Opportunities with polarized Hadron Beams

Wolfgang Lorenzon University of Michigan

Spin2014 Beijing, China (24-October-2014)

$$\left. f_{1T}^{\perp} \right|_{DIS} = -f_{1T}^{\perp} \Big|_{DY}$$

Current Facilities

- T & L polarized p beams ($\sqrt{s} = 200, 500 \text{ GeV}$)
- L program:
 - \longrightarrow $A_{LL}^{\pi^0}$ (PHENIX) & A_{LL}^{jet} (STAR) $\longrightarrow \Delta g(x)$
 - \rightarrow A_L^{W±} at $\sqrt{s} = 500 \text{ GeV} \rightarrow \Delta \mathbf{q}_{bar}(\mathbf{x})$
- T program:
 - \longrightarrow A_N $\pi^{0,\eta,jet,...}$ \longrightarrow Sivers/Collins/Twist-3

- 120 GeV p from Main Injector on LH₂,LD₂,
 C,Ca,W targets → high-x Drell-Yan
- Science data started in March 2014
 - run for 2 yrs

COMPASS-II

- 190 GeV π⁻ beam on T-pol H target → polarized Drell-Yan
- First π^- beam expected: Apr 2015
 - run 2 yrs total

How do we build the proton spin?

The origin of nucleon spin and the distributions of quarks and gluons in nuclei remain mysteries after decades of study.

- How much do the quarks and gluons contribute to the nucleon spin? Is there significant orbital angular momentum?
- Polarized DIS: ΔΣ ≈ 0.3
- Q² evolution in polarized DIS gives relatively weak constraints on ∆g
- **RHIC** Spin program: map ∆g(x)

 δq

 $\mathbf{f}_{1\mathsf{T}}^{\perp}$

ΔG

What about the sea quarks?

- Understanding dynamics of sea-quark fluctuations
 - separation of quark flavors
 - flavor asymmetry in light sea quarks of proton

$$\overline{u} - \overline{d} < 0$$

- what about the polarized light quark sea?
- sea-quark polarizations critical for quark contribution to spin

Meson Cloud M. / Chiral-Quark Soliton M. / Statistical M.

$$|\overline{d}>\overline{u}$$

$$\overline{d} > \overline{u}$$

$$\Delta \overline{q} = 0$$

$$\Delta \overline{u} \cong -\Delta \overline{d} > 0$$

→ surprise from RHIC

$$\Delta \overline{u} - \Delta \overline{d} > 0$$

Future Hadron Facilities

New instrumentation in forward direction

- \rightarrow higher η : higher x_{beam} , lower x_{target}
- STAR Forward Calorimeter System: EMCal + HCal
 - forward jets & e/h separation for Drell-Yan
- fsPHENIX: forward spectometer w/ EMCal, HCal, RICH, tracking
 - forward jets & identified hadrons and Drell-Yan

Polarized Beam and/or Target w/ SeaQuest detector

- → high-luminosity facility for polarized Drell-Yan
- E-1027: pol p beam on unpol tgt
 - → Sivers sign change (valence quark)
- E-1039: SeaQuest w/ pol NH₃ target
 - probe sea quark distributions

RHIC Near Term Upgrades

The PHENIX Detector Evolution

2021-22

Evolve sPHENIX (HI detector) with forward instrumentation for p+p/p+A physics:

- GEM tracking chambers
- Hadronic Calorimetry
- Reconfigure existing FVTX and MuID

fsPHENIX forward instrumentation in common with evolution of sPHENIX into an EIC (eRHIC) detector.

~2025

from John Lajoie

STAR Forward Upgrades for 2021+

Forward Upgrades:

EMCal:

Tungsten-Powder-Scintillating-fiber 2.3 cm Moliere Radius, Tower-size: 2.5x2.5x17 cm³, 23 X_o

HCal:

Lead and Scintillator tiles, Tower size of 10x10x81 cm³ 4 interaction length

Tracking:

Silicon mini-strip detector 3-4 disks at z ~70 to 140 cm Each disk has wedges covering full 2π range in ϕ and 2.5-4 in η (other options still under study)

STAR is also pursuing a coordinated upgrade path that can lead to an EIC detector.

Future Spin Measurements @ RHIC

• Near Term (2015-16):

- Prompt photon A_N in polarized p+p @ 200GeV
- First exploration of SSA's in polarized p+A
- W boson transverse SSA*

Longer Term (2021-22):

- Extensive forward upgrades for STAR, PHENIX
- Long p+p (200/510 GeV) and p+A runs
- Planned spin program in ∆g(x,Q²) at low-x (longitudinal) as well as Jets, Drell-Yan (transverse), ...

*Run plan for Run-16 not yet finalized.

from John Lajoie

The Missing Spin Program: Drell-Yan

In COMPASS @ CERN transverse momentum dependent PDFs (TMDs) can be accessed either from semi-inclusive DIS (SIDIS), or from Drell-Yan processes, using a transversely polarized target:

By measuring the Transverse Single Spin Asymmetries (TSSA) in these processes one can access the correlations between the partons k_T and the nucleon spin.

SIDIS: spin asymmetry proportional to TMD(quark) ⊗ FF(quark → hadron)

DY: spin asymmetry proportional to TMD(quark) ⊗ TMD(antiquark)

- Drell-Yan advantage:
 - no QCD final state effects & no fragmentation process
 - clean access to sea quarks
- Crucial test of TMD formalism → sign change of T-odd functions

from Oleg Denisov

TMDs: Sivers Function

$$f_{1T}^{\perp} = \bigcirc$$
 -

cannot exist w/o quark OAM

- describes transverse-momentum distribution of unpolarized quarks inside transversely polarized proton
- captures non-perturbative spin-orbit coupling effects inside a polarized proton
- Sivers function is naïve time-reversal odd
- leads to
 - \Rightarrow sin($\phi \phi_S$) asymmetry in SIDIS
 - → sin_b asymmetry in Drell-Yan
- measured in SIDIS (HERMES, COMPASS)
- future measurements at Jlab@12 GeV planned

First moment of Sivers functions:

u- and d- Sivers have opposite signs, of roughly equal magnitude

Sivers Asymmetry in SIDIS

• Global fit to $\sin (\phi_h - \phi_S)$ asymmetry in SIDIS (HERMES (p), COMPASS (p), COMPASS (d))

QCD Evolution of Sivers Function

0.1

0.05

h⁺

Using TMD Q² evolution: → agreement with data improves

correct for TMD-factorization)

X

COMPASS (p)

P_T (GeV)

Z

TMD Evolution of Sivers Asymmetry (W)

- much stronger than any other known evolution effects
- needs input from data to constrain nonpertubative part in evolution
- Can only be done at RHIC (plans for 2% measurement in 2015)

- $A_N(DY)$
- Q^2 : 16 80 GeV²
- <p_t>: 1-2 GeV

- $A_N(\mathbf{W}^{\pm},\mathbf{Z}^0)$
- Q²: **6,400** GeV²
- <p_t>: 3-4 GeV

$$A_N \propto \frac{1}{Q^{0.7}}$$

Comparison of extracted TMD (Sivers) will provide strong constraint on TMD evolution

The Sign Change

$$f_{1T}^{\perp}(x,k_T)\Big|_{SIDIS} = -f_{1T}^{\perp}(x,k_T)\Big|_{DY, W}$$

- fundamental prediction of QCD (in non-perturbative regime)
 - goes to heart of gauge formulation of field theory
- "Smoking gun" prediction of TMD formalism
- Universality test includes not only the sign-reversal character of the TMDs but also the comparison of the amplitude as well as the shape of the corresponding TMDs
- NSAC Milestone HP13 (2015): "Test unique QCD predictions for relations between single-transverse spin phenomena in p-p scattering and those observed in deep-inelastic lepton scattering"

Planned Polarized Drell-Yan Experiments

Experiment	Particles	Energy (GeV)	x _b or x _t	Luminosity (cm ⁻² s ⁻¹)	${ m A}_{_{ m T}}^{\sin\phi_{_{\! S}}}$	P _b or P _t (f)	rFOM#	Timeline
COMPASS (CERN)	$\pi^{\pm} + \mathbf{p}^{\uparrow}$	160 GeV \sqrt{s} = 17	$x_t = 0.1 - 0.3$	2 x 10 ³³	0.14	P _t = 90% f = 0.22	1.1 x 10 ⁻³	2015, 2018
PANDA (GSI)	p + p [↑]	15 GeV √s = 5.5	$x_t = 0.2 - 0.4$	2 x 10 ³²	0.07	$P_t = 90\%$ f = 0.22	1.1 x 10 ⁻⁴	>2018
PAX (GSI)	$\mathbf{p}^{\uparrow} + \overline{\mathbf{p}}$	collider $\sqrt{s} = 14$	$x_b = 0.1 - 0.9$	2 x 10 ³⁰	0.06	P _b = 90%	2.3 x 10 ⁻⁵	>2020?
NICA (JINR)	p [↑] + p	collider $\sqrt{s} = 26$	$x_b = 0.1 - 0.8$	1 x 10 ³¹	0.04	P _b = 70%	6.8 x 10 ⁻⁵	>2018
PHENIX/STAR (RHIC)	$\mathbf{p}^{\uparrow} + \mathbf{p}^{\uparrow}$	collider $\sqrt{s} = 510$	$x_b = 0.05 - 0.1$	2 x 10 ³²	0.08	P _b = 60%	1.0 x 10 ⁻³	>2018
fsPHENIX (RHIC)	$\mathbf{p}^{\uparrow} + \mathbf{p}^{\uparrow}$	$\sqrt{s} = 200$ $\sqrt{s} = 510$	$x_b = 0.1 - 0.5$ $x_b = 0.05 - 0.6$	8 x 10 ³¹ 6 x 10 ³²	0.08	$P_b = 60\%$ $P_b = 50\%$	4.0 x 10 ⁻⁴ 2.1 x 10 ⁻³	>2021
SeaQuest (FNAL: E-906)	p + p	120 GeV √s = 15	$x_b = 0.35 - 0.9$ $x_t = 0.1 - 0.45$	3.4 x 10 ³⁵				2012 - 2016
Pol tgt DY [‡] (FNAL: E-1039)	p + p [↑]	120 GeV √s = 15	$x_t = 0.1 - 0.45$	4.4 x 10 ³⁵	0 – 0.2*	P _t = 85% f = 0.176	0.15	2016
Pol beam DY [§] (FNAL: E-1027)	p [↑] + p	120 GeV $\sqrt{s} = 15$	$x_b = 0.35 - 0.9$	2 x 10 ³⁵	0.04	P _b = 60%	1	>2018

^{*8} cm NH₃ target / § L= 1 x 10³⁶ cm⁻² s⁻¹ (LH₂ tgt limited) / L= 2 x 10³⁵ cm⁻² s⁻¹ (10% of MI beam limited) *not constrained by SIDIS data / *rFOM = relative lumi * P² * f² wrt E-1027 (f=1 for pol p beams, f=0.22 for π^- beam on NH₃)

DY@COMPASS projections (NH₃) 140 days of running with 10⁸ pions per second

In the first two years we plan to collect ~600.000 DY events what would be factor of ~10 larger statistics compare to any other DY experiment performed so far

Polarized Beam Drell-Yan at Fermilab (E-1027)

- Extraordinary opportunity at Fermilab (best place for polarized DY) :
 - → high luminosity, large x-coverage
 - → (SeaQuest) spectrometer already setup and running
 - → run alongside neutrino program (w/ 10% of beam)
 - → experimental sensitivity:
 - 2 yrs at 50% eff, $P_b = 60\%$, $I_{av} = 15 \text{ nA}$
 - luminosity: $L_{av} = 2 \times 10^{35} / cm^2 / s$
 - measure sign, size & shape of Sivers function
- Path to polarized proton beam at Main Injector
 - --> perform detailed design studies
 - proof that single-snake concept works
 - applications for JPARC, NICA,
 - → community support
- Cost estimate to polarize Main Injector:
 - → \$6M (M&S, labor), + \$4M (project management & contingency)

A Novel, Compact Siberian Snake for the Main Injector

Single snake design (5.8m long):

- 1 helical dipole + 2 conv. dipoles
 - helix: 4T / 4.2 m / 4" ID
 - dipoles: 4T / 0.62 m / 4" ID
- use 4-twist magnets
 - 8π rotation of B field
- never done before in a high energy ring
 - RHIC uses snake pairs
 - 4 single-twist magnets (2π rotation)

initial design studies

Polarized Beam Drell-Yan at Fermilab (E-1039)

Probe Sea-quark Sivers Asymmetry with a polarized proton target at SeaQuest

- Statistics shown for one calendar year of running:
- L = $7.2 *10^{42} / \text{cm}^2 \leftrightarrow \text{POT} = 2.8 *10^{18}$
- Running will be two calendar years of beam time

- existing SIDIS data poorly constrain sea-quark Sivers function
- significant Sivers asymmetry expected from meson-cloud model
- first Sea Quark Sivers Measurement
- determine sign and value of u
 Sivers distribution

If A_N≠0, **major discovery**: "Smoking Gun" evidence for L₁₁≠0

Status and Plans (E-1039)

Target

Polarization: 85%
Packing fraction 0.6
Dilution factor: 0.176
Density: 0.89 g/cm³

- use current SeaQuest setup, a polarized proton target, unpolarized beam
- add third magnet SM0 ~5m upstream
- improves dump-target separation
- moves $< x_t >$ from 0.21 to 0.176
- reduces overall acceptance
- adds shielding challenges

The Polarized Target System

COMPASS

New: compare to SIDIS unpolarised Drell-Yan with pions/kaons/antiprotons

190 GeV/c

 π^- Beam

Drell-Yan gives unique additional opportunity to compare to SIDIS:

- study of unstable particle PDFs
- study of antiproton structure

Improvement of CEDARs system performance for higher rate capability:

"CEDARs for DY run", Ivan Gnesi in 2014 June COMPASS TB Meeting

Additional nuclear target's:

- A-dependence
- Flavour separation

Tungsten → High Statistics
Tungsten + Thin targets → A-dependence

60 cm

additional Nuclear Target(s)

Candidate Space for

NH₃ Targets

Stainless Steel

from Oleg Denisov

LD = 0.71 mm

18

6

Alumina

Hadron Absorber

x1 (or x2)

Thin Nuclear Target

All targets: expected Drell-Yan events yields for all projectile types, comparison with the best statistics achieved so far

Expected number of measurable DY

DY $(4 < M_{\mu\mu} < 9 \text{ GeV/c}^2)$ After 140 days data taking

	NH ₃	Al (7cm)	W	NA3	E537
π^- beam	285,000	55,100	549,000	21,220	
K^- beam	3,570	710	7,570	700	
\overline{p} beam	2,570	450	3,640		387

Beam-dependence study

 $\pi^-/K^-/\overline{p}$ - W

 $\pi^-/K^-/\overline{p}$ - $(W + Al + NII_3)$

$$\pi^-/K^-/\bar{p}$$
 - NH₃

Target-dependence study

$$\pi^-$$
 - W/Al/NH₃

 (K^--W/NH_3)

(\bar{p} - W/NH₃)

Blue Colors:

if NH₃ is possible to be treated as "nucleus"

COMPASS could improve the statistic of

D-Y by one order of magnitude!

from Oleg Denisov

SeaQuest: from Commissioning to Science

- Run I (Commissioning: late Feb. 2012 April 30th, 2012)
- Main Injector Lumi Upgrade (16 months)
- Run II (Commissioning: Nov. '13 Feb '14)
 (Science run: Mar '14 Sep '14; 5% of POT)

SeaQuest: expect 20x more statistics

2.25

- Future: Polarized Drell-Yan at Fermilab:
 - → polarized Target [E-1039]: 2016 (for 2 yrs) Stage 1 approval: July-2013
 - → polarized Beam [E-1027]: >2018 (for 2 yrs) Stage 1 approval: Nov-2012

Summary

- There are many exiting opportunities with polarized hadron beams in the coming decade
- RHIC, Fermilab, COMPASS offer complementary probes and processes to study hadronic landscape
 - → a complete spin program requires multiple hadron species
- Hope to answer some of the burning questions
 - → How much do the quarks and gluons contribute to the nucleon spin?
 - → Is there significant orbital angular momentum?
 - → Does TMD formalism work? Does Sivers function change sign?

Many thanks to Oleg Denisov and John Lajoie who contributed slides

Thank You

Sivers Asymmetry at Fermilab Main Injector

- Experimental Sensitivity
 - Iuminosity: $L_{av} = 2 \times 10^{35}$ (10% of available beam time: $I_{av} = 15$ nA)
 - \rightarrow 3.2 x 10¹⁸ total protons for 5 x 10⁵ min: (= 2 yrs at 50% efficiency) with P_b = 60%

Can measure not only sign, but also the size & maybe shape of the Sivers function!

Polarized Beam at Fermilab Main Injector

- Polarized Beam in Main Injector
 - use SeaQuest target
 - ✓ liquid H₂ target can take about $I_{av} = 5 \times 10^{11} \text{ p/s}$ (=80 nA)
 - 1 mA at polarized source can deliver about I_{av} = 1 x 10¹² p/s (=150 nA) for 100% of available beam time (A. Krisch: Spin@Fermi report in (Aug 2011): arXiv:1110.3042 [physics.acc-ph])
 - ✓ 26 µs linac pulses, 15 Hz rep rate, 12 turn injection into booster, 6 booster pulses into Recycler Ring, followed by 6 more pulses using slip stacking in MI
 - ✓ 1 MI pulse = $1.9 \times 10^{12} \, \text{p}$
 - using three 2-sec cycles/min (~10% of beam time): \rightarrow 2.8 x 10¹² p/s (=450 nA) instantaneous beam current , and $I_{av} = 0.95$ x 10¹¹ p/s (=15 nA)
 - possible scenarios:
 - $L_{av} = 2.0 \times 10^{35} / \text{cm}^2/\text{s}$ (10% of available beam time: $I_{av} = 15 \text{ nA}$)
 - $L_{av} = 1 \times 10^{36} / \text{cm}^2/\text{s}$ (50% of available beam time: $I_{av} = 75 \text{ nA}$)
 - Systematic uncertainty in beam polarization measurement (scale uncertainty)

$$\Delta P_b/P_b < 5\%$$

COMPASS, E-1027, E-1039 (and Beyond)

	Beam	Target	Favored	Physics Goals			
	Pol.	Pol.	Quarks	(Sivers Function)		ion)	
				sign change	size	shape	L _{sea}
$\begin{array}{c} \mathbf{COMPASS} \\ \pi^- p^{\uparrow} \to \mu^+ \mu^- X \end{array}$	×	>	valence	>	×	×	×
$\begin{array}{c} \mathbf{E-1027} \\ \mathbf{p}^{\uparrow} p \to \mu^{+} \mu^{-} X \end{array}$	/	×	valence		/	/	×
$\begin{array}{c} \mathbf{E-1039} \\ p \ p^{\uparrow} \rightarrow \mu^{+} \mu^{-} X \end{array}$	×	>	sea	×	/	V	>
$ \begin{array}{c} \mathbf{E-10XX} \\ p^{\uparrow} p^{\uparrow} \to \mu^{+} \mu^{-} X \\ \vec{p} \ \vec{p} \to \mu^{+} \mu^{-} X \end{array} $	/	✓	sea & valence	Transversity, Helicity, Other TMDs			

SeaQuest: what else ...

- What is the structure of the nucleon?
 - \longrightarrow What is d / \overline{u} ? What is the origin of the sea quarks?
 - → What is the high x structure of the proton?

- What is the structure of nucleonic matter?
 - Is anti-shadowing a valence effect?
 - → Where are the nuclear pions?

- Do colored partons lose energy in cold nuclear matter?
 - How large is energy loss of fast quarks in cold nuclear matter?

