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Outline

• What is needed to close the chapter on NIR precision 
photometry?

• NIR photometry error budget
– Combined effort from detector, calibration and simulation groups
– Modifications to SNAPSim (Chris Stoughton)
– Input from Calibration Group (Susana  Deustua)

• Absolute QE
– Uniform illumination (challenge at 1% level)

• New universal NIR test dewar
– Gain, DC, RN, QE, reciprocity: all measured in one dewar (UM)
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NIR Precision Photometry

• Precision photometry is essential to the science goals of SNAP and 
will require low noise, high QE detectors with a high degree of sub-
pixel uniformity and stability.pixel uniformity and stability.

• Precision photometry at the 1% level presents new challenges for an 
undersampled survey telescope. 

– Intra-pixel variation (studied at UM with Spot-o-Matic)

– Pixel size variation and flat-fielding (studies at UM w/ Spot-o-
Matic & QE data under way)

Intensity vs time reciprocity (dewar extension to arrive by late– Intensity vs. time reciprocity (dewar extension to arrive by late 
May at UM)

– Persistence (studied at Caltech)
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Persistence (studied at Caltech)



Intra-pixel Variation
RSC H2RG #102

lateral charge diffusion
d i i tRSC H2RG #102 random, occurring prior to 

charge collection 

data

fit

capacitive coupling• PRF is uniform over pixel surface p p g
deterministically moves charge
after charge collection• PRF extends beyond pixel boundary

- lateral charge diffusion
- capacitive coupling

hi h d i f Ai di k
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- higher order rings of Airy disk 
(~0.25% contribution)



Photometry in Undersampled Images

photometry simulation

• 2-dim pixel response map scan 
i th (  1 9% )

• Larger SNAP PSF (undersampled by 
f t 3) ill i ld h t t igives a smooth response (σ ~1.9% )

• Thermal noise contribution ~ 1%
factor 3) will yield photometric errors 
of <0.7%

• For critically or oversampled PSF:
photometric errors negligible (<0 1%)
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photometric errors negligible (<0.1%)



Pixel Size Variation and Flat-fielding

Are percent level variations on pixel scale seen in QE data caused by pixel area

‘Raw’                                  Smoothed                              Raw / Smoothed

Are percent level variations on pixel scale seen in QE data caused by pixel area 
variations or pixel sensitivity variations?

If due to pixel area variations standard flat-fielding will degrade photometry 
precision for point sources in an undersampled telescope.p p p p

Low pass spatial filter preserves large scale sensitivity variations while eliminating 
small scale variations.

Combine QE and Spot o Matic data to resolve this issue
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Combine QE and Spot-o-Matic data to resolve this issue.



Pixel Size Variation and Flat-fielding

Are percent level variations on pixel scale seen in QE data caused by pixel area

‘Raw’                                  Smoothed                              Raw / Smoothed

Are percent level variations on pixel scale seen in QE data caused by pixel area 
variations or pixel sensitivity variations?

If due to pixel area variations standard flat-fielding will degrade photometry 
precision for point sources in an undersampled telescope.p p p p

Low pass spatial filter preserves large scale sensitivity variations while eliminating 
small scale variations.

Combine QE and Spot o Matic data to resolve this issue
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Combine QE and Spot-o-Matic data to resolve this issue.



Intensity vs. Time Reciprocity 
• Calibration of SNAP photometry requires observation of many standardized• Calibration of SNAP photometry requires observation of many standardized  

stars over a wide range of magnitude. 
• NICMOS arrays (2.5 μm cut-off HgCdTe) on HST exhibit a 15%-25% flux-

and wavelength-dependent non-linearity.

• distinctly different from well-known count-rate dependent non-linearity for 
NIR detectors that is due to saturation as well is filled.

• exhibits power law behavior with pixels with high count rates detecting
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• exhibits power law behavior, with pixels with high count rates detecting 
slightly more flux than expected for a linear system (and vice-versa). 



Reciprocity Setup
Dewar extension attaches to existing IRLabs dewar scheduled to arrive atDewar extension attaches to existing IRLabs dewar, scheduled to arrive at 
UM by end of May.
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Reciprocity Measurements

• use fixed geometry
• dynamic range: 105  w/ six pinholes (10μm – 3.3mm)
• aperture calibration at 140 Kaperture calibration at 140 K
• PD linearity: take ratios of aperture pairs vs light source intensity
• repeat for various band pass filters
• adjust light source intensity with ND filters to operational range of 

d t tdetector

• Reciprocity Measurement:
– cycle through pin holes
– adjust exposure time to 

keep Nγ constant
– no shutter needed for HgCdTe
– for CCDs shutter is important
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SNAP NIR Photometry Error Budget
Hi h i i h t t i d t il d d t di f llHigh precision photometry requires detailed understanding of all 

photometric errors

Sources of light
SN, galactic dust, zodiacal, 
telescope optics, reflectivity 

of optics

Sources of noise (det.)
[dark current, read noise],

shot noise in signal

Photometry 
Error

p

Sources of signal
capacitive coupling, 

Sources of syst. errors
non-linearity, reciprocity, g

persistence, 
diffusion

drift, filter transmission, 
telescope throughput
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Need combined efforts from detector, simulation and calibration groups

SNAP Collaboration Meeting, Paris • October 2007



Input from Calibration Group
Source

JWST

JWSTJWST

Brown

Roger

Schubnell

Brown
JWST

• detector contributions: 2.73% = Σ i2 / sqrt(4)
– receipe: 

• errors added in quadrature (best case scenario)

S. Deustua (SNAP-SLAC (Jan 2008)

• errors added in quadrature (best case scenario)
• values obtained from experiments, literature or best estimates from experience
• 0.1% assigned to uncertain/unknown quantities as “ceiling” 

• reciprocity failure: largest contribution (5%)
– if 1%: 2.73% → 1.20%

• effects of IPC & diffusion ( intra pixel variations) on photometry under study
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• effects  of IPC & diffusion (→ intra-pixel variations) on photometry under study
• list is incomplete



Pixel level Simulations with SNAPSim

Pixel Profile Reconstruction                       Boxcar + gaussian PSF + sech diffusion
comparison with data                                 no capacitive coupling yet

x PSF
RSC H2RG #102

x diff.

x c_coupl.
18 μm

SNAPSim:   2-dim pixel profile
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Dominant noise source:

Limitations on Photometric Precision

Dominant noise source: 
shot noise on source flux and zodiacal light, not detector RN and DC 

• Zodiacal light is irreducibleZodiacal light is irreducible 
background

• sets scale for detector noise 
[<(0.5 ∗ zodi) for 300s exposure]

i di t /• noise on zodi rate/px: 
sqrt(0.75γ/s/px∗300s) = 15 γ/px
→ RN < 7 e-/px

*

141414per aperture*
M. Brown thesis, p.87



1 Dark current (DC)

Sources of Detector Noise
1. Dark current (DC)

– for 1.7 μm cut-off HgCdTe, bulk limited dark 
current should be ~ 0.01 e– /pix/s at 140K. 

– very low DC device (RSC H2RG-32-039) had y ( )
peak DC of 0.01 e– /pix/s at 140K.

– for all HgCdTe devices from RSC, dark 
currents < 0.2 e– /pix/s (< 0.05 e–/pix/s for 
nearly all tested devices) are consistently 
measured.

2. Read noise (RN)
– ~ 6.5 e– for 300 s exposures
– can combine DC and RN into a total noise 

specspec
3. Shot noise on signal (photon counting statistics)

– bright sources are better
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6.5 e-



NIR Error Budget
Detector 
properties Description Mitigation Estimated Measured Source/ 

referenceproperties reference 

capacitive coupling deterministic, occurring after 
charge collection Spotomatic pre-launch ?

charge diffusion random, occurring prior to charge 
collection Spotomatic pre-launch ?

intra pixel variations variations in photometry due to Spotomatic pre launch 0 7% Lorenzonintra-pixel variations p y
PSF location on pix Spotomatic pre-launch 0.7% SNAP PSF

persistence memory of last light on pix CIT, pre-launch 0.1% Roger

DC + RN combined noise spec NIR lab, pre-launch 6.5 e-

shot noise photon counting statistics

zodiacal light sun light scattered on dust irreducible 15 e- Aldering 2001
Brown thesis, p. 87

well saturation standard non-linearity (total count 
rate) NIR lab, pre-launch <0.1% Schubnell

reciprocity failure count-rate dependent non-
linearity (non-standard) NIR lab, pre-launch ?

bias voltage drift
fluctuations in baseline signal 

(track with detector pix, NOT with 
reference pix)

NIR lab, pre-launch 0.1%? Schubnell

Cosmic ra damage Ph i l d t i ?Cosmic ray damage Physical damage to pix ?

flat field (p2p) pix response variations due to 
area  or QE variations NIR lab, pre-launch ?

dark errors Subtraction of bias frames (0s 
exp) and dark frames (300s exp) NIR lab, pre-launch ?
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