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LZ =LUX + ZEPLIN

current world

ZEPLIN .
pioneered + leader: 2.2x10"
WIMP-search cm? at 50 GeV/c?

with 2-phase Xe and counting

3.9 x10% cm?

100 kg

Scale-up using demonstrated

technology and experience for

low-risk but aggressive program:

- internal background-free strategy

- some infrastructure inherited
from LUX

- LZ expected sensitivity:
3x10* cm?2 with 3-yr run




Davis Cavern 1480 m
(4200 mwe)
LZ in LUX Water Tank
South Dakota, USA

LZ Here



Scale up = 50 in Fiducial Mass
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LZ

Total mass—10T
WIMP Active Mass—-7T |
WIMP Fiducial Mass—5.6 T

LUX

+ maintain background-free, low-energy response



LZ Detector Overview
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Dual-phase liquid xenon TPC

Electroluminescence
region and gas phase

Section view of TPC
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e 7T active LXe mass, 146 cm diameter, 146 cm length

e 494 PMTs (253 top, 241 bot) 3” R11410 PMTs (activity “mBqg; high QE)
e TPClined with high-reflectivity PTFE (Rpye 2 95%)

e instrumented “Skin” region optically separated from TPC (180 PMT)



Background Reduction:
key design points

Photomultipliers of ultra-low natural radioactivity

Low background titanium cryostat

LUX water shield and an added Gadolinium-loaded liquid scintillator
active veto

Instrumented “skin” region of peripheral xenon as another veto
system

Radon suppression during construction, assembly and operations

Unprecedented levels of Kr removal from Xe



Performance Drivers

I
Baseline
Cathnde HV 50 kV 100 kV

Light collection 7.5% 12%
e lifetime (ps) 850 2800

N-fold trigger 3 2
coincidence
T 20 mBg 1 mBq

e 5.8keV,, S1threshold (4.5 keV,, LUX)

e 0.35 kV/cm drift field, 99.5% ER/NR disc.
(already surpassed in LUX at 0.2 kV/cm)



The Outer Detector (OD)

Essential to utilize most Xe, maximize
fiducial volume

Hermetic measurement of penetrating
backgrounds

Segmented tanks — installation
constraints (shaft, water tank)

60 cm thick, 21.5 T of Gadolinium-
loaded LAB* liquid scintillator,
OK underground

97% efficiency for neutrons

Daya Bay legacy, scintillator & tanks
(and people)

* Linear AlkylBenzene



Powerful Background Rejection

Simulated single NR scatter in TPC before/after Skin+OD vetoes

LXe TPC onlv

cts ftonne fyear
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* Increases effective fiducial mass from3.8T—5.6T
e Internal backgrounds now dominate
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 Rn (and Kr) dominant internal background sources

* Rn:
o Emanates from most materials
o 20 mBq requirement, 1 mBq goal
Rn removal system at UMich

o Four measurement systems with ~0.1 mBq
sensitivity

o Main assembly laboratory at SURF will have
reduced radon air system

i Kr: Chromatography from column

o Remove 8Krto <15 ppq
(1015 g/g) using gas
chromatography (best 5
LUX batch 200 ppq) E

o Setting up to process
200 kg/day at SLAC Chromatography  Xe Recovery

i
v ] 50 100 150 200 250 300
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Calibrations

Expand upon successful LUX program (and other experience)

DD Neutron Generator (Nuclear Recoils)

Tritiated Methane (Electron Recoils)
Movable photon sources e.g. tubes penetrating cryostat
Additional sources e.g. YBe source for low energy (Nuclear Recoils)

DD neutron calibration

Outgoing
Particle

—
Incoming
Particle

Tritium Beta Spectrum Measured in LUX
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Detector Prototyping

Extensive program of prototype development underway, with
three general approaches:

* Testing in liquid argon, primarily of HV elements at LBNL

* Design choice and validation in small (few kg) LXe test chambers in many
locations: LLNL, UC Berkeley, LBNL, U Michigan, UC Davis, Imperial

CO”ege, MEPh', LIP (arXiv:1507.01310, [physics.ins-det], arXiv:1608.01717 [physics.ins-det])

* System test platform at SLAC, Phase | about 100 kg of LXe, TPC prototype
testing ongoing (includes field testing of array of custom made sensors)



Projected LZ Sensitivity — Spin Independent

(5.6 T fiducial, 1000 live-days)
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Year

2012
2014
2015

2016
2017

2018
2019
2020
2025+

Timeline

Month
March
July
April

August
March
August
June

April

Activity
LZ (LUX-ZEPLIN) collaboration formed
LZ Project selected in US and UK

DOE CD-1/3a approval, similar in UK
Conceptual Design Report arXiv: 1509.02910

DOE CD-2/3b approval expected

LUX removed from underground

Beneficial occupancy surface assembly building
Beneficial occupancy for underground installation
Underground installation

Start operations

Planning on 5+ years of operations
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Summary

LZ Project well underway, with procurement of Xe,
PMTs and cryostat vessels started

Extensive prototype program underway

LZ benefits from the excellent LUX calibration
techniques and understanding of background

Will explore significant fraction of available phase
space:

o  WIMP sensitivity 3 x 104 cm? @ 40 GeV/c? and
approaching neutrino floor
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Extra Slides



Xe purification and cryogenics

Xe purity
analytics

Gas phase purification through getter:
10 tons/2.5 days

Trap-enhanced mass spec;
sensitivity: ~“ppt

High-efficiency two-phase heat
exchange

LN, thermosiphon-based cryogenics:
multiple cooling locations
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Neutrino Background
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WIMP Signal Region
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Non-WIMP physics

Effective Field Theory Interaction Decomposition
Neutrinoless Double Beta Decay

Axions/Axion-like-particles, leptophilic DM,
fractionally charged particles

External Neutrino Physics:

o Solar
o Supernova
o  Sterile Neutrino
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@Status and outlook for WIMP detection
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