Drell-Yan Scattering at Fermilab: SeaQuest and Beyond

- Introduction
- SeaQuest: Fermilab Experiment E906
 - What will we learn?
 - What will we measure?
 - How will we measure it?
- Beyond SeaQuest
 - → Polarized Drell-Yan at FNAL?
 - → What would we learn?

Internal Landscape of the Proton

Internal Landscape of the Proton

- Just three valence quarks?
- No!!
- And, quark distributions change in the nucleus

Flavor Structure of the Proton

- Constituent Quark Model
 Pure valence description: proton = 2u + d
- Perturbative Sea
 sea quark pairs from g → qq
 should be flavor symmetric:

 $\overline{d} = \overline{u}$

→ What does the data tell us?

Flavor Structure of the Proton: Brief History

Perturbative Sea

$$\overline{d}(x) = \overline{u}(x)$$

NMC (Gottfried Sum Rule)

$$\int_0^1 \left[\overline{d}(x) - \overline{u}(x) \right] dx \neq 0$$

NA51: $\overline{d} > \overline{u}$

- Knowledge of parton distributions is data driven
 - Sea quark distributions are difficult for Lattice QCD

Flavor Structure of the Proton: Brief History

Perturbative Sea

$$\overline{d}(x) = \overline{u}(x)$$

NMC (inclusive DIS)

$$\int_0^1 \left[\overline{d}(x) - \overline{u}(x) \right] dx \neq 0$$

NA51 (Drell-Yan)

$$\overline{d}(x) > \overline{u}(x)$$

➡ E866/NuSea (Drell-Yan)

$$\overline{d}(x) > \overline{u}(x)$$

- What is the origin of the sea?
- Significant part of the LHC beam

E866: $\overline{d} > \overline{u}$

Flavor Structure of the Proton - III

 There is a gluon splitting component which is symmetric

$$\overline{d}(x) = \overline{u}(x) = \overline{q}(x)$$

- $\bar{d} \bar{u}$
 - Symmetric sea via pair production from gluons subtracts off
 - No gluon contribution at 1st order in α_s
 - Non-perturbative models are motivated by the observed difference
- A proton with 3 valence quarks plus glue cannot be right at any scale!!

Flavor Structure of the Proton - IV

Non-perturbative models: alternate d.o.f.

Meson Cloud Models

Quark sea from cloud of 0 mesons:

$$\rightarrow |\overline{d} > \overline{u}|$$

Chiral-Quark Soliton Model

- quark d.o.f. in a pion
 mean-field: u → d + π⁺
- nucleon = chiral soliton
- one parameter: dynamically generated quark mass
- expand in 1/N_c:

$$\rightarrow \overline{d} > \overline{u}$$

Statistical Model

- nucleon = gas of massless partons
- few parameters: generate parton distribution functions
- input:

QCD: chiral structure DIS: u(x) and d(x)

$$\rightarrow |\overline{d} > \overline{u}|$$

⇒ important constraints on flavor asymmetry for polarization of light sea

$$\Delta \overline{q} = 0$$

$$\Delta \overline{u} \cong -\Delta \overline{d} > 0$$

$$\Delta \overline{d} < 0, \Delta \overline{u} > 0$$

Flavor Structure of the Proton - V

Comparison with models

- High x behavior is not explained
- Perturbative sea seems to dilute meson cloud effects at large x (but this requires large-x gluons)

- Measuring the ratio is powerful
- Are there more gluons and thus symmetric anti-quarks at higher x?
- Unknown other mechanisms with unexpected x-dependence?

SeaQuest: Fermilab Experiment E906

- E906 will extend Drell-Yan measurements of E866 (with 800 GeV protons) using upgraded spectrometer and 120 GeV proton beam from Main Injector
- Lower beam energy gives factor 50 improvement "per proton" !
 - Drell-Yan cross section for given x increases as 1/s
 - Backgrounds from J/Ψ and similar resonances decreases as s
- Use many components from E866 to save money/time, in NM4 Hall
- Hydrogen, Deuterium and Nuclear Targets

Fermilab E906/Drell-Yan Collaboration

Abilene Christian University

Donald Isenhower Rusty Towell, S. Watson

Academia Sinica

Wen-Chen Chang, Yen-Chu Chen, Da-Shung Su

Argonne National Laboratory

John Arrington, <u>Don Geesaman</u>*, Kawtar Hafidi, Roy Holt, Harold Jackson, David Potterveld, <u>Paul E. Reimer</u>*, Josh Rubin

KEK

Shinya Sawada

Ling-Tung University Ting-Hua Chang

ring rida Oriang

Los Alamos National Laboratory

Gerry Garvey, Mike Leitch, Ming Liu, Pat McGaughey

University of Maryland

National Kaohsiung Normal University

Rurngsheng Guo, Su-Yin Wang

University of New Mexico Imran Younus

RIKEN

Yuji Goto, Atsushi Taketani, Yoshinori Fukao, Manabu Togawa

Rutgers University

Ron Gilman, L. El Fassi Ron Ransome, Elaine Schulte

*Co-Spokespersons

Jan, 2009

Collaboration contains many of the E-866/NuSea groups and several new groups (total 19 groups as of Aug 2010)

Drell-Yan Spectrometer for E-906 (25m long)

Station 3 (Hodoscope array, drift chamber track.) Station 1 (hodoscope array, MWPC track.) 4.9m **Iron Wall** (Hadron absorber) Station 4 **KTeV Magnet** (hodoscope (Mom. Meas.) array, prop tube track.) Station 2 **Solid Iron Magnet Targets** (hodoscope array, (focusing magnet, (liquid H_2 , D_2 , drift chamber track.) hadron absorber and and solid targets)

beam dump)

Fixed Target Drell-Yan: What we really measure

- Measure yields of μ⁺μ⁻ pairs from different targets
- Reconstruct p_{y} , $M^{2}_{y} = x_{b}x_{t}s$
- Determine x_b , x_t
- Measure differential cross section

$$\frac{d^2\sigma}{dx_1 dx_2} = \frac{4\pi\alpha^2}{9x_1 x_2} \frac{1}{s} \sum_{t=0}^{\infty} e^2 \left[\bar{q}_t(x_t) q_b(x_t) + q_t(x_t) \bar{q}_b(x_b) \right]$$

- Fixed target kinematics and detector acceptance give x_b > x_t
 - $x_F = 2p_{||}^{\gamma}/s^{1/2} \approx x_b x_t$
 - Beam valence quarks probed at high x
 - Target sea quarks probed at low/intermediate x

Fixed Target Drell-Yan: What we really measure - II

 Measure cross section ratios on Hydrogen, Deuterium (and Nuclear) Targets

$$\left. \frac{\sigma^{pd}}{2\sigma^{pp}} \right|_{x_b \gg x_t} \approx \frac{1}{2} \left[1 + \frac{\bar{d}(x_t)}{\bar{u}(x_t)} \right]$$

SeaQuest Projections for d-bar/u-bar Ratio

Sea quark distributions in Nuclei

- EMC effect from DIS is well established
- Nuclear effects in sea quark distributions may be different from valence sector
- Indeed, Drell-Yan apparently sees no Antishadowing effect (valence only effect)

Sea quark distributions in Nuclei - II

- SeaQuest can extend statistics and x-range
- Are nuclear effects the same for sea and valence distributions?
- What can the sea parton distributions tell us about the effects of nuclear binding?

Where are the exchanged pions in the nucleus?

- The binding of nucleons in a nucleus is expected to be governed by the exchange of virtual "Nuclear" mesons.
- No antiquark enhancement seen in Drell-Yan (Fermilab E772) data.
- Contemporary models predict large effects to antiquark distributions as x increases
- Models must explain both
 DIS-EMC effect and Drell-Yan
- SeaQuest can extend statistics and x-range

Fermilab Seaquest Timelines

- Fermilab PAC approved the experiment in 2001, but experiment was not scheduled due to concerns about "proton economics"
- Stage II approval in December 2008
- Expect to start running around Thanksgiving for 2 years of data collection

no Tevatron extension

June 2010

Apparatus available for future programs at, e.g. Fermilab, J-PARC or RHIC

significant interest from collaboration for continued program

Fermilab Seaquest Timelines

- Fermilab PAC approved the experiment in 2001, but experiment was not scheduled due to concerns about "proton economics"
- Stage II approval in December 2008
- Expect to start running around Thanksgiving for 2 years of data collection

Expt. Funded	Experiment Construction		Experiment Runs			Exp. Runs
2008	2009	2010	2011 Beam: lo	2012 w intensity	$\begin{array}{c} 2013 \\ \text{low intensity} \end{array}$	2014 low intensity

w/ Tevatron extension

Apparatus available for future programs at, e.g. Fermilab, J-PARC or RHIC

significant interest from collaboration for continued program

Beyond SeaQuest

- Polarized Drell-Yan Experiment
 - Not yet done!
 - transverse momentum dependent distributions functions (Sivers, Boer-Mulders, etc)
 - Transversely Polarized Beam or Target
 - ✓ Sivers function in single-transverse spin asymmetries (SSA) (sea quarks or valence quarks)
 - sea quark effects might be small
 - valence quark effects expected to be large
 - ✓ transversity ⊗ Boer-Mulders function
 - Beam and Target Transversely Polarized
 - √ flavor asymmetry of sea-quark polarization
 - ✓ transversity (quark ⊗ anti-quark for pp collisions)
 - anti-quark transversity might be very small

Sivers Function

- described by transverse-momentum dependent distribution function
- captures non-perturbative spin-orbit coupling effects inside a polarized proton
- leads to a sin $(\phi \phi_S)$ asymmetry in SIDIS and Drell-Yan
- done in SIDIS (HERMES, COMPASS)
- Sivers function is time-reversal odd
 - leads to sign change

$$\left.f_{1T}^{\perp q}\right|_{D\!I\!S}=-f_{1T}^{\perp q}\Big|_{D\!-\!Y}$$

fundamental prediction of QCD (goes to heart of gauge formulation of field theory)

Predictions based on fit to SIDIS data

Anselmino et al. PRD79, 054010 (2009)

Sivers Function

- described by transverse-momentum dependent distribution function
- captures non-perturbative spin-orbit coupling effects inside a polarized proton
- leads to a sin $(\phi \phi_S)$ asymmetry in SIDIS and Drell-Yan
- done in SIDIS (HERMES, COMPASS)
- Sivers function is time-reversal odd
 - leads to sign change

$$\left.f_{1T}^{\perp q}\right|_{D\!I\!S}=-f_{1T}^{\perp q}\Big|_{D\!-\!Y}$$

fundamental prediction of QCD (goes to heart of gauge formulation of field theory)

Predictions based on fit to SIDIS data

Sivers Asymmetry Measurements

- Global fit to $sin (\phi_h \phi_S)$ asymmetry in SIDIS (HERMES, COMPASS)
- Comparable measurements needed for single spin asymmetries in Drell-Yan process
- BUT: COMPASS (p) data do not agree with global fits (Sudakov suppression)

Importance of Factorization in QCD

QCD without factorization is almost useless*

*I added this sentence after this morning comments, so it might be too strong

Polarized Drell-Yan at Fermilab Main Injector

- SeaQuest di-muon Spectrometer
 - fixed target experiment
 - Iuminosity: L = 3.4 x 10³⁵/cm²/s
 - $I_{av} = 1.6 \times 10^{11} \text{ p/s} (=26 \text{ nA})$
 - $N_p = 2.1 \times 10^{24} / \text{cm}^2$
 - → 2-3 years of running: 3.4 x 10¹⁸ pot

- Polarized Beam in Main Injector
 - → use Seaguest spectrometer
 - → use SeaQuest target
 - ✓ liquid H_2 target can take ~5 x 10^{11} p/s (=80 nA)
 - 1 mA at polarized source can deliver 8.1 x 10¹¹ p/s (=130 nA) (A. Krisch: Spin@Fermi study in (1995))
 - Scenarios:
 - ✓ $L = 1 \times 10^{36} / \text{cm}^2 / \text{s}$ (60% of available beam delivered to experiment)
 - ✓ L = 1.7×10^{35} /cm²/s (10% of available beam delivered to experiment)
 - > x-range:
 - $x_1 = 0.3 0.9$ (valence quarks) $x_2 = 0.1 0.5$ (sea quarks)

Planned Polarized Drell-Yan Experiments

Yuji Goto April 27, 2010 DY workshop CERN

COMPASS	π± + p↑	160 GeV √s = 17.4 GeV	x2 = 0.2 - 0.3	$2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$
COMPASS (low mass)	π± + p↑	160 GeV √s = 17.4 GeV	x2 ~ 0.05	$2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$
PAX	p↑ + pbar	collider √s = 14 GeV	x1 = 0.1 - 0.9	$2 \times 10^{30} \text{cm}^{-2} \text{s}^{-1}$
ANDA ow mass)	pbar + p↑	15 GeV √s = 5.5 GeV	x2 = 0.2 - 0.4	$2 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$
-PARC	p↑ + p	50 GeV √s = 10 GeV	x1 = 0.5 - 0.9	10 ³⁵ cm ⁻² s ⁻¹
IICA	p↑ + p	collider √s = 20 GeV	x1 = 0.1 - 0.8	10 ³⁰ cm ⁻² s ⁻¹
PASCHARM low mass)	p + p↑	60 GeV √s = 11 GeV	x2 = 0.05 - 0.2	
PASCHARM ow mass)	π± + p↑	34 GeV \sqrt{s} = 8 GeV	x2 = 0.1 - 0.3	
HIC PHENIX luon	p↑ + p	collider √s = 500 GeV	x1 = 0.05 - 0.1	2 × 10 ³² cm ⁻² s ⁻¹
HIC Internal arget phase-1	p↑ + p	250 GeV √s = 22 GeV	x1 = 0.25 - 0.4	$2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$
HIC Internal arget phase-2	p↑ + p	250 GeV √s = 22 GeV	x1 = 0.25 - 0.4	6 × 10 ³⁴ cm ⁻² s ⁻¹
Fermilab Main Injector oolarized	p [↑] + p	120 GeV √s = 15 GeV	$x_1 = 0.3 - 0.9$	~1 x 10 ³⁶ cm ⁻² s ⁻¹

Polarized M.I. beam intensity: $2.3 \times 10^{12} \text{ p/pulse}$ (w/ 2.8 s/pulse) on SeaQuest target (60% delivered to NM4) -> L = $1 \times 10^{36} \text{ /cm}^2\text{/s}$ (SeaQuest IH₂ target limited)

Drell-Yan fixed target experiments at Fermilab

- What is the structure of the nucleon?
 - \longrightarrow What is $\overline{d}/\overline{u}$?
 - What is the origin of thesea quarks?
 - What is the high x structure of the proton?
- What is the structure of nucleonic matter?
 - Where are the nuclear pions?
 - Is anti-shadowing a valence effect?
- SeaQuest: 2010 2013
 - → significant increase in physics reach
- Beyond SeaQuest
 - Polarized Drell-Yan (beam/target)

Thank you!