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1 Introduction

To determine the polarization of the electron beam we have to measure an asym-
metry in the energy deposited in the calorimeter by Compton photons that orig-
inate from scattering of the left and right circularly polarized laser light off the
electron beam. Backscattered Compton photons have different cross sections for
two polarization states of the laser light. This difference in the cross sections
translates into different distributions of photons on the front face of the detec-
tor for the two laser light helicities. If there is any sensitivity of the detector
to the position at which the photon hits the detector it will have an impact on
the value of the measured asymmetry and hence the value of the electron beam
polarization. This sensitivity of the detector to the position of the incident beam
on the front face of the detector is called acceptance function and has been stud-
ied using experimental data and Monte-Carlo simulations. Since the acceptance
function together with the linearity of the detector completely determines the
response of the detector the agreement or disagreement between experimental
and Monte-Carlo results will confirm or deny the validity to the results obtained
using Monte-Carlo simulations. In the following sections we present results of the
Monte-Carlo simulation and discuss their bearing on the total systematic error
of the Polarimeter.

1.1 Acceptance function

As mentioned above one of the main properties of the calorimeter is its acceptance
function, which can be obtained by scanning a beam of fixed energy accross the
face of the detector. As we do so we can record energy deposition in each of the
crystals by charged particles as well as the amount of light collected on the PMT’s
for each position of the incident beam. One of the main questions that had to
be answered, even before doing full scale Monte-Carlo analysis of the properties
of the detector, was whether we can utilize an energy acceptance function, which
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Figure 1: Energy acceptance function

is just the energy deposited in the crystals as a function of the incident beam
position, instead of the acceptance function based on the response of the PMT’s
to Cherenkov light. If it were possible, then we could reduce running time for
Monte-Carlo simulations since it would not be necessary to generate Cherenkov
photons in the simulation and then track them through the detector. We could
also become less dependent on the parametrizations used to generate Cherenkov
photons. As it turns out, even though two acceptance functions are not drastically
different there are still some differences in shape, that are very characteristic of
our detector and therefore can not be neglected. As we can see in Fig.1, the height
of the signal is the largest at the center of the detector and gradually becomes
smaller as we move towards the the edges of the crystals. If we compare this
acceptance function with the Cherenkov light acceptance function given in Fig.2,
than we can see that the latter lacks depressions in front of the PMT’s, which
gives it a more rounded shape. This effect is due to a weaker shower development
closer to the edges of the crystals being compensated by one of the PMT’s situated
directly in front of the shower. Given this difference in shapes it is reasonable to
use Cherenkov light acceptance function, which gives more precise results at the
expense of somewhat bigger CPU usages for our Monte-Carlo study.

Taking into account the importance of the acceptance function, it is also
instructive to look at the acceptance function for a single crystal, presented in
Fig.3. As we can see the signal height almost vanishes to zero as the position
of the incident beam crosses the boundary between this and any of the adjacent
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Figure 2: Cherenkov light acceptance function.

crystals. This can be partially attributed to the fact that we have optical isolation
between crystals, which does not allow Cherenkov light to pass from one crystal
into another, and therefore the light collection on the PMT is entirely determined
by the shape of the shower ( Moliere radius 2.38 cm ) and its position with respect
to the PMT.

Before we can use any acceptance function as a representation of the response
of the calorimeter we should check its dependence on the energy of the incident
beam. If it changes shape as we scan the energy of the incident beam through the
possible range of energies for backscattered Compton photons or if the detector is
non-linear, we can no longer use a single acceptance function as a basis for further
Monte-Carlo simulations. Since the energy of Compton photons lies within 0-
13.6 GeV range, we can generate two acceptance functions that correspond to
the incident beam energies of 1 and 13 GeV and compare them. If there are no
significant changes in the shape as we go from one energy to another, than we
can safely assume that the accepance function remains the same over the entire
energy range. The result of this comparison is presented in Fig.4. The ratio of the
two acceptance functions has been renormalized to one at the center of the four
NBW crystal array, so that only the difference in shape would be left over. As we
can see the ratio remains approximately one across the entire surface, except right
outside the edges of the crystals. This can be accounted for by noticing that the
absolute signal height in this region is extremely small as compared to one at the
center of the calorimeter and therefore large statistical fluctuations are possible
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Figure 3: Energy acceptance function for a single crystal.

as well as by the possible non-linearity of the calorimeter when the incident beam
position is situated outside of the NBW crystals. The ripple on the remaining
part of the surface is due to statistical fluctuations. All the remaining deviations
of the ratio of the acceptance functions from one are well withing 5% and, as it will
be shown later, are insignificant. Therefore, Monte-Carlo acceptance functions
pass the ”shape test”.

1.2 Linearity of the calorimeter.

Next, we have to address the issue of the linearity of the calorimeter. The linearity
plot is presented in Fig.5. The detector response was taken at energies of 1,3.6,9
and 13 GeV. As it turns out the detector is linear within 1% as can be seen in
Fig.6. This has less than 0.5% effect on the value of asymmetry and we assume
that the calorimeter passes the "linearity test”.

Since the acceptance function passed the "linearity” and "shape” tests, we
can use a single function to represent response of the calorimeter at all energies
in the Monte-Carlo simulation.

The remaining issue, before we proceed with using a Monte-Carlo derived ac-
ceptance function for further investigations is whether it reproduces the experi-
mental one. The ratio of the Monte-Carlo and experimental acceptance functions,
renormalized to one at the center of the detector, is presented in Fig.7.

As we can see the two acceptance functions agree to within 10% across the
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Figure 4: Comparison of acceptance functions at 1 and 13 GeV.
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Figure 5: Linearity of the calorimeter.
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Figure 6: Deviation from the linearity of the calorimeter.
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Figure 7: Comparison of Monte-Carlo and experimental acceptance functions.



entire surface of the calorimeter, except in the region outside of the NBW crystals,
which can be attributed to the reasons as large deviations of the renormalized
ratio from one in Fig.4. The 10% agreement over the remaining portion of the
surface of the calorimeter has a negligible impact on the value of the asymmetry.
We can also notice that the largest deviations are at the edges of the crystals
where Compton photons that hit the calorimeter have the lowest energy and the
cross section asymmetry is the smallest. Therefore, they contribute insignificantly
to the total energy asymmetry for two opposite helicity states of the laser light.

1.3 Energy asymmetry.

Now we deal with the most important point, namely energy asymmetry for two
helicity states of the laser light for 100% longitudinally polarized electron beam.
The result of the analytical calculation based on the known cross sections that
does not take into account neither variations of the acceptance function over
the surface of the calorimeter nor the finite size of the detector, which leads to
the low energy Compton photons missing the detector, predicts 18.37% asym-
metry. However, due to the above mentioned effects energy asymmetry changes
to 18.41%. This corresponds to 0.2% change in the value of the asymmetry and
since the measured polarization value of the electron beam linearly depends on
the energy asymmetry, it is a very important quantity to determine. Moreover,
if the calorimeter is offset with respect to the geometrical center of the Compton
distribution, then the value of the asymmetry can also change, since the accep-
tance function is not constant over the surface of the calorimeter. The result of
the Monte-Carlo simulation is presented in Fig.8.

As we can see the energy asymmetry turns out to be a weak function of the
position of Compton distribution on the front face of the detector. There is no
need to worry about this position dependence in doing on-line or off-line data
analysis, its effect can be characterized at worst by an extra 0.5% contribution
towards the total systematic error as it is shown in Fig.9.

1.4 Gain shifts.

Another important issue is the stability of the polarization measurement with
respect to the gain drifts of one of the PMT’s. An effect of the 10% gain drift of
one of the PMT’s on the total acceptance function is presented in Fig.10, which
can be compared with the acceptance function given in Fig.1 that corresponds to
a case when all of the four PMT’s are matched.

A value of the asymmetry function that corresponds to an absolute gain drift
of one of the PMT’s within 20% is plotted in Fig.11. The gains of all the other
channels have been fixed. From Fig.11 we conclude that a 20% change in the
gain leads to no change in the asymmetry value.
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Figure 8: Energy asymmetry for two opposite helicity states of the laser light.
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Figure 9: Relative change in the energy asymmetry.



Acceptance function (drift of the gains)
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Figure 10: Energy acceptance function, (one of the PMT gains drifted by 10%).

TN t.—u o £ £ s Al

A o frinatias 4+ H H
ASYyTHCy as a turictuimurarc yanrurirt

( for one of the channels )

0.18490 -
0.18450

0.18410

018370 @ [ i
e N T SRR

0.18330 -
0.18290 -
0.18250 L - -
0.0 5.0 10.0 15.0 20.0
Gain drift (%)

Figure 11: Change in the energy asymmetry as a function of a gain drift.
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Figure 12: Effect of the linear component on the energy asymmetry.

1.5 Linear component of the laser light.

It is also interesting to study the dependence of the energy asymmetry on the
linear component of the laser light. This dependence obtained as a result of
the Monte-Carlo simulation is presented in Fig.12. As it is expected the energy
asymmetry decreases as the linear component of the laser light increases. The
important point is that as long as the linear component stays below 15% change
in the energy asymmetry remains negligible, see Fig.13.

1.6 Energy resolution.

Based on the Monte-Carlo data we can also calculate energy resolution of the
calorimeter. It turns out to be 15.4%/sqrt(F) (see Fig.14), which is in a good
agreement with the test beam results that gave us 18.0%/sqrt(F) energy resolu-
tion. The difference between the two results is expected to have come from the
energy resolution of the test beam itself.

1.7 Eta to Y transformation.

The last subject that had been touched by our Monte-Carlo study is the so- called
n-to-y transformation, which is given in Fig.15, parameters of the fit are given
below:
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Figure 13: Relative change in the energy asymmetry as a function of linear
component.
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Figure 14: Energy resolution of the calorimeter.
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Fta to y transformation (MC)
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Figure 15: 5 to y transformation.

n=1.0-02%exp(—(|Y ])/29.45) — 0.8 x exp(—(| Y |)/4.25)

2 Appendix

Here we give a short description of interactive commands used in Geant simulation
of the Longitudinal polarimeter.

1) dtree - displays the geometrical tree in a hierarchical representation of the
structure of the detector, based on the mother-daughter relationship among the
various volumes composing it. If you run it then you will see what is presented
in Fig.16.

2) Clicking the left mouse button on the specified volume or else choosing
interactive "dspec” command for that volume will display the geometrical spec-
ifications for the volume. For example, MBOX is a mother box in which the
detector is positioned, CALO is the calorimeter itself and NBW is nbw crystal.
Corresponding figures are presented in Fig.17, Fig.18, Fig.19.

3) deut mbox 1 1 10 10 .4 .4 - displays a side view of the calorimeter.

4) dcut mbox 2 1 10 10 .4 .4 - displays a top view of the calorimeter.

5) deut mbox 3 -10 5 10 1 1 - displays a front view of the calorimeter.

The result of the option 3) can be seen in the Fig.20.

12
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Figure 17: Mother box
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Figure 18: Calorimeter
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Figure 19: NBW crystals
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Figure 20: Cross-section of the detector

6) deb on - initializes debugging option.

7) swit 2 4 - initializes track plotting.

8) swit 2 0 - turns off track plotting.

9) trig - triggers one event.
If you set the debug option on then it would be possible to see all of the events
tracked through the detector media, as in the Fig.21.
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Figure 21: Tracks in the detector
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