observed Λ(1520) and Λ(1520) events

To determine the number of events in the Λ(1520) and Λ(1520) peaks, we need to have an accurate description
of the distribution of background events. Unfortunately a full Monte Carlo simulation of the expected background
distribution was impossible because the Λ(1520) resonance and more importantly several excited Λ∗ resonances at
higher invariant mass are not included in the PYTHIA Monte Carlo generator. For this analysis we decided to use the
traditional method of describing the background distribution with a polynomial function, when simultaneously fitting
only the resonance.

First, the Λ(1520) → pK− invariant mass spectrum was fitted with the sum of a third order polynomial function
and a Breit-Wigner resonance shape convolved with the Gaussian detector resolution of 4 MeV. Since the reconstructed
mass and intrinsic width of a particle and its antiparticle are expected to be equal, but not the shape of the background,
the third order polynomial function was left to vary freely. The determined width and mean of the Breit-Wigner
resonance shape for the Λ(1520) resonance were fixed and inserted in the fit of the Λ(1520) → pK+ invariant mass
distribution. Ambiguities in the fit results introduced by different binning are avoided by using unbinned maximum
likelihood fits, as implemented in the software package RooFit [114].

The results of the fit procedure are shown in figure 4.35. The mass for the Λ(1520) is determined as MΛ(1520) =
1522.5± 0.8 MeV and the intrinsic width as ΓΛ(1520) = 16.7± 3.4 MeV. The number of events in the Λ(1520) peak
is 2337± 316. In the Λ(1520) peak there are 388± 104 events.

Additional structures at 1470 MeV and 1540 MeV

In figure 4.35 additional structures can be noticed at invariant masses below and above 1520 MeV. There is a
shoulder in the distribution of the invariant mass M(pK−) at approximately 1470 MeV, and an excess of events at
1540 MeV for the distributions of both the invariant mass M(pK−) and M(pK+).

When trying to fit the excess of events at 1540 MeV as an additional resonance with a Breit-Wigner shape con-
volved with the Gaussian resolution, the intrinsic width obtained for the Λ(1520) resonance ΓΛ(1520) = 11.8 ±
2.5 MeV is significantly smaller than the world average value Γ = 15.6 ± 1.0 MeV. The excess at 1540 MeV has a
width compatible with the experimental resolution of 4 MeV, indicated by a zero intrinsic width for the Breit-Wigner
function. This conclusion holds true when looking at the Λ(1520) channel. When requiring better particle identifica-
tion by choosing higher values for the RICH quality parameter, the structure at 1540 MeV disappears. This leads us to
the conclusion that the excess of events at 1540 MeV is caused by particle misidentifications.

When the distribution for mixed events is constructed, the shoulder at 1470 MeV is reproduced. In section 4.7,
which is entirely devoted to the method of event mixing to determine distributions of background events, the distribu-
tion of the invariant mass M(pK) is reproduced as figure 4.56. At higher invariant mass the description is however
unsatisfactory. Since the shoulder at 1470 MeV is reproduced in the mixed events distribution, we decide to simply
place the lower limit of the fitting region above 1476 MeV.

Order of background polynomial

When using a polynomial to describe the background, the appropriate order has to be found. Too low orders do not
describe the background sufficiently well, but too high degrees can mimic peaks and bias the results. The distributions
of the invariant mass M(pK−) and M(pK+) were therefore fitted with second order and fourth order polynomial
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Figure 4.35: The distribution of the invariant massM(pK) for the Λ(1520)→ pK− (left panel) and Λ(1520)→ pK+

(right panel) decay channels for the selected events in the collected data. The results of an unbinned fit with a Breit-
Wigner resonance shape convolved with the Gaussian detector resolution of 4 MeV to describe the resonance peak
(solid red line) and a third order polynomial for the background (dashed blue line) are superimposed. For the fit of the
Λ(1520) invariant mass distribution, the parameters MΛ(1520) and ΓΛ(1520) were fixed to the values obtained in the
Λ(1520) fit.
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Table 4.8: Additional Λ resonances contributing at higher invariant mass.

Resonance Mass range Intrinsic width range
Λ(1600) 1560 < M < 1700 MeV 50 < Γ < 250 MeV
Λ(1670) 1660 < M < 1680 MeV 25 < Γ < 50 MeV
Λ(1690) 1685 < M < 1690 MeV 50 < Γ < 70 MeV

functions. The goodness of fit χ2/ndof with the second order polynomial function was 1.9, indicating the need for
a higher order. For the fit with the fourth order polynomial function, the χ2/ndof is comparable to the value with a
third order polynomial function, and the number of events is equal within the statistical uncertainty. Thus, we decided
to use a third order polynomial function for the background.

Fixed intrinsic width

To check whether the previous results are consistent with the existing knowledge on the Λ(1520) resonance, we
decided to keep the intrinsic width of the Λ(1520) and Λ(1520) fixed at the world average value Γ = 15.6 MeV. The
determined number of resonance eventsNΛ(1520) andNΛ(152) are consistent with the values obtained previously when
the Breit-Wigner width was left unconstrained.

Inclusion of additional Λ∗ resonances

There are several known Λ∗ resonances with NK decay channels in the invariant mass region 1.4 < M(pK) <
1.7 GeV. They are summarized in table 4.8 [1]. The pK+ system has resonances at the same invariant mass and with
the same intrinsic width as for the pK− system.

We tried to fit the invariant mass distributions using the additional Λ∗ resonances. On top of the mixed event
background the Breit-Wigner resonances are superposed with mass and width varying in the mentioned ranges (cor-
responding to one standard deviation). The full results can be found in reference [115]. When comparing the results
with the polynomial background model, there is an increase in χ2/ndof . Several fit parameters are at the boundaries
of their allowed domain. We decided not to include the additional Λ resonances.

Effect of the acceptance on the reconstructed Λ(1520) mass

In the fit of theM(pK) invariant mass distribution, after selection of events corresponding to the decay Λ(1520)→
pK−, the position of the Λ(1520) peak is determined as 1522.5 ± 0.8 MeV. However, the world average value is
1519.5± 1.0 MeV. This difference of 3.6 standard deviations can be explained by the mass dependence of the detector
acceptance in the invariant mass region around the Λ(1520) peak.

Using the internal model for the initial momentum distributions Pt and Pz in the Monte Carlo generator gmc dcay,
several samples were generated with events distributed according to a Breit-Wigner function with different central
masses. For these samples the detector acceptance and selection efficiency were determined (defined as the ratio of the
number of selected events over the number of generated events). The results are shown in the left panel of figure 4.36.
More events with an invariant mass above 1520 MeV are accepted than events with an invariant mass below 1520 MeV.
Due to the large width of the Λ(1520) hyperon this has a visible effect on the reconstructed spectrum, the acceptance
effect skews the Breit-Wigner distribution. The difference between the reconstructed and the set Λ(1520) mass is
shown in the left panel of figure 4.37.

The product of the linear fit to the acceptance and a Breit-Wigner distribution was used to naively correct for
this acceptance effect. Indeed, the acceptance becomes flat (see right panel of figure 4.36) and the mass differences
disappear (see right panel of figure 4.37). Additionally, the fits to the distributions of the invariant mass M(pK)
improve. In figure 4.38 the distribution of the invariant mass for a set mass of 1520 MeV is shown. Before the
acceptance correction the fit with the Breit-Wigner resonance shape has a χ2/ndof larger than 3, and is offset by
1.4 MeV. When correcting for the dependence of the acceptance on the mass, the χ2/ndof becomes 1. The shift in
the position of the peak is reduced to within the statistical uncertainty.
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Figure 4.36: The detector acceptance and selection efficiency for the Λ(1520), determined from different Monte Carlo
simulations with varying set mass for the Λ(1520). The slope in the left panel is used to correct for this acceptance
effect, a procedure that indeed flattens out the acceptance in the right panel.
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Figure 4.37: The deviation of the reconstructed Λ(1520) mass from the set mass for different Monte Carlo simulations.
Without acceptance correction, the mass of the Λ(1520) is consistently overestimated by approximately 1.5 MeV (left
panel). After correcting for this effect, the mass difference between the reconstructed and set mass is consistent with
the statistical uncertainty (right panel).
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Figure 4.38: The M(pK) invariant mass spectrum for Monte Carlo events, before (left panel) and after (right panel) a
correction for the variable acceptance.

We do not intend to develop an acceptance correction to be used when fitting the data. We would need to know the
initial momentum distributions accurately, as differences can change the acceptance correction.14 Also, at the edges
of the mass region studied here, the acceptance starts to deviate from a straight line. Rather, we want to show that
the difference between the determined Λ(1520) mass and the reference value is well understood. We estimate that
due to this acceptance effect a systematic uncertainty of 1.5 MeV on the reconstructed and corrected Λ(1520) mass is
introduced.

4.5.4 Photo-production cross section of the Λ(1520) and Λ(1520) hyperons

After determining the detector acceptance and selection efficiency in section 4.5.2 and the number of observed
Λ(1520) and Λ(1520) hyperon decays in section 4.5.3, we can now determine the cross sections for photoproduction
of the Λ(1520) and Λ(1520) hyperons. We use the formula

σγ∗D→Λ(1520)X =
N
eD→Λ(1520)X
observed

Φ ·Br · L · ε
, (4.12)

whereBr = 22.5% is the branching ratio, Φ = 0.02 GeV−3 is the photon flux factor for the HERMES experiment, and
ε is the combined detector acceptance and selection efficiency determined from the Monte Carlo simulations discussed
in section 4.5.2.

Using the values for NeD→Λ(1520)X
observed determined above, we obtain a cross section for photoproduction of Λ(1520)

hyperons of σγ∗D→Λ(1520)X = 65.3 ± 8.8(stat) ± 6.9(sys) nb, and for photoproduction of Λ(1520) hyperons of
σγ∗D→Λ(1520)X = 9.8±2.6(stat)±0.9(sys) nb. The systematic uncertainty is due to the uncertainty on the determined
efficiency, stemming from the unknown production mechanisms of the Λ(1520) and Λ(1520) hyperons. The ratio of
the two cross sections is given by

RΛ/Λ = 0.15± 0.05(stat)± 0.02(sys). (4.13)

14The acceptance differences introduced by a polarization of the Λ(1520) hyperon discussed in section 4.5.2 are accompanied by different
acceptance corrections.



1094.5.5 Summary and conclusion

The photoproduction cross section for the Λ(1520) and Λ(1520) hyperons was determined as σγ∗D→Λ(1520)X =
65.3±8.8(stat)±6.9(sys) nb and σγ∗D→Λ(1520)X = 9.8±2.6(stat)±0.9(sys) nb. The systematic uncertainty is caused
by the unknown production mechanism for these hyperons. The ratio of theRΛ

Λ
= 0.15±0.05(stat)±0.02(stat) can be

used to estimate the number of Θ− baryons that are expected to be observed with the HERMES experiment, assuming
an equal particle to antiparticle ratio for exotic baryons.

4.6 Analysis of exotic baryons Θ(1540) decaying in the transverse target magnetic field

From the year 2002 until the end of 2005, the largest part of the HERMES data was collected with a transversely
polarized hydrogen target. The holding field for the polarized nuclei with a strength of approximately 0.3 T was
provided by a transverse magnet around the target cell. When the small deflection of charged particles in this field
is ignored, the resolution in both the decay vertex position and the invariant mass of mesons and baryons decaying
inside the field region is considerably worse. Without a decay vertex reconstruction method that takes the transverse
magnetic field into account, the analysis of this set of polarized data is impossible.

In this section, the effects of the transverse target magnet when using standard tracking (see section 4.2) are
described, highlighting the need for a different vertexing algorithm. A reconstruction method for particles decaying in
the transverse target magnetic field was developed by M. Demey for the Λ0 → pπ− vertex [94]. For the Θ(1540) and
Ξ(1860) analyses, this method was expanded to allow for general decay chains, involving more than one consecutive
decay and both charged and neutral tracks. The new method is explained and its accuracy is demonstrated. Finally,
this is applied on the search for the exotic baryon Θ+ in the data collected on the transversely polarized hydrogen
target.

4.6.1 Effect of the target magnet on event reconstruction

In the transverse magnetic field of the target magnet (see section 3.2) charged particles are deflected before they
enter the main spectrometer. The track parameters determined by the standard tracking algorithms (the polar angles θ
and φ of the tracks, and their intersections with the z = 0 plane or offsets) are only valid for the straight track segments
in the front region, between the transverse target magnet region and the spectrometer magnet, where the front tracking
detectors are located.

In the target region the particle follows a trajectory that cannot be described as a linear track.15 At every point of
the trajectory, the track can still be described with the usual track parameters, but they are only valid at that point.16

For decay vertices in the magnetic field region, the angles and offsets of the decay particle tracks at the decay vertex
(tangent to the real trajectory) will be different from the angles and offsets given by the spectrometer. This has two
effects on the physical parameters used for event selection. First, the decay vertex will be reconstructed at an incorrect
position. Depending on the actual topology of the tracks, bending towards each other or bending away from each
other, the decay vertex will be reconstructed with a z coordinate that is too small, or too large respectively. Also, due
to the incorrect angle between the tracks of the decay products, the invariant mass will be over- or underestimated.
This leads to a degradation of the resolution of the invariant mass.

To understand the second effect, it suffices to take a look at the definition of the invariant mass M of a particle
with momentum p and energy E, decaying to two particles with masses m1,2, momenta ~p1,2, and energies E1,2, with

M2 = E2 − |~p|2 = (E1 + E2)2 − (~p1 + ~p2)2, (4.14)
= m2

1 +m2
2 + 2E1E2 − 2~p1 · ~p2, (4.15)

= m2
1 +m2

2 + 2
√
m2

1 − |~p1|2
√
m2

2 − |~p2|2 − 2|~p1||~p2| cosα. (4.16)

15The distinction between the target region and the front region is not well defined, as the magnetic field changes from 0.3 T to zero over a
distance of approximately 30 cm.

16Since the momentum is conserved in a magnetic field, this track parameter is a constant for the complete trajectory.
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Figure 4.39: Vertical component of the transverse target magnetic field measured along the z axis for different x and
y positions. In the left panel the y coordinate is kept at zero, and the x coordinate is varied. In the right panel, the y
coordinate is varied keeping the x coordinate zero. The field is symmetric in x and y for the values shown. The solid
black line indicates the model for the field, with the parameters determined in section 4.6.2.

Here α is the angle between the tracks of the decay particles at the vertex. It is clear that an incorrect value of α can
lead to large errors on the invariant mass M , especially when the momenta ~p1,2 are large compared to M .

To correct the track of the scattered lepton, two different correction methods were already developed by the
transversity group at Hermes [97]. These so-called tmc (transverse magnet correction) methods take into account
the measured fieldmap in the target region. The first method uses a transfer matrix to determine the track parameters at
the interaction point, given the track parameters after the magnetic field in the front region. For the second method a set
of reference tracks was calculated, which are used to determine the track parameters. Since both correction methods
inherently assume that the track is coming from the interaction point of the lepton beam with the target nucleon, the
reconstruction of secondary vertices not in the immediate vicinity of the beam is impossible.

4.6.2 Correction method

In the almost homogenous section of the transverse target magnetic field (see figure 4.39), a charged particle de-
scribes in good approximation a helical track segment before it leaves the target region and is detected in the HERMES
spectrometer. From the signals in the spectrometer, the (straight) track leaving the target region is reconstructed.

The ideal reconstruction method takes into account the best knowledge of the magnetic field, in the form of a
measured field map, and uses a numerical integration method to determine the trajectory in the field region. Numerical
minimization of the distance between two trajectories leads to the vertex position and associated distance of closest
approach between the tracks. For every event, this involves a lot of calculations, which would make this method too
slow for an interactive analysis.

The analytic method described in this section allows for faster vertex determination, at the cost of lower spatial
accuracy. Since the magnetic field is approximately constant between the field boundaries (see figure 4.39 for the
field along the lepton beam axis, larger deviations occur away from the beam axis), we can approximate the magnetic
field as a one-dimensional ‘box’, i.e. a constant value below the field boundary and zero above.17 This simplifies the
tracking problem to the determination of a helical track segment inside the field box.

17Particles that leave the field region through the sides or the rear faces are outside of the acceptance of the main spectrometer, and thus not



111An analytical solution for the point of closest approach of two helices could not be found, so an additional approx-
imation is necessary. The radius of curvature for particles that have a momentum greater than 0.5 GeV (the minimum
momentum of reconstructed tracks in the main spectrometer) is much larger than the field region (0.5 GeV corresponds
to approximately 560 cm), so the deviation from a circular track will be small. In this method, the helical track with
large radius of curvature is approximated by an ellipse in a tilted plane.

Mathematically, a helix around the y axis is described by

x = A cos(t− φ0) (4.17)
y = y0 + α ·A · t (4.18)
z = A sin(t− φ0), (4.19)

while our approximation is given by

x = A cos(t− φ0) (4.20)
y = y0 + α · z (4.21)
z = A sin(t− φ0). (4.22)

In both equations t = φ0 can be chosen to correspond to the vertex. Then t − φ0 is small and the approximation is
good. For this report the z axis is in the direction of the lepton beam, the y axis in the direction of the magnetic field
(but pointing upwards in the lab frame), and the x axis horizontal to the outside of the HERA ring.

Method

To calculate the vertex starting from two tracks, in a uniform magnetic field in the y direction, only the projection
of the tracks in the xz plane is considered (this is the plane perpendicular to the magnetic field). This reduces the
helical track segments to circle segments and neutral tracks to lines in the same plane.

In the xz plane the intersections of the (circular) projections are now determined. In this step the full circles are
used, not just segments (this could lead to causality violation if subsequent decay vertex are wrongly ordered, so we
have to be careful). When multiple (i.e. two) intersections occur, the difference in distance in the y direction for the
two (unprojected) tracks is used to select one intersection over the other. This distance is also assigned as the distance
of closest approach between the two tracks, and the midpoint is defined as the decay vertex. When the projections
do not intersect, the distance of closest approach between the circles is determined. The points of closest approach
are calculated on the track, and their midpoint is taken as the vertex, while their distance is the distance of closest
approach. In the case of one neutral particle, the situation simplifies due to one straight track.

After determining the vertex, the momenta have to be rotated (the absolute value of the momentum stays the same
in the conservative magnetic field). This is done by determining the tangent vector in the point of closest approach on
the unprojected track. After adding the corrected momenta of the two decay products, the momentum of the mother
particle is found, and the whole procedure can be repeated to find another decay vertex, if needed.

Magnetic field parameters

To determine the best values for the magnetic field boundary zfield and magnetic field strength Bfield, a simulta-
neous scan of these two parameters was performed. Only a minimal set of event selection criteria, requiring only two
oppositely charged pions and a proton or antiproton, was applied to improve the statistical precision and increase the
sensitivity to differences between neighboring parameter values.

For every set of parameters the width of the K0
S peak was determined (see figure 4.40, left panels). The set of

parameters providing the narrowest peak, or in other words the lowest resolution, corresponds to the parameters of the
magnetic field that provide the best reconstructing in this method.

A different, independent method for determining the best field parameters looks at the K0
S decay tracks in two

distinct topologies. The oppositely charged pion decay tracks can either bend away from each other, or bend towards

considered in this analysis.



112each other. When the field parameters are chosen incorrectly, the effect on the invariant mass for these topologies will
be opposite. An increase in the magnetic field causes increased bending of the tracks, and an opening angle of the
decay tracks that is larger for tracks bending towards each other, or smaller for tracks bending away from each other.
For every set of parameters, the difference between the K0

S invariant mass for these two topologies is determined (see
figure 4.40, right panels). Where the difference is zero, the parameters are optimal for the rconstruction method.

From figure 4.40, we conclude that optimal values for the field boundary and strength are zfield = 35.2 cm
and Bfield = −0.305 T. The determined values correspond approximately to the physical values, as can be seen in
figure 4.39. The correlation between Bfield and zfield is strong, because the bending of the tracks is determined by
the product of zfield and Bfield.

Demonstration

In figure 4.41 a Θ decay candidate is shown. Red tracks and upward triangles (for the vertices) correspond to
positive tracks, green tracks and circles to neutral tracks, and blue tracks and downward triangles to negative tracks.
In the top panels the K0

S vertex is shown, projected on the (xz) plane (left panel) and the (yz) plane (right panel).
The bottom panels show the projections of the Θ vertex. The green circle corresponds to the K0

S vertex. The dashed
colored lines indicate the circular trajectory of the track and the continuation of the straight track in the field region.
The dashed black lines indicate the border of the magnetic field region and the beam line.

4.6.3 Analysis of the Θ(1540)

Data and event selection

All transversely polarized hydrogen data collected between the years 2002 and 2005 (corresponding to the offline
data productions 02c0, 03c0, 04b0, and 05b118) were used for this analysis. This corresponds to an integrated
luminosity of 161.4 pb−1, or a total of 7.413 M DIS events collected by the spectrometer. We need to apply additional
selection criteria for the analysis of this data set. Details of the implementation of the following track and event
selection criteria can be found in section 4.2.

In every event we require three or more long hadron tracks in the main spectrometer. When more than three hadron
tracks are present, all combinations of three tracks are considered as separate events. Every event has to contain one
(positively charged) proton, as identified by the RICH, with a momentum between 4 and 9 GeV, and two oppositely
charged pions, as identified by the RICH, with a momentum between 1 and 15 GeV. Only events with a particle
identification quality parameter for the proton track larger than 1.5 are selected. Together, these are referred to as
basic selection criteria in what follows.

Since no reliable Monte Carlo simulations for production and decay of the Θ(1540) exist, and to allow for a
comparison of previously published results on other data sets, the standard selection criteria were used at first. The
effect of the different vertexing algorithm is accounted for in a set of updated selection criteria.

The distance of closest approach between the two corrected pion tracks is smaller than 1 cm. The midpoint of
this line segment is defined as the K0

S decay vertex. Similarly, the production vertex is defined as the midpoint of the
distance of closest approach between the corrected p and reconstructedK0

S track. The distance between the production
vertex and theK0

S decay vertex should be larger than 7 cm, and causality requires that the z coordinate of theK0
S decay

vertex is larger than the z coordinate of its production vertex. These selection criteria (including the basic selection
criteria) will be referred to as kshort selection criteria.

For the M(pπ+π−) invariant mass spectra, additionally the following selection criteria were applied. To select
only events that contain a K0

S candidate track, the invariant mass M(π+π−) is required to be between 0.485 and
0.509 GeV, corresponding to a ±2σ window around the K0

S peak in the deuterium data of 2000. The distance of
closest approach between the reconstructed K0

S track and the proton track should be smaller than 0.6 cm.
The production vertex is required to be inside the target cell (i.e. a z coordinate between −18 cm and +18 cm19),

and have a radial distance to the lepton beam smaller than 0.4 cm (determined by the transverse tracking resolution).
The lepton beam position is corrected by a year-averaged offset (x, y) cm, to account for changes in the beam position.

18For the years 2004 and 2005 new offline data productions became available after this analysis was performed. However, only modifications to
the lepton transverse magnet correction methods tmc were applied, which are not used in this analysis.
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Figure 4.41: An event display of a Θ candidate event. The top panels correspond to the K0
S → π+π− vertex, the

bottom panels to the Θ → pK0
S vertex. The magnetic field was inflated to 1 T to show the effects on the vertexing.

For more information, refer to the text.
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Figure 4.42: The normalized distributions of the distance of closest approach between the two pions from the decay of
theK0

S candidate (left panel), for signal (red histogram) and the background events (blue histogram), and the difference
between signal and background distributions (right panel). The vertical lines indicate the maximum distance of closest
approach allowed for the standard and the updated selection criteria.

In table 4.2 the offset parameters for the data sets can be found. These last set of selection criteria (including the kshort
selection criteria), necessary to select candidate Θ(1540) events, are called theta selection criteria.

The contribution of ghost track events was investigated. Among the selected events, no ghost track events were
found. No additional ghost track suppression was applied. The list of selected events was checked for event double
counting.

Updated selection criteria

Since a different vertexing algorithm is used in this analysis, changes in the tracking and vertexing resolution
are expected. The upper limit on the distance of closest approach between the two pions, the lower limit on the
decay length of the K0

S candidate, and the M(π+π−) invariant mass window were re-evaluated for this analysis. To
determine the optimal values for the cut-off parameters in selection criteria, the method discussed in 4.2.3 was used.
The distributions of the selection variables for events in the peak region and the sideband regions of the K0

S peak in
the M(π+π−) invariant mass distribution were compared. The peak region, defined here as the ±2σ interval around
the mean position of the Gaussian peak (i.e. between 0.485 and 0.509 GeV), contains also background events which
are assumed have the same characteristics as events in the sideband region, defined outside of an approximately ±5σ
interval around the peak, i.e. not between 0.470 and 0.530 GeV, but between 0.4 and 0.6 GeV.

In the left panel of figure 4.42 the normalized distributions of the distance of closest approach between the two
pions are shown for signal (red histogram) and background events (blue histogram). This corresponds to the probability
distributions for signal and background events. Similarly, in figure 4.43 the normalized distributions of the decay
length of theK0

S candidate are shown for both types of events. In the right panel, the difference between the probability
distributions is shown. The region with a positive difference between the probability distributions corresponds with
events that are more likely signal events. These plots were obtained using the kshort selection, except for the criterium
involving the plotted parameter.

19For the recoil data the target cell was moved closer to the spectrometer, and the limits were changed to −5 cm and +25 cm.
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Figure 4.43: The normalized distributions of the decay length of the K0
S candidate (left panel), for signal (red his-

togram) and the background events (blue histogram), and the difference between signal and background distributions
(right panel). The vertical lines indicate the minimum decay length allowed for the standard and the updated selection
criteria.

The limits on the distance of closest approach between the two pions and the decay length of the K0
S candidate in

the standard selection criteria are approximately correct, even with the transverse target magnet deflection and track
correction. For this analysis we also consider an updated set of selection criteria, for which we choose the upper limit
on the distance of closest approach between the two pions at 0.6 cm, and the lower limit on the decay length of the K0

S

candidate at 10.0 cm. The K0
S invariant mass window is also updated after these two changes, now corresponding to a

2σ window, between 0.484 and 0.511 MeV.

K0
S selection

We now determine the M(π+π−) invariant mass distributions for all events that pass the selection criteria. In
figure 4.44 only the basic selection criteria are applied. To show the effect of the transverse target magnet correc-
tions, the distributions are shown for uncorrected events (left panel) and for corrected events (right panel). Since the
transverse target magnet corrections to the tracks do not influence the selection criteria, the total number of events is
equal before and after the correction is applied. In figure 4.45 the kshort selection criteria are required. Since now
events are selected according to the distance of closest approach between the two pions and the decay length of the
K0
S candidate, the number of events in the corrected and uncorrected distributions are different.

When using the standard tmc methods intended for lepton track correction,20 we obtain the M(π+π−) invariant
mass distribution in figure 4.46. Due to the distance of closest approach and decay length selection criteria, the number
of selected events is more than a factor two lower when using the standard tmc methods compared to our correction
method, reflected in the number of events per bin.

In the figures 4.44 and 4.45, the K0
S peaks are fitted with a Gaussian function and a linear background. In both

figures 4.44 and 4.45, the difference between the corrected and uncorrected distributions is clearly visible (even though
a Gaussian function does not describe the data well for uncorrected tracks). The width of the Gaussian function fitted
to the distributions is 12.5 MeV before any correction, and 6.9 MeV after our correction.21 The width of the K0

S peak
when the standard tmc methods are applied, is 11.3 MeV. The smearing of the K0

S peak due to the transverse target

20For each year the appropriate method was selected: tmc1 for 2003 and 2004, tmc2 for 2002 and 2005.
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Figure 4.44: The M(π+π−) invariant mass distribution after all basic selection criteria, before (left panel) and after
our transverse target magnet correction (right panel).
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Figure 4.45: The M(π+π−) invariant mass distribution after all kshort selection criteria, before (left panel) and after
our transverse target magnet correction (right panel). The number of selected events is different due to the distance of
closest approach and decay length selection criteria, which involve the corrected track parameters.
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Figure 4.46: TheM(π+π−) invariant mass distribution after all kshort selection criteria, determined with the standard
tmc correction methods. This figure should be compared to figure 4.45.

magnet is significantly reduced by our correction method. The standard tmc methods are not applicable for this
analysis.

Using the basic selection criteria and our correction method, the K0
S mass is determined as 497.4± 0.3 MeV, and

the width of the peak is 7.4± 0.3 MeV. After applying the kshort selection criteria, the K0
S mass is 497.6± 0.2 MeV,

and the width of the peak becomes 6.9±0.2 MeV. In figure 4.44 the total number ofK0
S events in the Gaussian peak is

approximately 7700. After kshort selection criteria, the total number of K0
S events in the Gaussian peak is 3297± 97,

on a background of 3009 events. The visible suppression of the background events is not accompanied by a change in
the K0

S peak position and width.
When the theta selection criteria are applied, we obtain the M(π+π−) invariant mass distribution in figure 4.47

(left panel). TheK0
S mass resulting from the fit with a Gaussian function is now 497.7±0.4 MeV, and the width of the

peak is 6.5±0.4 MeV. The number of K0
S events is 575±37, on a background of 145 events. The additional selection

criteria are not expected to influence the signal to background ratio, and are also not accompanied by a change in the
K0
S peak position and width.

Finally, the distribution of the M(π+π−) invariant mass when events are selected according to the updated selec-
tion criteria, taking into account changes in the tracking resolution, is shown in figure 4.47 (right panel). The number
ofK0

S events is reduced to 410±33 events, while theK0
S mass and width are now 496.9±0.4 MeV and 6.4±0.4 MeV.

Θ+ selection

With the theta selection criteria the M(pπ+π−) invariant mass distribution is determined, shown in the left panel
of figure 4.48. Expanding the invariant mass range, the M(pπ+π−) invariant mass distribution is shown in figure 4.48
(right panel). The bin size and starting point is equal in both figures, and choses to correspond to the binning in figure 2
of the first HERMES publication on this topic[4]. Similarly, using the updated selection criteria the distributions in
4.49 were obtained.

No prominent features are visible in the M(pπ+π−) invariant mass distributions, but the low number of events
makes it difficult to determine a quantitative statement (in terms of an upper limit on the yield) for this data set.

21This number can be compared to the width of the K0
S peak in a similar data sample, with identical selection criteria, obtained on unpolarized

deuterium gas without transverse target magnet. In that case the width is 6.7 MeV.
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Figure 4.47: The M(π+π−) invariant mass distribution after all theta selection criteria (left panel) and after the
updated selection criteria (right panel). The updated selection criteria take into account the possible effects of our
correction method on the tracking resolution.
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Figure 4.48: The M(pπ+π−) invariant mass distribution after the theta selection criteria (left panel) in a binning
corresponding to [4]. In the right panel, the invariant mass range was expanded to 2.3 GeV without changing this
binning.



120

0

5

10

15

20

1.5 1.6 1.7
M(pπ+π-) (GeV)

E
ve

nt
s 

/ 7
.6

 M
eV

0

5

10

15

20

1.5 1.75 2 2.25 2.5
M(pπ+π-) (GeV)

E
ve

nt
s 

/ 7
.6

 M
eV

Figure 4.49: The M(pπ+π−) invariant mass distribution after updated selection criteria (left panel) in a binning
corresponding to [4]. In the right panel, the invariant mass range was expanded to 2.3 GeV without changing this
binning.

4.6.4 Summary and conclusion

We conclude that for the analysis of the transversely polarized hydrogen target data set a new correction method is
necessary. The tmc correction methods developed for leptons from beam interactions are not sufficient. A different
vertexing method, developed by M. Demey, was expanded in this thesis, and shown to work satisfactorily, reproducing
resonances with a resolution consistent with the data taking period without transverse magnetic field.

The standard selection criteria of the Θ(1540) analysis were re-evaluated to account for changes in the tracking
resolution associated with the new vertexing method. In the Θ invariant mass distributions with these standard or
updated selection criteria, not enough events were available to either confirm the existence of the Θ, or to set an upper
limit on its cross section or yield.

Weakening the requirements will increase the number of selected events, but proportionally also background events
will be accepted. A careful study of this strategy could be pursued, but the collection and analysis of more data on an
unpolarized deuterium target is a more straight forward way to significant results.

4.7 Event mixing as an estimator for the distribution of background events

To determine the number of resonance events in an invariant mass,22 it is important to have an accurate description
of the invariant mass distribution of background events, or in short the background distribution.23 Statistical fluc-
tuations of a poorly known background distribution can easily create an excess of events above the underestimated
background distribution, which could be mistaken for a real resonance peak. Since the uncertainty on the number of
events n in an invariant mass bin is proportional to

√
n, and even larger for small nwhere n does not follow a Gaussian

distribution, this is in particular important when there are only few events in the distribution. An accurate estimation
of the background distribution can influence the conclusions on the observation of a resonance.

22Although in this section only invariant mass distributions are used, this method is applicable to other distributions too.
23With background events we mean here all events that do not originate from the decay of the resonance under study. This could include events

with misidentified tracks, decays of other resonances, or just combinatorial background events which are formed by the combination of tracks
created in different processes during the same collision.



121Several methods exist to estimate the background distribution. Ideally the background distribution can be simulated
with Monte Carlo methods. At the HERMES experiment the PYTHIA Monte Carlo generator would be most suitable
for the determination of the background distributions. Unfortunately, a number of broad resonances in the mass region
relevant for the analysis of the exotic baryon Θ(1540) are not included in the PYTHIA Monte Carlo generator. Because
the properties of these resonances are poorly known, it is difficult to implement them in a Monte Carlo generator
without introducing large uncertainties. Different assumptions for the unknown spin of these resonances could result
in a different acceptance and resonance shape in the final distributions. A more practical limitation is the time it takes
to simulate enough collision events to retain a statistically relevant sample of final events in the acceptance of the
spectrometer and after event selection criteria.

For some reaction channels the symmetry of the background events can be exploited to obtain a distribution
which does not contain the resonance under study (after normalization to account for a potentially different yield).
For example, by using the charge symmetry the background distribution of the Λ hyperon decaying to pπ− can be
estimated quite well with the final state pπ+, even without normalization. Because the number of events in the
symmetric decay channel is usually of the same order as in the original distribution, the statistical precision of the
background description that can be reached is limited. In the case of the exotic baryon Θ+(1540) with the decay mode
to pK0

S the final state is already charge symmetric. The K0
S meson is a mixture of both K0 and K

0
components, and

exchanging the proton p for an antiproton p will just select Θ−(1540) resonance decays in the final state. This renders
the method unusable for the exotic baryon Θ+(1540).24

Without knowledge of the origin and the physical production mechanisms of the background events, and without
knowledge of a process with a similar background shape for symmetry reasons, a fit with a polynomial or other
suitably chosen function is often used to determine the shape of the background distribution. By choosing a polynomial
function of sufficiently high degree any distribution can be fitted.25 The problem of over-fitting is not really relevant
in the current discussion, but rather under-fitting. Deviations from the fitted polynomial function are sometimes
mistakenly assumed to be physical events that are not part of the background. First, one has to motivate why a
polynomial function with a particular degree can be considered a good estimate of the background.

In this section the method of event mixing is presented. It is another method for the determination of the back-
ground distribution. When the detected particle tracks of different events are combined as if they were from one event,
resonances will not be reproduced. In fact, all statistical correlations will be removed from the sample. Because the
number of possible combinations of two events increases as O(n2) for n physical events, the statistical precision of
the background distribution can be increased substantially. Usually the distribution of the mixed events has to be
scaled down or normalized to the original distribution in a region without resonances, or by using a different kinematic
variable which is expected to have a similar distribution for resonance and background events.

Even though the event mixing method seems conceptually very simple, several effects have to be taken into ac-
count. One immediately realizes that events with different track multiplicities should only be mixed with caution,
because these events have different kinematic distributions.26 The mixed events have to be kinematically similar to the
original events, otherwise different distribution of the final invariant mass are obtained.

We discuss the subtle effects that make the method more difficult to use. The results of the method are demonstrated
on several well-established resonances. In the section 4.8 the event mixing method is applied on the invariant mass
distributions of the exotic baryon analysis.

4.7.1 Event mixing method

At the HERMES experiment knowledge about the event mixing method came only slowly. Although the method of
event mixing was already applied in the original analysis of the Θ+(1540) [4], several improvements were needed.

24The exchange of the proton and the antiproton also changes the shape of the background at the HERMES experiment, due to the different origins
of protons and antiprotons when a particle target is used. The target gas contains only atoms, and no anti-atoms, which creates an asymmetry in
favor of particles. Only one fifth of the proton tracks at the HERMES experiments is negatively charged. They correspond to production mechanisms
where either a sea antiquark was struck by the DIS lepton, or where a quark/antiquark pair was produced in the fragmentation of the struck nucleon.
Naturally, the kinematic parameters of the final state particles will be different, leading to different final invariant mass distributions.

25With enough parameters even elephants can be fitted! (John von Neumann)
26On average, the momentum of the tracks in four particle events will be lower than the momentum of the tracks in three particle events.



122Effects of event selection

Originally the candidate events for Θ+ → pK0
S → pπ+π− decay events were subjected to the selection criteria

before the p and (reconstructed) K0
S tracks were mixed. This meant that only the (approximately one thousand) events

in the final invariant mass distribution were used for the event mixing. Because of the large number of combinations a
statistically precise background distribution could still be obtained.

However, when the steps are applied in this order the mixed events will not satisfy the event selection criteria. It
is possible, and even probable, that the distance of closest approach between the mixed p and K0

S tracks is large, in
contrast to the background events which compose the actual background distribution. The constructed mixed events
have different characteristics compared to the background events we are trying to investigate. This means that generally
the invariant mass distribution of these naively mixed events will be different from the invariant mass distribution of
the background events.

If we want the mixed event to have an invariant mass distribution that represents the background distribution, also
the distribution of the other kinematic and topological parameters have to be similar. Although we are not able to
determine these distributions for the background events, we have constrained them by the event selection criteria. To
constrain the mixed event distributions to the same ranges will improve the similarity between the mixed and unmixed
background distributions. A better approach is therefore to mix the events before applying the event selection criteria.

One could argue that, even before the data are analyzed, several selection criteria are already applied. Tracks with
a small transverse momentum are not detected, low-momentum tracks do not reach the particle identification detectors
and are discarded, etc. . . However, these selection criteria are also ‘applied’ to the background events. All selection
criteria which act on a single track can be applied before the event mixing, since they have no way of changing in
the process of event mixing. Selection variables which combine the information of two tracks, such as the distance of
closest approach, will change when one track is combined with a different track.

Some subtleties in the operation of the RICH particle identification detector in the HERMES spectrometer (see
section 3.3.2) introduce implicit correlations between two tracks. Because the RICH detector is less efficient when
the distance between the image of two tracks on the photomultiplier array is equal to the radius of the Čerenkov rings,
there are less identified protons when a second track is in the same detector half. This could artificially increase the
probability that the proton and the K0

S meson are in opposite detector halves.27 After event mixing the probability
for tracks in opposite and equal detector halves is equal. Since the background distribution for events with p and
K0
S tracks in opposite halves is different from the background distribution for events with tracks in the same half, this

could affect the mixed event distribution. This effect is assumed to be small, but is practically very difficult to estimate.
Improvements to the identification algorithm of the RICH detector are expected to solve this problem.

If a resonance does not decay immediately to π, K or p tracks detected in the spectrometer, but instead decays to
an intermediate resonance, the selection criteria for this intermediate resonance have to be applied before the event
mixing. In the case of the exotic decay Θ+(1540)→ pK0

S → pπ+π− this means that the distance of closest approach
between the two pion tracks can be restricted before the reconstructed K0

S track and the proton track are mixed.

Effects of mixed resonance events

When events are mixed to determine the shape of the invariant mass distribution for background events, it is
important to realize that not only background events are mixed but also resonance events [116, 117]. The underlying
assumption of the method of event mixing is that the distribution of the uncorrelated background events does not
change when the events are mixed. This is not necessarily true for resonance events when they are mixed among each
other. Unfortunately they cannot easily be excluded from an analysis (the goal is to determine the number of these
resonance events, after all). We do assume that the combinations of resonance tracks with a non-resonance tracks lead
to the distribution of background events.

Monte Carlo simulations can be used to determine the shape of the invariant mass distribution of resonance events
after event mixing. The invariant mass distribution of the Λ hyperon is a good example of a distribution with only one
prominent resonance. With the PYTHIA Monte Carlo generator a large number of events were simulated, with the only

27The K0
S meson is already more likely to decay in two pions in the same detector half, due to the acceptance gap between the detector halves.

When an additional proton is required in the event, this effect would reduce the number of events with one pion in each detector half even more.
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Figure 4.50: The effect of resonance events on the mixed event distribution is demonstrated with events simulated
with the PYTHIA Monte Carlo generator. The distributions of the invariant mass M(pπ−) without event mixing (left
panel) and with event mixing (right panel) contain Λ hyperon decay events (indicated in red without event mixing
and in green after event mixing) and uncorrelated combinatorial and string fragmentation events are shown in the blue
histogram. After event mixing the Λ resonance is smeared out, as shown in the inset of the right panel (shaded green
histogram) for only resonance events.

requirement that a high-momentum hadron (P > 4 GeV) was detected by the spectrometer. The invariant mass distri-
bution without event mixing for these simulated events is shown in the left panel of figure 4.50. The resonance peak
of the Λ hyperon is clearly visible and the remaining components of the distribution are mostly combinatorial (i.e. the
proton and the pion were created in different processes) or from string breaks in the Lund model for fragmentation.28

When we mix the events of this simulated sample, we obtain the distributions in the right panel of figure 4.50. The
shape of the combinatorial event distribution is unchanged, but the narrow resonance peak is now smeared out and has
become a relatively broad contribution to the total mixed event distribution. In the inset the narrow resonance peak
and the smeared distribution with mixed events are compared.

When a Monte Carlo simulation of the resonance is available, the following procedure can be used to extract
the background distribution. The mixed event distribution is constructed including all data events and the mixed
resonance distribution is constructed using the simulated resonance events only. Using a variable normalization the
mixed resonance distribution is subtracted from the mixed event distribution of the data events. The normalization of
the mixed event distribution for data events is first determined in a region where the mixed resonance distribution is
negligible. The normalization of the mixed resonance distribution is then determined just outside the resonance peak,
but where it has a significant contribution.

Because of the low number of simulated events available compared to the number of collected events in the data
sample, the mixed resonance distribution could not be determined with high statistical precision. In the left panel of
figure 4.51 the distributions after event mixing with simulated events are compared to the distributions obtained with
the collected data. The disagreement that is present after event mixing of the collected data can indeed be attributed
to the mixed resonance distribution. In the inset the difference between the distribution for regular and mixed events
is compared with the mixed resonance distribution obtained with the Monte Carlo simulation. The good agreement
indicates that the disagreement between the original invariant mass distribution and the mixed event distribution can

28A very small number of events from decays of ∆0 baryons is ignored.
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Figure 4.51: The mixed resonance events are modeled with Monte Carlo or discarded before mixing the events. In
the left panel the disagreement between the mixed event distribution (green curve) and the normal distribution (black
curve) for events collected by the spectrometer is shown. In the inset the mixed resonance distribution determined
from a Monte Carlo simulation (shaded green curve) is compared with the difference between the normal and mixed
event distributions (black dots). In the right panel the blue curve is obtained when all resonance events between the
blue vertical lines are discarded before the events are mixed. A rough estimate of the number of discarded resonance
and background events is used to combine the red and blue curves to determine the green curve.

be explained by this effect.
Another method to reduce the effect of resonance events is to exclude them before event mixing. While this brings

us back to the problems with event selection before event mixing, the number of events that are discarded should be
kept small by only removing a narrow window around the resonance peak. This approach is demonstrated in the right
panel of figure 4.51. The distortion of the kinematic phase space due to the discarded events, which could influence
the shape of the distribution of the mixed events, seems to be relatively small. Using an estimate of the number of
resonance events and the number of background events in the discarded mass window, the appropriate combination
of the mixed event distributions with and without resonance events is constructed. This method seems to describe the
background distribution rather well. In the inset of figure 4.51 the relevant invariant mass region is blown up for more
detail.

The advantage of discarding all events in an invariant mass window around the resonance peak is that no Monte
Carlo simulation is needed anymore. When it is impossible to simulate the resonance, for example due to an unknown
production mechanism, this is the only way to determine the background distribution.

Effects of kinematic mismatch

Event mixing is often criticized for the potential violation of momentum conservation. This formulation is
somewhat exaggerated when only inclusive processes are concerned, but it points to an important problem with the
method.29 When we ignore the previously discussed problems with the event selection, the mixed event distribution
in the original Θ+(1540) analysis was constructed by replacing each K0

S track with the K0
S track of the next event. It

is likely that the new track has very different kinematic variables. This kinematic mismatch distorts the mixed event
distributions.

29It is immediately clear that for exclusive processes the method of event mixing needs to be applied very carefully.
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Figure 4.52: The average distances ∆Pt, ∆Pz and ∆φ between the original and replacing track are shown versus the
size of the event mixing buffer N .

Imagine that in a photoproduction interaction with low momentum transfer Q2 only a single K0
S meson is pro-

duced, and that the electron is not scattered into the acceptance of the spectrometer. We ignore what this means for
strangeness conservation, and focus on the decay of the K0

S meson in a positive and a negative pion, each in opposite
halves of the spectrometer. When we apply event mixing to this particular event, which contains only the two pions
π+ and π−, the probability to obtain an event with two pion tracks in the same half of the detector is approximately 1

2 ,
even though there is then a clear problem with missing transverse momentum. These mixed events are unphysical and
will not be representative of the real background events. They have to be excluded to obtain the correct background
shape.

The previous example was an extreme case of a more general problem. Can we just replace one track with a
track that has a different momentum, with a different azimuthal angle φ, and was thus detected in a different part of
the spectrometer? If we replace tracks with very different tracks, the shape of the mixed event background will not
be representative of the real background shape. On the other hand, imposing too narrow requirements on how close
a second track is before it is used to mix will just reproduce the resonance (which brings us back to the previous
subsection about the inclusion of resonance events).

To solve this problem, we use a buffer in which we store the tracks of the last N processed events (N = 80
seemed a reasonable value).30 For each event we choose from this buffer the track that has transverse and longitudinal
momentum Pt and Pz and azimuthal angle φ that are closest to the original track. Using weight factors the relative
importance of the three kinematic distances can be changed. By increasing the size of the event mixing buffer, the new
track could be chosen closer to the original track.

The average distances ∆Pt, ∆Pz and ∆φ between the original and the replacing track for different values of N
are shown in figure 4.52. The difference in transverse momentum Pt and azimuthal angle φ can be reduced by a factor
four when an event mixing buffer is introduced with size N = 80. The average distance ∆Pt, ∆Pz and ∆φ can be
reduced arbitrarily by choosing a large enough buffer size. There is therefore no natural choice of N , corresponding
to a plateau. The decrease of the average distances ∆Pt, and ∆φ is largest between 5 and 20.

For the decay of theK0
S meson and the Λ hyperon the influence of this mixing buffer on the mixed event distribution

is shown in figure 4.53. In the left panel the distribution of the invariant mass M(π+π−) is shown with clear K0
S

and ρ0 resonance peaks, in the right panel the distribution of the invariant mass M(pπ−) is shown with a clear Λ
resonance peak. In both panels the mixed event distributions are overlaid for buffer size N = 1 and N = 80. For
both the M(π+π−) and M(pπ−) distributions there are significant differences between the mixed event distributions
for N = 1 and for N = 80. In particular the background underneath the K0

S resonance peak is poorly described for

30Some high-multiplicity events contain multiple combinations of tracks, which are handled as separate events. To avoid event mixing within the
same events, a delay has to be introduced before an event becomes part of the buffer. For the same reason a delay is necessary before a track in the
mixing buffer becomes available again for selection.
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Figure 4.53: The influence of the mixing buffer on the K0

S and ρ0 (left panel) and Λ resonances (right panel). The
mixed event distribution is shown in blue for a buffer size N = 1, i.e. when no choice can be made. The mixed event
distribution in red is obtained with a buffer size N = 80. There is a clear improvement, in particular in the case of the
K0
S meson.

N = 1. The mixed event distributions with a larger buffer agree better with the unmixed invariant mass distributions,
indicating the importance of avoiding kinematic mismatch. The remaining disagreement forN = 80 in theM(π+π−)
distribution below 0.4 GeV was explained (using Monte Carlo simulations) as η and η′ meson decays to two pions.

The remaining disagreement between the unmixed distribution and the mixed event distribution with N = 80 for
the Λ hyperon in the right panel of figure 4.53 was explained previously as the effect of mixed resonance events. By
increasing the buffer size this effect will not disappear. In fact, it will become more apparent at larger buffer sizes
because the smearing of the resonance peak for mixed resonance events decreases when N increases. In figure 4.54
this effect is demonstrated on the K0

S and ρ0 mesons for N = 915. For values of N larger than 300 the resonances are
reproduced in the mixed event distributions.

To increase the number of events in the mixed event distribution the second closest, third closest, etc. . . event could
be used. This leads to a degradation of the average smallest kinematic distance. When for combinatorial reasons a
track is included in multiple events, this will lead to statistically correlated mixed event distributions. Another method
is the use of multiple buffers which are completely disjoint. Practically the buffers would be positioned after each
other. The first buffer contains the last N events, the second buffer the N events before that, and so on. The average
smallest kinematic distance will be the same for all buffers and no correlations between the events in different buffers
can occur.

At the STAR experiment a different method has been applied to account for differences between the mixed event
distribution and the unmixed distribution, originating in correlations in the azimuthal distribution of the events in
the detector [118, 119]. It is not immediately clear how the analytical method used at the STAR experiment can be
extended to an experimental setup without full azimuthal coverage.

Interplay of kinematic mismatch and mixed resonance events

The two previously described effects of kinematic mismatch and mixed resonance events are related. This was
already visible in figure 4.54. When the size N of the mixing buffer is chosen too large, the mixed resonance events
will have a narrow distribution. For very large N the mixed resonance distribution even approaches the shape of the
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Figure 4.54: When the mixing buffer is too large, the resonances are reproduced in the mixed event background. In
the left panel the distribution of the invariant mass M(π+π−) is compared for regular (black curve) and mixed events
with a buffer size N = 915 (red curve). In the right panels the reduced smearing of the K0

S meson (top panel) and
ρ0 meson (bottom panel) is demonstrated for Monte Carlo events when the resonance events are mixed with a higher
buffer size N .

unmixed resonance peak. This narrow distribution can be described more easily with a Monte Carlo simulation. For
N ≈ 1 the width of the mixed resonance distribution is broad and a larger number of events have to be simulated
before a statistically precise description of the mixed resonance distribution is obtained. Moreover, when the mixed
resonance distribution is narrow, it does not overlap with the normalization interval. In practice the buffer size should
be chosen large enough to constrain the mixed resonance distribution to an invariant mass region that still allows for
a suitable normalization region outside of this region, but not so large that the width of the distribution of mixed
resonance events becomes comparable to the width of the unmixed resonance.

4.7.2 Demonstration of event mixing

After outlining the appropriate procedure for event mixing on the K0
S , ρ0 and Λ resonances, we now apply this

method to some other well-established resonances.

Event mixing for the Ξ−(1320) hyperon

The Ξ−(1320) hyperon decays to a pion and a Λ hyperon. In figure 4.55 the distribution of the invariant mass
M(pπ−π−) is shown in the left panel for events with at least one proton and two pions detected by the spectrometer,
and in the right panel for events with an additional third pion. The mixed event distributions, when including or
discarding events in the mass window of the Ξ−(1320), are statistically consistent. Therefore only the mixed event
distribution for all events is shown. The low yield of resonance events in the available Monte Carlo simulations made
it impossible to determine the mixed resonance distribution.

For both samples the mixed event distribution seems to be in good agreement with the expected background
distribution, even without a special treatment of the mixed resonance events. In the case of the three particle final
state in the left panel the Σ− hyperon at 1385 MeV can be recognized, but an additional vertex separation requirement
in the right panel suppresses this strongly decaying resonance. The excess of events at approximately 1300 MeV is



128possibly due to the effect of ghost tracks (although the ghost track suppression criteria discussed in section 4.3.2 were
not able to remove it completely). It also disappears when the vertex separation requirement is introduced.
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Figure 4.55: The distribution of the invariant mass M(pπ−π−) with mixed event background distribution (shaded
histogram). In the left panel the distribution is obtained using events with one proton and two pions, in the right panel
an additional pion was required.

Event mixing for the Λ(1520) hyperon

For the decay of the broad Λ(1520) hyperon to a proton and a kaon the mixed event background seems to be
strongly dependent on the selection criteria, an effect that was not observed for the Ξ−(1320) hyperon. Unfortunately
no Monte Carlo simulations are available because this hyperon is not included in the PYTHIA Monte Carlo generator.

The distribution of the invariant mass M(pK−) is shown in figure 4.56. The mixed event distributions, when
including and discarding events in an invariant mass window around the mass of the Λ(1520) hyperon, were again
statistically consistent. Before a distance of closest approach and vertex separation requirement are introduced, the
mixed event distribution agrees poorly with the unmixed distribution in the left panel. After the selection criteria are
introduced in the right panel, the distribution agrees better. The disagreement when no selection criteria are applied is
at present not understood.

Event mixing for the Ξ0∗(1530) hyperon and Ξ−−(1860) search

Already in section 4.3 the event mixing method was used in the search for the exotic baryons Ξ−−(1860),
and for the determination of the cross section of the Ξ0∗(1530) hyperon. The distribution of the invariant masses
M(pπ−π−π+) and M(pπ−π−π−) are shown in figure 4.57. The mixed event distributions are normalized to the
unmixed distribution in the interval 1.6–2.1 GeV. The distributions seem to agree well with the expected shapes of
the background distributions.31 Moreover, there are no large differences with the results obtained by naive event mix-
ing [5].

31Because completely independent analysis software was used in this section compared to section 4.3, small differences in the number of selected
events are possible.
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Figure 4.56: The distribution of the invariant mass M(pK) with mixed event background distribution superimposed,
for permissive (left panel) and more restrictive selection criteria (right panel). The mixed event distributions obtained
including and discarding events in an invariant mass window around the mass of the Λ(1520) hyperon are statistically
consistent. The horizontal scale in the right panel is identical as in figure 4.9.

Event mixing for the exotic Θ+(1540) baryon

The event mixing method was applied on the previously published analysis of the exotic Θ+(1540) baryon [4]. In
figure 4.58 the distribution of the invariant mass M(pπ+π−) is shown in the left panel for the invariant mass range
used in reference [4], and a wider invariant mass range with the same binning in the right panel. The distributions are
normalized to each other in the interval 1.43–1.7 GeV.

In the wider invariant mass range the mixed event distribution is substantially lower than the unmixed distribution
at higher mass. This difference is possibly due to the contribution of the excited Λ∗ hyperon resonances in that region.
They would not be reproduced in the mixed event distributions.

4.7.3 Summary

In this section we discussed the method of event mixing to obtain an accurate description of the background shape.
Event mixing allows to increase the statistical precision of the estimated background shape by an almost arbitrary
factor. Several limitations of the event mixing method were discussed and solutions proposed. The effect of the
selection criteria can be readily avoided at the cost of a more time-consuming event mixing procedure. Mixing of
resonance events cannot be ignored, but using Monte Carlo simulations or invariant mass windows the effect can be
assessed. Finally, kinematic mismatch between the original track and the track of the other event reduces the effect of
the mixed resonance events.

Although accounting for these effects enhances the event mixing method, it can still generate background distri-
butions that do not seem correct. It should therefore be used only with a lot of caution.

4.8 Overview of the search for the exotic baryon Θ at the HERMES experiment

In this section we present an overview of the search for the exotic baryon Θ+ and its antiparticle Θ− in all data sets
collected at the HERMES experiment. These data sets are characterized by the different spectrometer configurations
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Figure 4.57: The distributions of the invariant mass M(pπ−π−π+) (left panel) and M(pπ−π−π−) (right panel) with
mixed event background distribution.

and the various gas targets. The results of the search for the exotic baryon Θ+ described in the previous sections
are compared to the observation in the data set collected between the years 1998 and 2000, and are described in
reference [4].

Although no photoproduction events are expected for the trigger configuration used during high density data taking,
the invariant mass distributions for the high density data sets are included because they provide an estimate of the
background from other processes.

For every data set we show a uniform set of three figures to allow for easy comparison. The distribution of the
invariant massM(π+π−) is shown in the left panel, including only the events with a pion pair π+π− and an additional
proton p or antiproton p. Events which contain a proton are shown in blue, events with an antiproton in red, and the
combination of both proton and antiproton is shown in black. The number of events with a K0

S meson and a proton or
antiproton are determined, as well as the ratio of antiproton to proton events.

The distribution of the invariant mass M(pπ+π−) is shown in the middle panel between 1.41 and 1.7 GeV, and
in the right panel between 1.41 and 2.52 GeV. Again the events with a proton corresponding to the decay of the Θ+

are shown in blue, the events with an antiproton corresponding to the decay of the Θ− in red, and the combination of
both in black. For the events with a proton or antiproton in black the mixed event background distribution is shown as
the shaded histogram, normalized in the region between 1.43 and 1.7 GeV indicated by the dark horizontal bar. In all
cases the agreement of the mixed event background distribution with the unmixed events is poor.

The reconstructed mass, resonance width, and number of K0
S mesons in each data set are summarized in table 4.9.

The world average value for the mass is 497.65 MeV [1] and the resonance width determines the spectrometer resolu-
tion. The ratio of the number of reconstructed K0

S mesons (associated with a proton or antiproton) to the total number
of collected DIS events is used to check the consistency of the different data sets, and is influenced by the efficiency
of the trigger system and the particle identification algorithms.

4.8.1 The pre-RICH period with the threshold Čerenkov counters (1996–1997)

The invariant mass distributions in the data sets collected during the years 1996 and 1997 are shown in figure 4.59
for the low density polarized hydrogen target, in figure 4.60 for the high density hydrogen target, in figure 4.61 for
the high density deuterium target, and in figure 4.62 for the unpolarized nitrogen target. In none of the distributions
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Figure 4.58: The distributions of the invariant mass M(pπ−π−) with mixed event background distribution for the
mass range used in reference [4] (left panel) and for a wider mass range (right panel). The binning is identical in both
panels. There are small differences in the mixed event distribution in both panels due to the separate generation of the
distributions.

of the invariant mass M(pπ+π−) a prominent resonance peak can be observed in the invariant mass region around
1.53 GeV.

In the years 1996 and 1997 the HERMES experiment operated with the threshold Čerenkov counters for the identi-
fication of pions and protons. Due to the absence of the aerogel tiles of the RICH detector, the momentum resolution
is better than after the installation of the RICH detector. This is reflected in the width of the K0

S resonance, which is
on average 5.9 MeV before and 6.2 MeV after the installation of the RICH detector.

The reduced particle identification capabilities are not immediately apparent in the invariant mass distribution
M(π+π−). On the contrary, there seem to be many more reconstructed K0

S mesons which is reflected in a high
value for the ratio K0

S/DIS in table 4.9. One has to keep in mind that the events which contain these K0
S mesons were

required to contain an additional proton. Since kaons are not identified as such but rather are often identified as protons,
the number of protons is inflated. The production of aK0

S meson in association with a kaonK could even be preferred
in fragmentation, because the strangeness of the kaon and the K0

S meson can cancel each other. The seemingly large
contribution of antiprotons can be explained by the misidentification of negative kaons K− as antiprotons. Because
the kaons consist of a quark and antiquark, positive and negative kaons are produced in approximately equal amounts.

Due to this misidentification of kaons as protons it is difficult to draw conclusions about the existence of the exotic
baryon Θ+ in these data sets. Since particle identification efficiencies are only poorly simulated in the available Monte
Carlo simulations it is very difficult to estimate an upper limit on the production cross section.

4.8.2 The polarized deuterium period with the RICH detector (1998–2000)

After the installation of the RICH detector in 1998 the particle identification capabilities of the HERMES spec-
trometer improved substantially. Unfortunately the effect of the RICH detector on the momentum resolution was
less beneficial. Secondary scattering in the structural and active materials, for example the aerogel tiles, lead to a
deterioration in the resolution of the spectrometer reflected in the width of the K0

S meson, as mentioned before.
Ignoring the small amounts of data collected with unpolarized high density heavy gas targets (Ne, Xe, Kr), the

data collected in the years 1998, 1999 and 2000 consists of two main data sets. The results of the search for the exotic
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Figure 4.59: Search for the production of the exotic baryon Θ on a low density polarized hydrogen target during the
years 1996 and 1997. For a description of the figures, refer to the text.
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Figure 4.60: Search for the production of the exotic baryon Θ on a high density unpolarized hydrogen target during
the years 1996 and 1997. For a description of the figures, refer to the text.
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Figure 4.61: Search for the production of the exotic baryon Θ on a high density deuterium target during the years 1996
and 1997. For a description of the figures, refer to the text.
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Figure 4.62: Search for the production of the exotic baryon Θ on a high density nitrogen target during the years 1996
and 1997. For a description of the figures, refer to the text.
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Figure 4.63: Search for the production of the exotic baryon Θ on a low density polarized deuterium target during the
years 1998, 1999 and 2000. For a description of the figures, refer to the text.
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Figure 4.64: Search for the production of the exotic baryon Θ on a high density unpolarized hydrogen target during
the years 1998, 1999 and 2000. For a description of the figures, refer to the text.

baryon Θ in the data collected with a polarized deuterium target are shown in figure 4.63, the results collected on the
high density unpolarized hydrogen target are shown in figure 4.64.

The analysis of the data set collected on the polarized deuterium target corresponds to the published observation of
the exotic baryon Θ+ at a mass of 1528 MeV [4]. In this analysis a small fraction of events collected on the high density
unpolarized deuterium target were excluded, due to the associated trigger inefficiency for photoproduction events. An
additional offline calibration of the detector data necessary for the event reconstruction algorithm was used, resulting
in small differences in the kinematic parameters of the used tracks. Lastly the restriction on the production vertex was
changed to include the average position of the lepton beam. The originally observed structure at 1528 MeV is still
present after these small adjustments.

In the data set collected on the high density unpolarized hydrogen target no prominent structure is visible that
could correspond to the exotic baryon Θ, though the number of events in the distribution is small and the statistical
precision low.
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Figure 4.65: Search for the production of the exotic baryon Θ on a low density polarized hydrogen target between the
years 2002 and 2005. For a description of the figures, refer to the text.
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Figure 4.66: Search for the production of the exotic baryon Θ on a high density unpolarized deuterium target between
the years 2002 and 2005. For a description of the figures, refer to the text.

4.8.3 The transversely polarized target period (2002–2005)

After the installation of the transverse target magnet for the transversely polarized hydrogen target in 2001, the
bending effect of the magnetic field has to be corrected for. The method described in section 4.6 was applied.

The results of the search for the exotic baryon Θ in the low density transversely polarized hydrogen data set
between the years 2002 and 2005 is shown in figure 4.65, the results for the data set collected on the high density
unpolarized deuterium data in this period is shown in figure 4.66. For both data sets there is no structure visible at the
invariant mass expected for the exotic baryon Θ.

4.8.4 The recoil detector period (2006–2007)

After the dismantling of the polarized target and the installation of the recoil detector the target densities that could
be attained increased. This resulted in an increased event collection rate and an impressive amount of data the end of a
two year period. The target densities during the first low density phase of every fill were still low enough for an energy



137threshold of 1.4 GeV in the electromagnetic calorimeter.
To accomodate the recoil detector and magnet, the dimensions of the target cell had to be changed. The length of

the target cell was reduced to 15 cm, and it was moved 25 cm closer to the forward spectrometer. Using Monte Carlo
simulations the effect of these changes on the acceptance for Θ(1540) decay events was investigated. Moving the
target cell 12.5 cm closer to the spectrometer reduced the acceptance by a relative 20% from 0.032% to 0.025%.

In figure 4.67 the results of the search for the exotic baryon Θ in the data collected with the low density hydrogen
target are shown, in figure 4.68 with the high density hydrogen target, and in figure 4.69 with the low density deuterium
target. The events used for the generation of these figures were only partially calibrated. A full calibration of the data
collected in the year 2007 is only expected by the end of 2006. The degradation of the resolution, visible in the width
of the K0

S meson, can be attributed to this effect.32

In none of the distribution of the invariant mass M(pπ+π−) a prominent structure can be observed consistent with
the observation of the exotic baryon Θ+ in figure 4.63. In particular the analysis of the data set collected on the low
density deuterium target during this period, with approximately 50% more K0

S meson candidates, does not confirm
the results of the analysis on the polarized deuterium target in 1998, 1999 and 2000.

4.8.5 Combining all the collected data

Although the previous data sets were obtained in slightly different conditions, we decided to combine the distri-
butions. In figure 4.70 the different data sets are combined. In the three panels with the combined data sets the mixed
event background distribution determined only for the events collected on the low density deuterium target between
the years 1998 and 2000 was used. The variations between the mixed events background distributions for different
data sets are small enough to be negligible compared to the disagreement with the unmixed distributions.

In the left panel all data collected on a hydrogen target is combined. This includes the data sets collected on the
low density polarized and high density unpolarized target during the years 1996 and 1997 before the installation of the
RICH detector, on the high density target during the year 2000, on the low density polarized target between 2002 and
2005 with transverse magnet vertex correction, and on the low and high density target during the years 2006 and 2007.
This includes data sets collected during high density data taking, for which photoproduction events is suppressed, but
those data sets are only expected to contribute to background events and not to resonance events. In the combination
of the data collected on hydrogen no resonance can be observed.

In the middle panel of figure 4.70 all data collected on a deuterium target is combined. This includes the data sets
collected on the high density target during the years 1996 and 1997, on the low density target between the years 1998
and 2000 (corresponding to the original analysis), on the high density target between the years 2002 and 2005, and
on the low density target during the years 2006 and 2007. Also here we have to point out that only the data collected
between the years 1998 and 2000, and the data collected during the years 2006 and 2007 are expected to contribute to
photoproduction events due to the unfavorable trigger conditions during high density data taking. The lower number
of events compared to the hydrogen data leads to larger statistical fluctuations in the distribution, but no prominent
resonance structures is visible. A change in slope of the distribution at approximately 1525 MeV could evoke the
thought of an excess of events, but probably points rather to a loss of acceptance below 1530 MeV.

Finally, in the right panel of figure 4.70 all data collected at the HERMES experiments between the years 1996 and
2007 on hydrogen and deuterium targets is combined, including low density and high density data sets. The statistical
precision of this combined data set is appreciable. No resonance structures can be observed.

32A small effect of the solenoidal recoil magnet field could be present and cannot be corrected for with the reconstruction method developed for
the transverse magnetic field.
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Figure 4.67: Search for the production of the exotic baryon Θ on a low density hydrogen target during the years 2006
and 2007. For a description of the figures, refer to the text.
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Figure 4.68: Search for the production of the exotic baryon Θ on a high density hydrogen target between the years
2006 and 2007. For a description of the figures, refer to the text.
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Figure 4.69: Search for the production of the exotic baryon Θ on a low density deuterium target during the years 2006
and 2007. For a description of the figures, refer to the text.
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Figure 4.70: Production of the exotic baryon Θ on hydrogen and deuterium targets at the HERMES experiment. When
combining all events collected on the various hydrogen targets between the years 1996 and 2007, the distribution in the
left panel is obtained. Similarly, when combining all events collected on the various deuterium targets, the distribution
in the middle panel is obtained. After combining all events collected on hydrogen or deuterium targets at the HERMES
experiment, the distribution in the right panel is obtained. No resonance structures can be observed in the distributions.



CHAPTER V

Summary and discussion

One of the interesting questions in Quantum Chromodynamics, the theory that governs the interactions between
quarks and gluons, is whether one can observe bound states that cannot be explained as a combination of a quark and
an antiquark (qq) or of three quarks (qqq). The theory does not exclude the existence of other exotic combinations of
quarks and gluons, such as glue balls (gg), hybrids (qqg), tetraquarks (qqqq), or exotic baryons or pentaquarks (qqqqq),
but such states were never unambiguously observed and could be too heavy or too wide to be observable with present
experiments.

Recent calculations in the framework of the chiral quark soliton model predicted the existence of an exotic multiplet
of pentaquark states, including the narrow exotic baryons Θ+ and Ξ−− with minimal quark configuration uudds and
ssddu [17]. A narrow resonance identified as the exotic baryon Θ+ was observed by several experiments close to the
predicted mass of 1530 MeV. However, none of the dedicated searches with high sensitivity for these states were able
to confirm these observations. This puts the burden of proof back to the original experiments. Only one experiment
has claimed the observation of the exotic baryon Ξ−− with a mass of 1862 MeV.

5.1 Exotic baryon search at the HERMES experiment

At the HERMES experiment a search for the exotic Θ+ in the decay channel to pK0
S resulted in the observation

of a narrow resonance at a mass of 1528 MeV in quasi-photoproduction reactions off deuterium collected between
1998 and 2000 [4]. Due to trigger inefficiencies for ‘photoproduction’ events off unpolarized deuterium discovered
after the publication of this result, this data set has now been slightly restricted to included only the polarized data,
corresponding to a total integrated luminosity L = 209.2 pb−1. A search for the antiparticle Θ− in this reduced data
set was unsuccessful.

Several substantial data sets have been collected after the year 2000. Between 2002 and 2005 the HERMES
experiment operated with a transversely polarized hydrogen target, which resulted in an independent data set with
L = 150.2 pb−1 on hydrogen nuclei. However, the bending effect of the magnetic holding field on the charged par-
ticle tracks lead to a significantly worse resolution in the reconstruction of resonance decays. In the same period a
dedicated photoproduction trigger was not able to substantially influence the efficiency for photoproduction events on
the unpolarized deuterium target.

Most recently, in 2006 and 2007, another data set with an (estimated) L = 400 pb−1 was collected on unpolarized
deuterium nuclei, and approximately five times this amount on unpolarized hydrogen nuclei. The calibration of this
data is still ongoing, but the uncalibrated data is available and only suffers from a somewhat reduced resolution.

Search for the exotic baryon Ξ−−

In this work we presented the search for the exotic baryon Ξ−− in the data collected between 1998 and 2000 [5].
Because the decay channel to Ξ−π− with subsequent decays Ξ− → Λπ− and pπ− requires four hadrons in the final
state, the inclusion of low-momentum particle tracks without particle identification was necessary and increased the
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141number of candidate events by a factor three. Reconstruction artifacts known as ghost tracks were found in the low-
momentum tracks, but were excluded from the analysis. We did not observe a resonance peak and determined an upper
limit on the cross section of 2.7 nb for an exotic baryon Ξ−− with a mass of 1862 MeV. In the related decay channel
Ξ0 → Ξ−π+ the established resonance Ξ0∗(1530) was observed and we determined its photoproduction cross section
between 10.4 nb and 28.8 nb, with an uncertainty due to the unknown production mechanism. In this channel an exotic
Ξ0 resonance at 1862 MeV with a photoproduction cross section larger than 8.1 nb is excluded.

Analysis of the Λ(1520) hyperon and cross section

Although the search for the antiparticle Θ− was unsuccessful in the data collected between 1998 and 2000, the
HERMES experiment inherently favors particle final states over antiparticle final states due to the particle nature of the
target. To characterize this effect we studied the hyperon Λ(1520), expected to have a very similar production mecha-
nism as the exotic baryon Θ+ and at approximately the same mass. We assumed that the ratio of the photoproduction
cross section of the antihyperon Λ(1520) to the hyperon Λ(1520) is the same as for the exotic baryons Θ− to Θ+. The
null result for the exotic baryon Θ− is then consistent with the number of Θ− events that are expected based on the
observation of the Θ+.

Search for the Θ+ in the transversely polarized hydrogen data

To improve the resolution of resonances in the data collected on the transversely polarized hydrogen target between
the years 2002 and 2005, we developed a method for the reconstruction of vertices in the transverse magnetic field
applicable to arbitrary decay chains. The loss in the resolution of the K0

S meson, relevant for the analysis of the exotic
baryon Θ+, could be recovered. This allowed for the first time at the HERMES experiment a search for the exotic
baryon Θ+ in data collected on a hydrogen target. No exotic resonance was observed.

Event mixing as an estimator for the background distribution

To determine the cross section or even the existence of a resonance, an accurate estimate of the distribution of
background events is crucial. The event mixing method combines tracks from different events to obtain an uncorrelated
sample of events, where all resonances are assumed to be absent. This is generally not true, and when resonance
events are mixed they take on a distribution distinctly different from the background distribution. Using Monte Carlo
simulations we showed that this easily ignored effect can have important consequences for even the most established
resonances. By reducing the kinematic mismatch between the original and mixed tracks using a buffer of tracks
available for selection, we significantly improved the agreement between the mixed event distribution and the unmixed
distributions in the collected data in most cases. Despite these efforts the mixed event distributions do not seem to
describe the background distribution of the decay channels Λ(1520) → pK− and Θ+ → pK0

S , pointing to more
fundamental difficulties with this intuitively simple method.

Overview of the analysis of all data sets collected at the HERMES experiment

In an overview of the search for the exotic baryon Θ+ we also presented the analysis of several smaller data
sets collected at the HERMES experiment. These included the period before the installation of the RICH hadron
identification detector in 1998, or the analysis of low-momentum tracks below the threshold for the RICH detector
and for which the alternative time-of-flight identification has to be used. Although the analysis of these data sets
did not require any new technical concepts, they are an important part of the exotic baryon program at the HERMES
experiment. In particular the data collected during the last two years of the experiment, in 2006 and 2007, offer an
integrated luminosity that is higher than previous data sets, even if still plagued by a worse resolution. In none of the
data sets a resonance peak at a mass of approximately 1540 MeV is observed.



1425.2 Discussion

The initial enthusiasm about the claimed discovery of the exotic baryon Θ+ has vanished. The null results with
excellent statistical precision now outnumber the positive results. A profound skepticism or even negativism is now
the general sentiment about exotic baryons, and the recent positive results are often ignored. However, it is not correct
to interpret the null results as ruling out the existence of exotic baryons!1 They provide additional boundary conditions
that a theoretical description of exotic baryons has to satisfy. Although the number of these boundary conditions is
now becoming overwhelmingly large, there are successful theoretical efforts to reconcile the perceived contradictory
results.

The result of the DIANA experiment [25] are often assumed to be contradicted by the results of the BELLE
experiment [44], even though the upper limit on the width of a hypothetical Θ+ resonance at the BELLE experiment is
larger than the width observed at the DIANA experiment. High-energy scattering of proton on nuclei at the HERA-B
experiment [55] and of electron on positrons at the BABAR experiment [53] saw no evidence for the exotic Θ+, but
in spite of the large statistical precision they are unable to resolve any of the established Σ∗+ hyperons at masses of
1670 MeV and higher [1]. Theoretical efforts [36] have been successful at reconciling the null results of the CLAS
experiment [33] and the positive results of the LEPS experiment [22]. Finally, interference effects may hold prospects
for new observation channels, while not being in contradiction with the null results of some dedicated experiments [37,
38].

At the HERMES experiment the main goal has been to verify our earlier published results with increased statistical
precision. The results presented in this thesis with the data sets collected on deuterium nuclei in 2006 and 2007 seem
to indicate that the resonance observed in the data collected between 1998 and 2000 cannot be reproduced. Although
the figures in this thesis were obtained without the final calibration, this conclusion is not expected to change.

In the analyzed data collected on hydrogen nuclei no exotic Θ+ resonance could be observed either. This is in
agreement with the common expectation, based on the nature of the remaining positive experiments, that the produc-
tion mechanism of the exotic Θ+ requires the presence of a neutron.

The real question is then: What did we observe in the data collected between 1998 and 2000 that could have
disappeared now? A statistical fluctuation is not ruled out, especially not when combined with an underestimated
background. We now know that the mixed event background estimation was incorrect, the simulated non-resonant
background contribution was incomplete, and the broad Σ∗+ hyperons seem a rather ad-hoc way of filling the remain-
ing unexplained fraction of the background. . .

As said before, the hype has now ebbed away. What remains are genuine efforts at resolving the discrepancies.
Maybe one by one the remaining positive results will disappear, maybe the data that will lead to undeniable confir-
mation still has to be taken. . . What we do know now is that the hundreds of experimental analyses and the thousand
theoretical papers about exotic baryons written in the past four years have deepened our understanding of QCD and
hadronic physics.

1You cannot prove a negative! From not observing a state does not follow the conclusion that it does not exist.
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