Future Drell-Yan fixed target experiments at Fermilab

Wolfgang Lorenzon
University of Michigan

on behalf of the SeaQuest Collaboration

- Introduction
- SeaQuest: Fermilab Experiment E906
 - What will we learn?
 - What will we measure?
 - How will we measure it?
 - When we will do it?
- Beyond SeaQuest

NSAC Long Range Plan 2007 (2002)

QCD

- What are the phases of strongly interacting matter, and what roles do they play in the cosmos?
- → What is the internal landscape of the proton?
- What does QCD predict for the properties of strongly interacting matter?
- What governs the transition of quarks and gluons into pions and nucleons?
- What is the role of gluons and gluon self-interactions in nucleons and nuclei?
- What determines the key features of QCD, and what is their relation to the nature of gravity and spacetime?
- Nuclei and Nuclear Astrophysics
- Fundamental Symmetries and Neutrinos

Internal Landscape of the Proton

Internal Landscape of the Proton

- Just three valence quarks?
- No!!
- And, quark distributions change in the nucleus

Flavor Structure of the Proton

- Constituent Quark Model
 Pure valence description: proton = 2u + d
- Perturbative Sea
 sea quark pairs from g → qq
 should be flavor symmetric:

$$\overline{d} = \overline{u}$$

- → What is the origin of the sea?
- Significant part of the LHC beam

E866: $\overline{d} > \overline{u}$

Flavor Structure of the Proton - II

 There is a gluon splitting component which is symmetric

$$\overline{d}(x) = \overline{u}(x) = \overline{q}(x)$$

- $\bar{d} \bar{u}$
 - Symmetric sea via pair production from gluons subtracts off
 - No gluon contribution at 1st order in α_s
 - Non-perturbative models are motivated by the observed difference
- A proton with 3 valence quarks plus glue cannot be right at any scale!!

Flavor Structure of the Proton - III

Non-perturbative models: alternate d.o.f.

Meson Cloud Models

Quark sea from cloud of 0 mesons:

$$\rightarrow |\overline{d} > \overline{u}|$$

Chiral-Quark Soliton Model

- quark d.o.f. in a pion
 mean-field: u → d + π⁺
- nucleon = chiral soliton
- one parameter: dynamically generated quark mass
- expand in 1/N_c:

$$\rightarrow \overline{d} > \overline{u}$$

Statistical Model

- nucleon = gas of massless partons
- few parameters: generate parton distribution functions
- input:

QCD: chiral structure DIS: u(x) and d(x)

$$\rightarrow |\overline{d} > \overline{u}|$$

⇒ important constraints on flavor asymmetry for polarization of light sea

$$\Delta \overline{q} = 0$$

$$\Delta \overline{u} \cong -\Delta \overline{d} > 0$$

$$\Delta \overline{d} < 0, \Delta \overline{u} < 0$$

Flavor Structure of the Proton - IV

Comparison with models

- High x behavior is not explained
- Perturbative sea seems to dilute meson cloud effects at large x (but this requires large-x gluons)

- → Measuring the ratio is powerful
- Are there more gluons and thus symmetric anti-quarks at higher x?
- Unknown other mechanisms with unexpected x-dependence?

Fermilab Experiment E906

- E906 will extend Drell-Yan measurements of E866 (with 800 GeV protons) using upgraded spectrometer and 120 GeV proton beam from main injector
- Lower beam energy gives factor 50 improvement "per proton" !
 - → Drell-Yan cross section for given x increases as 1/s
 - Backgrounds from J/Ψ and similar resonances decreases as s
- Use many components from E866 to save money/time, in NM4 Hall
- Hydrogen, Deuterium and Nuclear Targets

Fermilab E906/Drell-Yan Collaboration

Abilene Christian University
Donald Isenhower, Mike Sadler,
Rusty Towell, S. Watson

Institute of Physics, Academia Sinica Wen-Chen Chang, Yen-Chu Chen, Da-Shung Su

Argonne National Laboratory John Arrington, <u>Don Geesaman</u>*, Kawtar Hafidi, Roy Holt, Harold Jackson, David Potterveld, <u>Paul E. Reimer</u>*, KEK Shinya Sawada

Kyoto University Kenlchi Imai, Tomofumi Nagae

RIKEN
Yuji Goto, Atsushi
Taketani, Yoshinori Fukao,
Manabu Togawa

Ling-Tung University Ting-Hua Chang

Los Alamos National Laboratory
Gerry Garvey, Mike Leitch, Ming Liu
Xiaodong Jiang, Pat McGaughey,
Joel Moss

Maryland Betsy Beise

Rutgers University

*Co-Spokespersons

Jan, 2009

Collaboration contains many of the E-866/NuSea groups and several new groups (total 17 groups)

Drell-Yan Spectrometer for E-906 (25m long)

Fixed Target Drell-Yan: What we really measure

- Measure yields of $\mu^+\mu^-$ pairs from different targets
- Reconstruct p_{γ} , $M_{\gamma}^2 = x_b x_t s$
- Determine x_b , x_t
- Measure differential cross section

$$\frac{d^2\sigma}{dx_1 dx_2} = \frac{4\pi\alpha^2}{9x_1 x_2} \frac{1}{s} \sum_{b} e^2 \left[\bar{q}_t(x_t) q_b(x_b) + q_t(x_t) \bar{q}_b(x_b) \right]$$

$$\rightarrow$$
 x_F = 2p_{||} $^{\gamma}$ /s^{1/2} ≈ x_b - x_t

- Beam valence quarks probed at high x
- Target sea quarks probed at low/intermediate x

Fixed Target Drell-Yan: What we really measure - II

 Measure cross section ratios on Hydrogen, Deuterium (and Nuclear) Targets

$$\left. \frac{\sigma^{pd}}{2\sigma^{pp}} \right|_{x_b \gg x_t} \approx \frac{1}{2} \left[1 + \frac{\bar{d}(x_t)}{\bar{u}(x_t)} \right]$$

SeaQuest Projections for d-bar/u-bar Ratio

- SeaQuest will extend these measurements and reduce statistical uncertainty
- SeaQuest expects systematic uncertainty to remain at ≈1% in cross section ratio
- 5 s slow extraction spill each minute
- Intensity:
 - **2** x 10¹² protons/s
 - 1 x 10¹³ protons/spill

SeaQuest Projections for absolute cross sections

- Reach high x through beam proton
 - large x_F gives large x_{beam}
- High x distributions poorly understood
 - nuclear corrections are large, even for deuterium
 - lack of proton data
- In pp cross section, no nuclear corrections
 - direct measure of 4u+d
- Measure convolution of beam and target PDF
 - absolute magnitude of high x valence distributions
 - absolute magnitude of the sea in target $(\overline{d} + \overline{u})$ (currently determined by v-Fe DIS)

 X_2

0.3 0.35 0.4 0.45 0.5

Sea quark distributions in Nuclei

- EMC effect from DIS is well established
- But Drell-Yan apparently sees no Antishadowing effect (valence only effect)

Sea quark distributions in Nuclei - II

- SeaQuest can extend statistics and x-range
- Are nuclear effects the same for sea and valence distributions?
- What can the sea parton distributions tell us about the effects of nuclear binding?

Where are the exchanged pions in the nucleus?

- The binding of nucleons in a nucleus is expected to be governed by the exchange of virtual "Nuclear" mesons.
- No antiquark enhancement seen in Drell-Yan (Fermilab E772) data.
- Contemporary models predict large effects to antiquark distributions as x increases
- Models must explain both
 DIS-EMC effect and Drell-Yan
- SeaQuest can extend statistics and x-range

Partonic Energy Loss in Cold Nuclear Matter

- An understanding of partonic energy loss in both cold and hot nuclear matter is paramount to elucidating RHIC data.
- Pre-interaction parton moves through cold nuclear matter and looses energy.
- Apparent (reconstructed) kinematic value (x₁ or x_F) is shifted
- Fit shift in x₁ relative to deuterium
 - \Rightarrow shift in $\Delta x_1 \propto 1/s$ (larger at 120 GeV)

 E906 will have sufficient statistical precision to allow events within the shadowing region, x₂ < 0.1, to be removed from the data sample Parton Loses Energy in Nuclear Medium

Fermilab Seaquest Timelines

- Fermilab PAC approved the experiment in 2001, but experiment was not scheduled due to concerns about "proton economics"
- Stage II approval in December 2008
- Scheduled to run in 2010 for 2 years of data collection

Expt. Funded	Experiment Construction		Experiment Runs	
2008	2009	2010	2011	2012

Apparatus available for future programs at, e.g. Fermilab, J-PARC or RHIC

significant interest from collaboration for continued program

Future Possibilities

Transversely Polarized Target

- Single spin asymmetries → Sivers distribution
- Check: $f_{1T}^{\perp q}(x, k_T)\Big|_{DIS} = -f_{1T}^{\perp q}(x, k_T)\Big|_{D=Y}$
- Transversely polarized beam at JPARC???

Pionic Drell-Yan

- Measure high-x pionic parton distributions
- Test charge symmetry violation
 - \checkmark $\pi^+\pi^-$ comparison on deuterium target
 - ✓ Difficulty producing pure π^+ beam

Drell-Yan fixed target experiments at Fermilab

- What is the structure of the nucleon?
 - \longrightarrow What is $\overline{d}/\overline{u}$?
 - What is the origin of the sea quarks?
 - What is the high x structure of the proton?

- What is the structure of nucleonic matter?
 - Where are the nuclear pions?
 - Is anti-shadowing a valence effect?
- Do colored partons lose energy in cold nuclear matter?
- SeaQuest: 2010 2012
 - significant increase in physics reach
- Beyond SeaQuest
 - Polarized Drell-Yan
 - Pionic Drell-Yan

