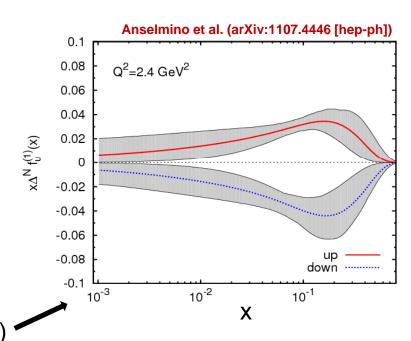
## Polarized Protons in the Fermilab Main Injector

Wolfgang Lorenzon
UNIVERSITY OF MICHIGAN
(12-September-2013)

**PSTP 2013** 


- Sivers Function in Polarized Drell-Yan
  - fundamental QCD prediction:

$$f_{1T}^{\perp}\Big|_{DIS} = -f_{1T}^{\perp}\Big|_{DY}$$

- Polarized Drell-Yan at Fermilab
  - polarized Beam (E-1027) or Target (E-1039)
- Main Injector Polarization Scheme
  - present status & plans

#### **Sivers Function**

- describes transverse-momentum distribution of unpolarized quarks inside transversely polarized proton
- captures non-perturbative spin-orbit coupling effects inside a polarized proton
- Sivers function is naïve time-reversal odd
- leads to
  - $\rightarrow$  sin( $\phi \phi_S$ ) asymmetry in SIDIS
  - → sin<sub>b</sub> asymmetry in Drell-Yan
- measured in SIDIS (HERMES, COMPASS)
- future measurements at Jlab@12 GeV planned

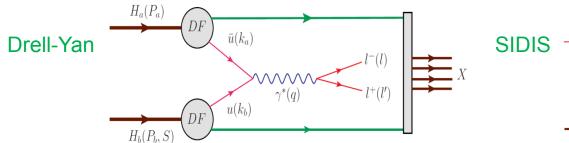


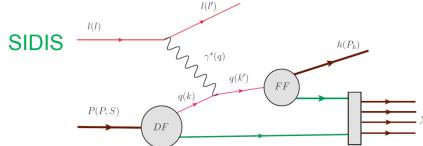
First moment of Sivers functions:

u- and d- Sivers have opposite signs, of roughly equal magnitude

## **Polarized Drell-Yan Experiment**

## **NOT YET DONE!**


- Access to transverse-momentum dependent distribution (TMD) functions
  - → Sivers, Boer-Mulders, etc
- Transversely Polarized Beam or Target
  - → Sivers function in single-transverse spin asymmetries (sea quarks or valence quarks)
    - valence quarks constrain SIDIS data much more than sea quarks
    - global fits indicate that sea quark Sivers function is small
  - → transversity ⊗ Boer-Mulders function
  - → baryon production, incl. pseudoscalar and vector meson production, elastic scattering, two-particle correlations, J/ψ and charm production
- Beam and Target Transversely Polarized
  - → flavor asymmetry of sea-quark polarization
  - → transversity (quark ⊗ anti-quark for pp collisions)
    - anti-quark transversity might be very small


#### **Drell Yan Process**

- Similar Physics Goals as SIDIS:
  - parton level understanding of nucleon
  - electromagnetic probe

timelike (Drell-Yan)

vs. spacelike (SIDIS) virtual photon





A. Kotzinian, DY workshop, CERN, 4/10

- Cleanest probe to study hadron structure:
  - hadron beam and convolution of parton distributions
  - no QCD final state effects
  - no fragmentation process
  - ability to select sea quark distribution
  - allows direct sensitivity of transverse momentum-dependent distribution (TMD) functions (Sivers, Boer-Mulders, etc)

## Sivers in Drell-Yan vs SIDIS: The Sign Change

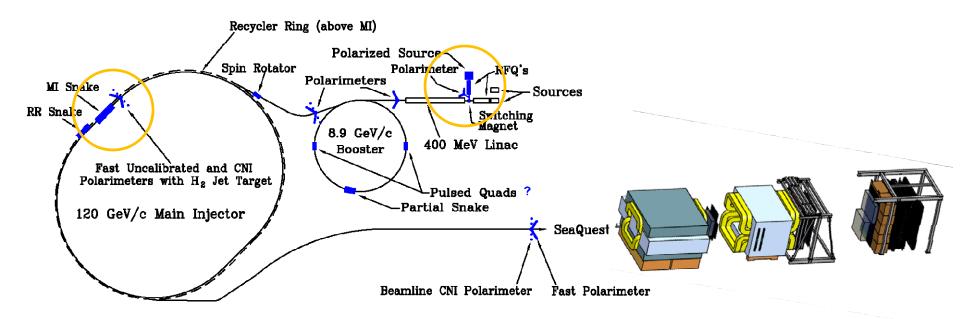
$$f_{1T}^{\perp}(x,k_T)\Big|_{SIDIS} = -f_{1T}^{\perp}(x,k_T)\Big|_{DY}$$

- fundamental prediction of QCD (in non-perturbative regime)
  - goes to heart of gauge formulation of field theory
- Polarized Drell-Yan:
  - major milestone in hadronic physics (HP13)
- Importance of factorization in QCD:

QCD without factorization is almost useless\*

\*I added this sentence after this morning comments, so it might be too strong

Monday, 26 April 2010

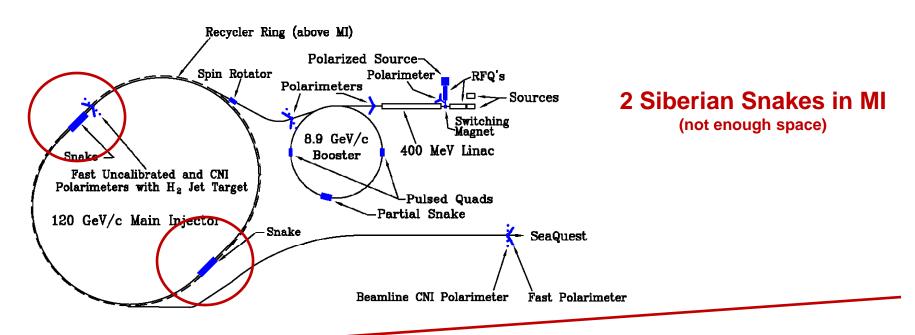

A. Bacchetta, DY workshop, CERN, 4/10

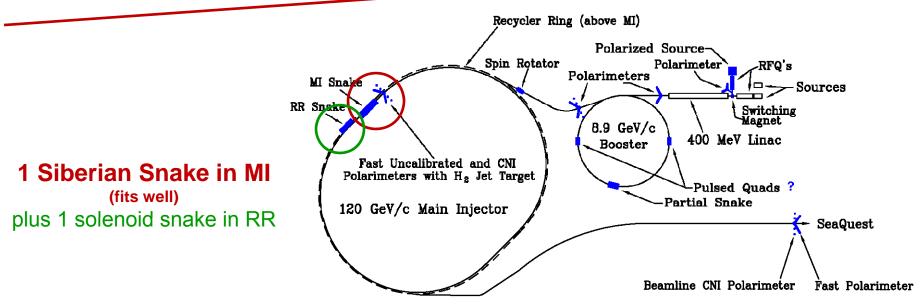
## **Planned Polarized Drell-Yan Experiments**

| experiment                   | particles                                                                                                                                                      | energy                   | $x_b$ or $x_t$                            | Luminosity                                              | timeline    |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------|---------------------------------------------------------|-------------|
| COMPASS<br>(CERN)            | $\pi^{\pm} + \mathbf{p}^{\uparrow}$                                                                                                                            | 160 GeV<br>√s = 17.4 GeV | $x_t = 0.2 - 0.3$                         | 2 x 10 <sup>33</sup> cm <sup>-2</sup> s <sup>-1</sup>   | 2014, 2018  |
| PAX<br>(GSI)                 | p <sup>↑</sup> + p <sub>bar</sub>                                                                                                                              | collider<br>√s = 14 GeV  | $x_b = 0.1 - 0.9$                         | 2 x 10 <sup>30</sup> cm <sup>-2</sup> s <sup>-1</sup>   | >2017       |
| PANDA<br>(GSI)               | p <sub>bar</sub> + p <sup>↑</sup>                                                                                                                              | 15 GeV<br>√s = 5.5 GeV   | $x_t = 0.2 - 0.4$                         | 2 x 10 <sup>32</sup> cm <sup>-2</sup> s <sup>-1</sup>   | >2016       |
| NICA<br>(JINR)               | <b>p</b> <sup>↑</sup> + <b>p</b>                                                                                                                               | collider<br>√s = 20 GeV  | $x_b = 0.1 - 0.8$                         | 1 x 10 <sup>30</sup> cm <sup>-2</sup> s <sup>-1</sup>   | >2014       |
| PHENIX<br>(RHIC)             | <b>p</b> <sup>↑</sup> + <b>p</b>                                                                                                                               | collider<br>√s = 500 GeV | $x_b = 0.05 - 0.1$                        | 2 x 10 <sup>32</sup> cm <sup>-2</sup> s <sup>-1</sup>   | >2018       |
| RHIC internal target phase-1 | p <sup>†</sup> + p                                                                                                                                             | 250 GeV<br>√s = 22 GeV   | $x_b = 0.25 - 0.4$                        | 2 x 10 <sup>33</sup> cm <sup>-2</sup> s <sup>-1</sup>   |             |
| RHIC internal target phase-1 | p <sup>↑</sup> + p                                                                                                                                             | 250 GeV<br>√s = 22 GeV   | $x_b = 0.25 - 0.4$                        | 6 x 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup>   |             |
| SeaQuest (unpol.) (FNAL)     | p + p                                                                                                                                                          | 120 GeV<br>√s = 15 GeV   | $x_b = 0.35 - 0.85$<br>$x_t = 0.1 - 0.45$ | 3.4 x 10 <sup>35</sup> cm <sup>-2</sup> s <sup>-1</sup> | 2012 - 2015 |
| polDY <sup>§</sup><br>(FNAL) | <b>p</b> <sup>↑</sup> + <b>p</b>                                                                                                                               | 120 GeV<br>√s = 15 GeV   | $x_b = 0.35 - 0.85$                       | 2 x 10 <sup>35</sup> cm <sup>-2</sup> s <sup>-1</sup>   | >2016       |
|                              | § L= 1 x $10^{36}$ cm <sup>-2</sup> s <sup>-1</sup> (LH <sub>2</sub> tgt limited) / L= 2 x $10^{35}$ cm <sup>-2</sup> s <sup>-1</sup> (10% of MI beam limited) |                          |                                           |                                                         |             |

## Polarized Drell-Yan at Fermilab Main Injector

- Polarize Beam in Main Injector & use SeaQuest di-muon spectrometer
  - measure Sivers asymmetry



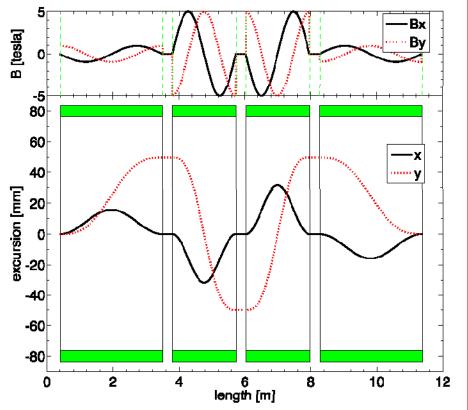


- SeaQuest di-muon Spectrometer
  - fixed target experiment, optimized for Drell-Yan
  - Iuminosity:  $L_{av} = 3.4 \times 10^{35} / \text{cm}^2 / \text{s}$ 
    - $\rightarrow$  I<sub>av</sub> = 1.6 x 10<sup>11</sup> p/s (=26 nA) / N<sub>p</sub> = 2.1 x 10<sup>24</sup> /cm<sup>2</sup>
  - → approved for 2-3 years of running: 3.4 x 10<sup>18</sup> pot
  - by 2015: fully understood, ready to take pol. beam

## Polarized Drell-Yan at Fermilab Main Injector - II

- Polarized Beam in Main Injector
  - use SeaQuest target
    - ✓ liquid H<sub>2</sub> target can take about  $I_{av} = 5 \times 10^{11} \text{ p/s}$  (=80 nA)
  - → 1 mA at polarized source can deliver about I<sub>av</sub> = 1 x 10<sup>12</sup> p/s (=150 nA) for 100% of available beam time (A. Krisch: Spin@Fermi report in (Aug 2011): arXiv:1110.3042 [physics.acc-ph])
    - ✓ 26 µs linac pulses, 15 Hz rep rate, 12 turn injection into booster, 6 booster pulses into Recycler Ring, followed by 6 more pulses using slip stacking in MI
    - ✓ 1 MI pulse =  $1.9 \times 10^{12} \, \text{p}$
    - using three 2-sec cycles/min (~10% of beam time):  $\rightarrow$  2.8 x 10<sup>12</sup> p/s (=450 nA) instantaneous beam current, and  $I_{av} = 0.95 \times 10^{11}$  p/s (=15 nA)
  - Luminosity considerations:
    - $L_{av} = 2.0 \times 10^{35} / \text{cm}^2/\text{s}$  (beam-time limited)
    - $\checkmark$  L<sub>av</sub> = 1 x 10<sup>36</sup>/cm<sup>2</sup>/s (target heating limited)

#### From 2 Siberian Snakes to 1 Snake

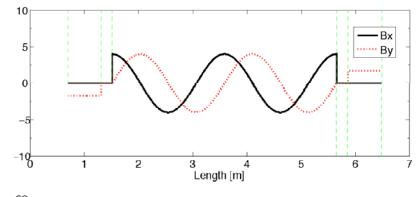


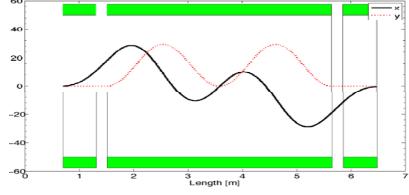



#### From 2 Siberian Snakes to 1 Snake - II

#### 2-snake design (11m long):

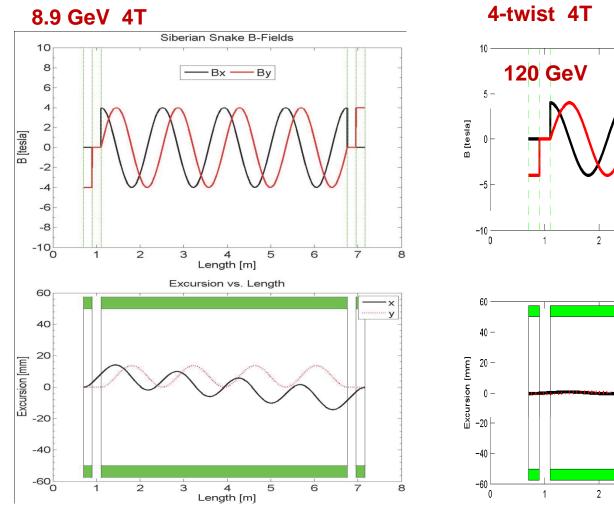
- 4 helical dipoles / snake
  - 2 helices: 5T / 3.1m / 6" ID
  - 2 helices: 5T / 2.1m / 6" ID (cold)


#### does not fit

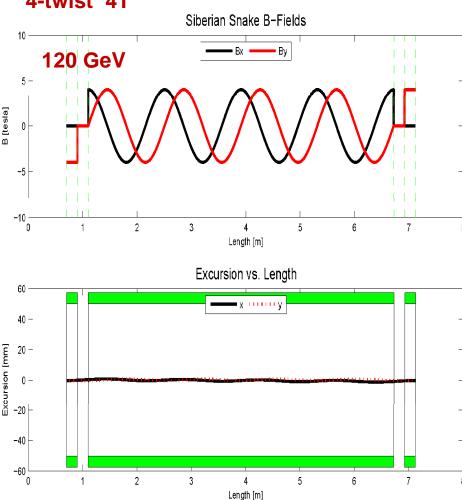



#### 1-snake design (5.8m long):

- 1 helical dipole + 2 conv. dipoles
  - helix: 4T / 4.2 m / 4" ID
  - dipoles: 4T / 0.62 m / 4" ID (warm)


#### fits well

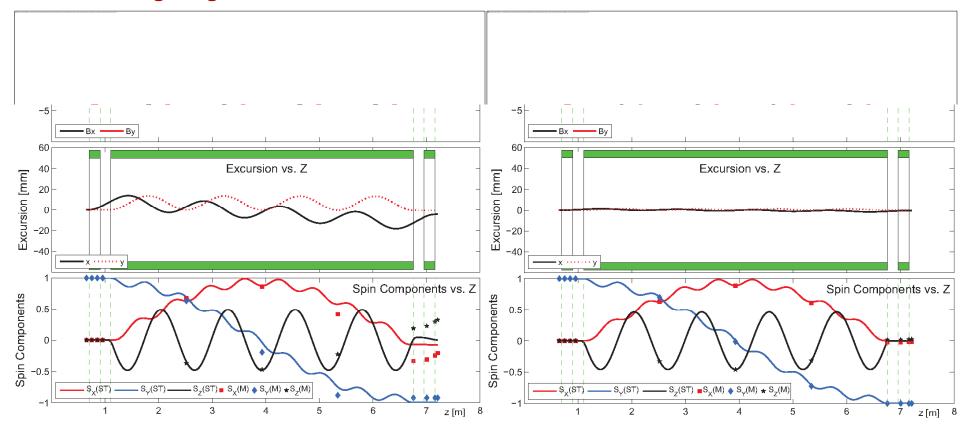





- T. Roser (BNL): test snakes/rotators up to 5.4T
  - operation not above 4T

## Steady Improvements to 1 Snakes solution - I




beam excursions shrink w/ number of twists

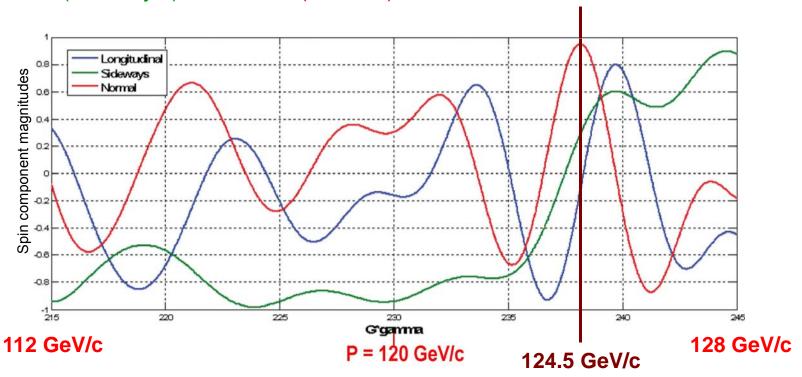


beam excursions shrink w/ beam energy

## Steady Improvements to 1 Snakes solution - II

#### **Including fringe fields**




- x, y, z spin components vs distance
- transport matrix formalism (E.D. Courant): fringe field not included,  $\beta$  = 1 (fixed)
- **\blacksquare** spin tracking formalism (Thomas-BMT): fringe field included,  $\beta$  varibale

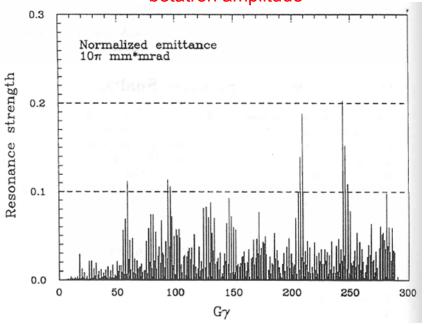
fringe fields have <0.5% effect at 8.9 GeV and <<0.1% effect at 100 GeV [arXiv: 1309.1063]

## Spin direction control for extracted beam

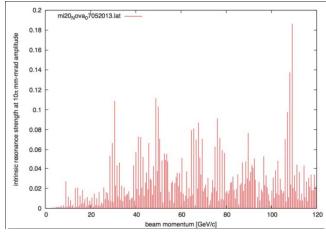
- Spin rotators used to control spin direction at BNL
- Spin@Fermi collaboration recent studies (to save \$\$)
  - rotate beam at experiment by changing proton beam energy around nominal 120 GeV

radial ("sideways") / vertical ("normal")




## The Path to a polarized Main Injector

Stage 1 approval from Fermilab: 14-November-2012

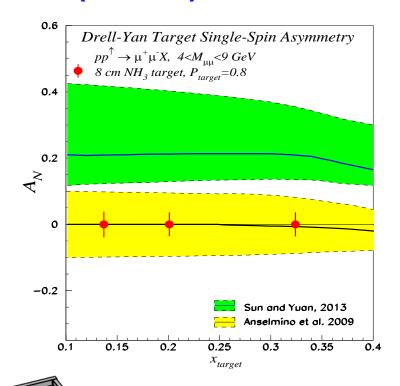

- Collaboration with A.S. Belov at INR and Dubna to develop polarized source
- Detailed machine design and costing using 1 snake in MI
  - Spin@Fermi collaboration provide design
    - → get latest lattice for NOVA:
      - translate "mad8" optics file to spin tracking code ("zgoubi")
    - → determine intrinsic resonance strength from depolarization calculations
    - → do single particle tracking with "zgoubi" with novel single-snake
    - → set up mechanism for adding errors into the lattice:
      - orbit errors, quadrupole mis-alignments/rolls, etc.
    - → perform systematic spin tracking
      - > explore tolerances on beam emittance
      - explore tolerances on various imperfections: orbit / snake / etc
  - Fermilab (AD) does verification & costing

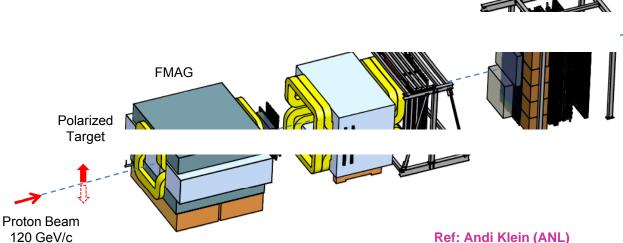
## **Intrinsic Resonance Strength in Main Injector**

## Depol calculations: single particle at $10\pi$ mm-mrad betatron amplitude



- 1995 Spin@Fermi report
  - before MI was built



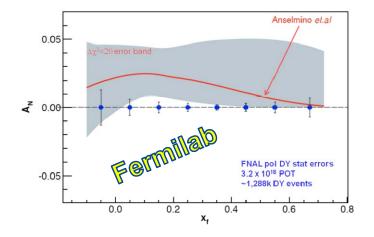


using NOVA lattice (July 2013)

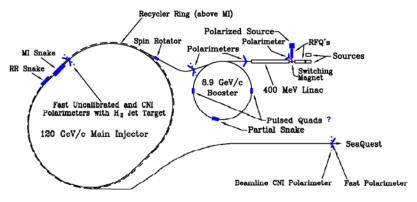
- very similar: largest resonance strength just below 0.2
  - one snake sufficient (E. Courant rule of.thumb)

## Polarized Target at Fermilab (E-1039)

- Probe Sea-quark Sivers Asymmetry with a polarized proton target at SeaQuest
  - sea-quark Sivers function poorly known
  - significant Sivers asymmetry expected from meson-cloud model

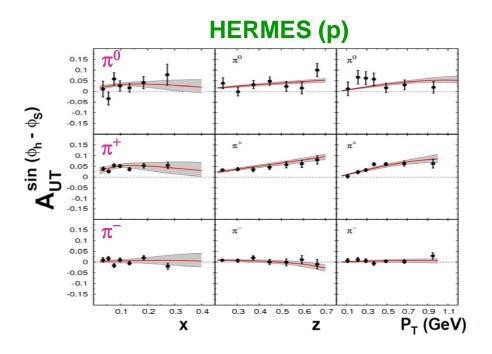






- use current SeaQuest setup
- a polarized proton target, unpolarized beam

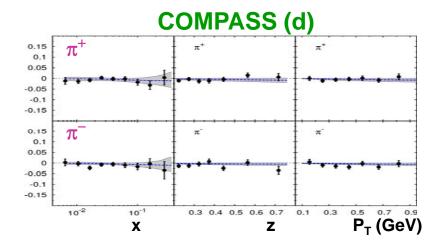
## **Summary**

- QCD (and factorization) require sign change
- Fermilab is arguably best place to do this measurement
  - → high luminosity, large x-coverage
  - → spectrometer already setup and running
- Run alongside neutrino program (10% of beam needed)
- Measure DY with both Beam or/and Target polarized
  - → broad spin physics program possible
- Path to polarized proton beam at Main Injector
  - perform detailed machine design and costing studies
    - proof that single-snake concept works
    - > applications for JPARC, NICA, ....
  - → Secure funding





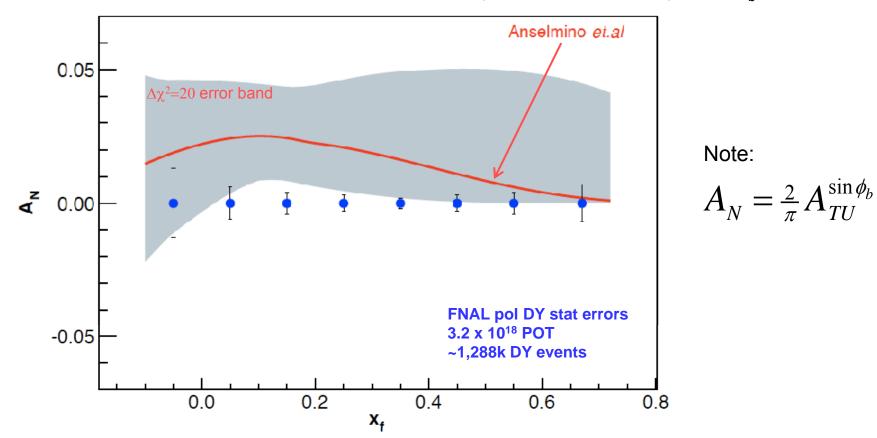




# The END

## **Sivers Asymmetry in SIDIS**



COMPASS (p) 0.1 0.05 -0.05 -0.1 -0.15 0.15 0.1 0.05 0 -0.05 -0.1 -0.15 0.1 **X** 0.01 0.4 0.6 P<sub>T</sub> (GeV)

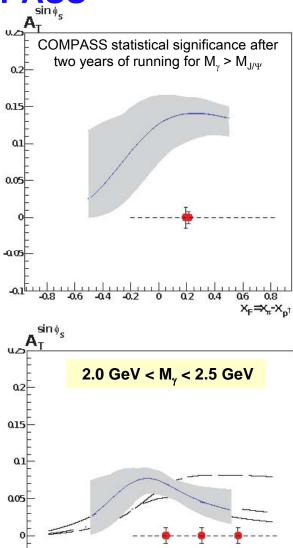

• Global fit to  $sin (\phi_h - \phi_S)$  asymmetry in SIDIS (HERMES (p), COMPASS (p), COMPASS (d))



Comparable measurements needed in Drell-Yan process

## **Sivers Asymmetry at Fermilab Main Injector**

- Experimental Sensitivity
  - Iuminosity:  $L_{av} = 2 \times 10^{35}$  (10% of available beam time:  $I_{av} = 15$  nA)
  - $\rightarrow$  3.2 x 10<sup>18</sup> total protons for 5 x 10<sup>5</sup> min: (= 2 yrs at 50% efficiency) with P<sub>b</sub> = 70%




→ Can measure not only sign, but also the size & maybe shape of the Sivers function!

**Main Competition: COMPASS** 

- approved for one year run at LHC restart
  - → 2<sup>nd</sup> year after 2 years of Primakoff measurements
- for comparison of Sivers function need to measure entire function
  - must evolve to same Q<sup>2</sup>
  - cannot do QCD evolution on a point

- for  $M_{\gamma} < M_{J/\Psi}$  significant contamination from many sources
  - charm decays that appear to reconstruct to low mass
  - combinatorial background



-0.05

 $X_F \Rightarrow X_{\pi} - X_{\pi^{\uparrow}}$