Electron Beam Polarimetry for EIC/eRHIC

W. Lorenzon (Michigan)

- Introduction
- Polarimetry at HERA
- · Lessons learned from HERA
- Polarimetry at EIC

V.Ptitsyn, C-AD

EIC Objectives

- e-p and e-ions collisions
- 5-10 GeV electrons: 25-250 Gev protons: 100 Gev/u Au
- Luminosity:
 - $L \approx 3 \cdot 10^{32} \frac{1}{\text{sec·cm}^2}$ for e-p collisions
 - ► $L \approx 10^{30} 10^{31} \frac{1}{\text{sec·cm}^2}$ for e-Au collisions
- Polarized electron and proton beams
- Longitudinal polarization at collision point: 70%
- 35 nsec minimum separation between bunches

How to measure Polarization of e⁻, e⁺ beams?

- Macroscopic:
 - polarized electron bunch: very week dipole (~10⁻⁷ of magnetized iron of same size)
- Microscopic:
 - spin-dependent scattering processes
 simplest → elastic processes:
 - cross section large
 - simple kinematic properties
 - · physics quite well understood
 - three different targets used currently:

```
1. e- nucleus: Mott scattering 100 - 300 keV
```

2. e[±] - electrons: Møller (Bhabha) Scat. MeV - GeV

3. e ± - photons: Compton Scattering > GeV

Other Labs employing Electron Polarimeters

Many polarimeters are or have been in use:

Compton Polarimeters:

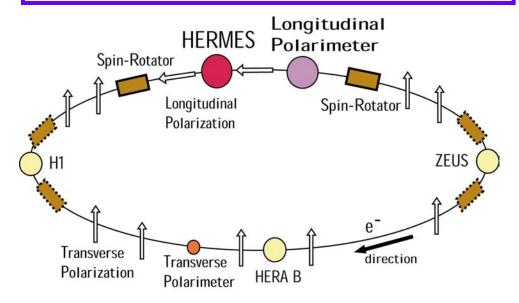
LEP mainly used as machine tool for resonant depolarization

DESY HERA, storage ring 27.5 GeV (two polarimeters)

Jlab Hall A < 8 GeV

Bates South Hall Ring < 1 GeV

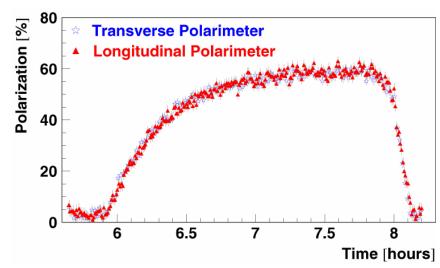
Nikhef AmPS, storage ring < 1 GeV


Møller / Bhabha Polarimeters:

Bates linear accelerator < 1 GeV

Mainz Mainz Microtron MAMI < 1 GeV

Jlab Hall A, B, C


Electron Polarization at HERA


Self polarization of electrons by Synchrotron radiation emission in curved sections:

Sokolov-Ternov effect ($\tau \sim 30$ min.)

$$P(t) = P_{\infty} \cdot (1 - e^{-t/\tau})$$

Principle of the P_e Measurement with the Longitudinal Polarimeter

back scattered
Compton photon

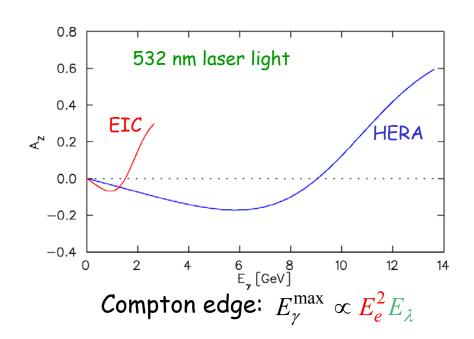
Calorimeter

Compton Scattering:

$$e+\lambda \rightarrow e'+\gamma$$

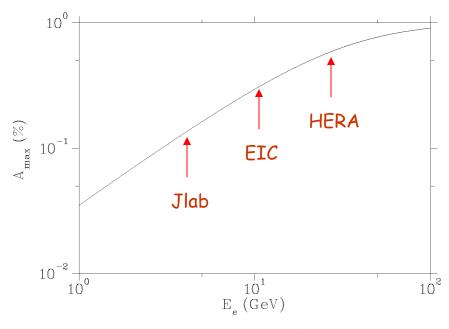
Cross Section:

$$d\sigma/dE_{\gamma} = d\sigma_0/dE_{\gamma}[1 + P_eP_{\lambda}A_z(E_{\gamma})]$$


 $d\sigma_0$, A_z : known (QED)

P_e: longitudinal polarization

of e beam


 P_{λ} : circular polarization (±1)

of laser beam

Compton Polarimetry

- Detecting the γ at 0° angle
- Detecting the e⁻ with an energy loss
- Strong $\frac{\bar{d}A}{dE_{\gamma}} \to \text{good energy}$ resolution for photons
- Photon energy cutoff
- Time need for a measurement: $T \propto 1/(\sigma \cdot A^2) \propto 1/E_{\lambda}^3 \times 1/E_{e}^4$
- · Small crossing angle needed
- · non-invasive measurement

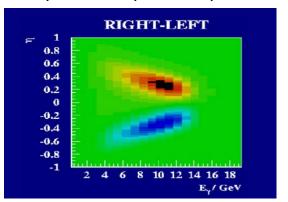
Asymmetry: $A \propto E_e E_{\lambda}$

Very good polarimetry at high energy or/and high currents (storage rings)

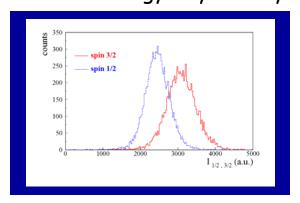
Compton Polarimetry at HERA

Operating Modes and Principles

Laser Compton scattering off HERA electrons

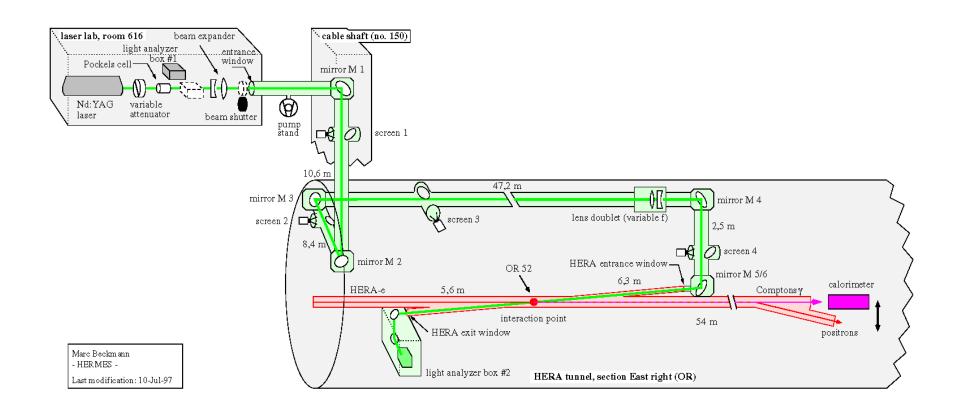

TPOL

CW Laser - Single Photon

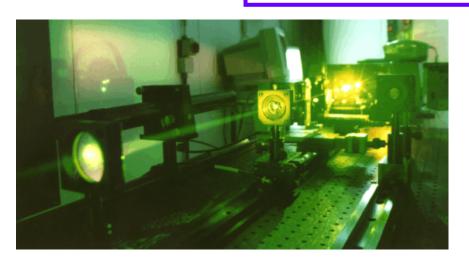

Pulsing Laser - Multi Photon

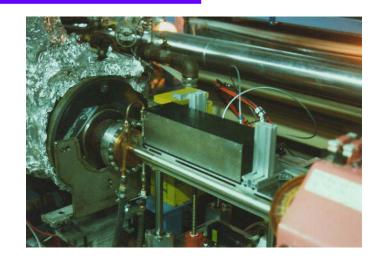
Flip laser helicity and measure scattered photons

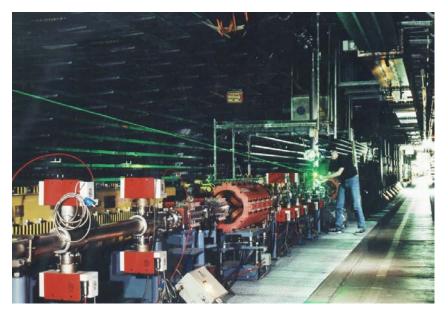
 $P_y = 0.59$ Spatial Asymmetry

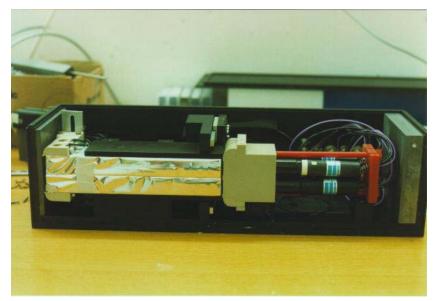


 $P_z = 0.59$ Rate or energy Asymmetry


Statistical Error $\Delta P=1\%$ per minute @ HERA average currents


Experimental Setup - Laser System




- M1/2 M3/4 M5/6: phase-compensated mirrors
- laser light polarization measured continuously in box #2

Experimental Setup - Details

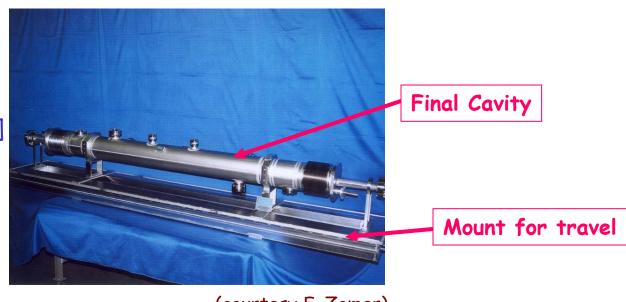
Systematic Uncertainties

Source	$\Delta P_e/P_e$ (%)	$\Delta P_e/P_e$ (%)
	(2000)	(>2003)
Analyzing Power Ap - response function - single to multi photon transition	+- 1.2 ^{\alpha} (0.9) (0.8)	+- 0.8 (+-0.2) (+-0.8)
A _p long-term stability	+- 0.5	+- 0.5
Gain mismatching	+- 0.3β	+-0.2
Laser light polarization	+- 0.2	+-0.2
Pockels Cell misalignment	+- 0.4β	+-0.2
Electron beam instability	+- 0.8 ^β	+-0.3
Total	+-1.6	+-1.0

 $^{\alpha}\text{new}$ sampling calorimeter built and tested at DESY and CERN $^{\beta}\text{statistics}$ limited

expected precision (multi-photon mode)

Polarization-2000

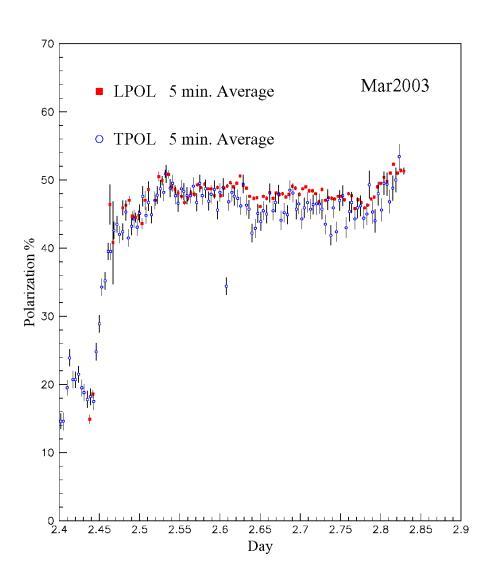

HERMES, H1, ZEUS and Machine Group

Goal: Fast and precise polarization measurements of each electron bunch

Task: major upgrade to Transverse Polarimeter (done) upgrade laser system for Longitudinal Polarimeter (in progress)

Fabry-Perot laser cavity

 $[(\delta P_e)_{stat} = 1\%/\text{min/bunch}]$

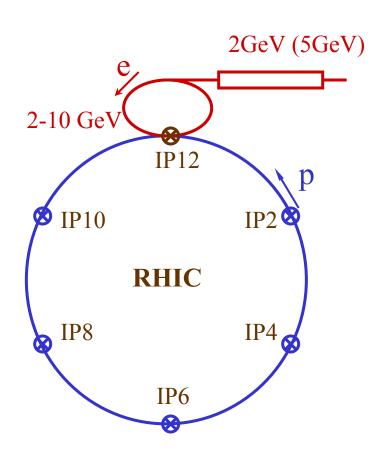


(courtesy F. Zomer)

Polarization after Lumi Upgrade

All three spin rotators turned on

 $P_e > 50\%$



Lessons learned from HERA

- Include polarization diagnostics and monitoring in design of beam lattice
 - more crucial for ring option than for linac option
 - measure beam polarization continuously \rightarrow minimize systematic errors
- Two (three?) options to measure polarization
 - Compton Scattering (\geq 5 GeV):
 - Longitudinal Polarization: rate or energy asymmetries ($\lesssim 30\%$)
 - Transverse Polarization: spatial asymmetries ($\lesssim 50 \mu m$)
 - Møller Scattering (100 MeV many GeV):
 - · under investigation: depolarization (\propto I 2) due to beam RF interaction with the e $^-$ spins
- Consider three components
 - laser (transport) system:
 - conventional transport system: laser accessible at all times, robust, radiation damage to mirrors, proven technology
 - · optical cavity: laser not accessible at all times, expensive, delicate, ring operation?
 - laser-electron interaction region:
 - minimize bremsstrahlung and synchrotron radiation: introduce a chicane
 - · optimize Compton rate: small crossing angle
 - Compton detector:
 - radiation hard, fast (<35ns): Cerenkov detectors superior to scintillation detectors
 - record energy and position of individual Compton events

EIC: Collider Layout

V. Ptitsyn (BNL), A-C D

- Proposed by BINP and Bates
- e-ring is ¼ of RHIC ring length
- Collisions in one interaction point
- Collision e energies: 5-10 GeV
- Injection linac: 2-5 GeV
- Lattice based on "superbend" magnets
 - polarization time: 4-16 minutes
- Conventional magnets (Sokolov-Ternov)
 - polarization time: 10-320 minutes
- 25-250 GeV protons,
 100 GeV/u Au ions (+79)

Polarimetry at EIC

- · Ring Ring Option
 - measure beam polarization continuously -> minimize systematic errors (~1%)
- Compton Scattering (5-10 GeV):
 - Longitudinal Polarization & Transverse Polarization
 - -> two independent measurements with vastly different systematic uncertainties
- Laser (transport) system
 - either conventional transport system or optical cavity
 - -> wait for experience at HERA (both systems available)
- Laser-electron interaction region
 - introduce a chicane to minimize bremsstrahlung and synchrotron radiation
- Compton detector
 - needs to be radiation hard and fast (<35ns)
 - record energy and position of individual Compton events
 - -> operate in single or few photon mode
 - -> monitor linearity of detector: brems edge, Compton edge, asymmetry zero crossing
 - detect scattered electron and photon: in coincidence -> suppress background

Include Electron Beam Polarimetry in Lattice Design