
2. Physics and probability

Here we take up our study of many interacting molecules. We will
mainly be concerned with macroscopic properties, i.e. properties that
involve averages over the states of many of the molecules, for exam-
ple pressure, temperature, or total energy. Further, we will mostly
(but not exclusively) study equilibrium states, where the macroscopic
properties have settled down to a time-independent average value with
small fluctuations. We will try to see how such macroscopic proper-
ties can be derived from the fundamental physics of molecules: we will
use classical mechanics where appropriate, or, when needed, quantum
theory.

Of course, it is not obvious how macroscopic behavior arises from
mechanics. There are many features of the everyday world which seem
non-mechanical. Notably, our experience abounds with irreversible
processes: people get older, not younger, ice melts but does not spon-
taneously refreeze — but mechanics is reversible. And some things
that seem consistent with mechanics, like making a perpetual motion
machine by extracting heat from the air (and doing nothing else),
somehow never get done.

There is a theory of macroscopic behavior based on a few reasonable
ideas (like the impossibility of making a perpetual motion machine)
which is very successful: it is called classical thermodynamics: its
centerpiece is the non-mechanical quantity, entropy. The formulation
of thermodynamics was more or less complete in the late nineteenth
century. At first, it seemed to be unrelated to mechanics, and even
inconsistent with it. In the next chapter we will look at classical
thermodynamics.

The question soon arose whether it was possible to derive ther-
modynamics from mechanics. This problem was called, in nineteenth
century language, the rational foundation of thermodynamics. It was a
huge problem, and many Very Serious People (including Poincaré and
Ernst Mach) doubted it could be done at all. However, J. Willard
Gibbs, James Clerk Maxwell, and particularly, Ludwig Boltzmann
(Figure 2.1) solved the problem at the end of the nineteenth century.
This chapter and the next will be concerned with these developments.
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Figure 2.1.: The founders of statistical physics. From left, Ludwig Boltz-
mann (1844-1906), J. Willard Gibbs (1839-1903), and James
Clerk Maxwell (1831-1879). Images in the public domain from
Wikimedia Commons.

2.1. Pressure and temperature in a gas

Now consider a gas, and see how far we get by applying mechanics. We
can ask why a gas exerts pressure, force per unit area, on the walls of
its container. This was answered in the eighteenth century by Daniel
Bernoulli. He pointed out that repeated impacts of large numbers of
molecules on the walls of a container would look like a steady force.

2.1.1. Kinetic definition of pressure

Here is the Bernoulli argument in modern terms. The force is given
by Newton’s laws in the form F = ∆p/∆t, where ∆p is the total mo-
mentum change of the particles that hit the wall in ∆t. Now consider
the molecules in the gas. They will have some distribution of momen-
tum and position at a given time. We call the distribution function,
f(p, r, t). Its definition is this: the number of molecules with position
within a volume element d3r centered at r, and similarly for p is:

dN = f(p, r) d3p d
3
r. (2.1)

Here, and subsequently, we will write d3r for dxdydz, and similarly for
d
3
p. Clearly, �

f(p, r) d3p d
3
r = N.
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For the case of uniform density, it is convenient to absorb a factor of
1/V into f , and write

�
f(p) d3p = N .

If we want to average some molecular quantity, g(p, r) over all the
molecules, then we should write:

g =
1

N

�
d
3
p d

3
rf(p, r)g(p, r); or

1

N

�
d
3
p f(p)g(p). (2.2)

The function, f , was introduced by Maxwell and Boltzmann.

This function is perfectly well defined in or out of equilibrium. For a
nearly-ideal gas it satisfies a kinetic equation, the Boltzmann equation.
The solutions to this equation are the content of the kinetic theory of
gases; they can give calculations of many dynamic properties such as
relaxation to equilibrium and fluxes in driven systems. In this book
we look at equilibrium only, and drop the time dependence. We will
compute the pressure from f .

Let us assume that the density of the gas, n = N/V is the same
everywhere (neglect gravity, for example). We need the number of
molecules that will strike area dA of the wall in ∆t. Take dA to lie
in the y, z plane and consider some value of p. The molecules need
to be closer to the wall than (px/m)∆t, so that they are in volume
δV = dA(px/m)∆t; see Figure 2.2. This number is

dN =
δV

V
f(p)d3p.

Each collision reverses px so the total momentum transfer is:

∆px =
dA ∆t

V

�
2p2

x

m
f(p) d3p.

The integral is taken for px < 0. Now the pressure is the force per
unit area so we have:

p =
∆px

dA∆t

=
1

V

�
p
2
x

m
f d

3
p

=
2

V

�
p
2
x

2m
fd

3
p

=
2N

3V

p2

2m
. (2.3)

Here p2 = p2
x
+p2

y
+p2

z
, and we have used Eq. (2.2). In the second line

a factor of 2 disappeared so that we can integrate over all p, and the
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Figure 2.2.: Geometry for computing the momentum transfer to the wall.
Any molecule within px∆t/m of the wall will hit it in time ∆t,
and the total number to hit with a given angle is the number
within a cylinder of volume dApx∆t/m.

factor of 1/3 in the last line means that we assume that the momentum
distribution is isotropic: p2

x
= p2

y
= p2

z
. Thus:

pV = N
2

3
tE (2.4)

That is, pV is 2N/3 times the kinetic energy per molecule in the gas,
tE (or 2/3 of the total kinetic energy). In d dimensions this becomes
pV = (2N/dV )tE .

We should compare this to the empirical equation of state of an
ideal gas which includes Boyle’s law, Charles’ law, and the law of
Guy-Lussac:

pV = νR(T � + 273.15) = NkBT. (2.5)

Here ν is the number of moles in the gas, and R is the gas constant,
8.314 J/K. The number of molecules is N = νNo where No is Avo-
gadro’s number, so that kB = R/No = 1.38×10−23 J/K = 1.38×10−16

erg/K. The temperature is given in two scales, T �, the Celsius temper-
ature, ◦C, and T the Kelvin temperature, K.

2.1.2. Temperature and temperature scales

The equation of state is a bit strange at this point because we have not
really given a definition of temperature. As we have pointed out above,
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temperature specifies what is meant by hot and cold: heat (energy)
flows from hot bodies to cold ones when they are in contact. A higher
temperature means hotter. A thermometer measures temperature; if
we put a thermometer in contact with a body and if no heat flows they
are at the same T . However, what do we use for a thermometer?

It took many centuries to give a more complete definition. Issac
Newton measured temperature by thermal expansion, and realized
that he needed fixed points to define the scale. He assigned zero as
the freezing point of water, and 33 as the boiling point. (The reason
why Newton chose the number 33 is discussed by Dan Brown (2009).)
Anders Celsius chose the same fixed points, and took the number of
degrees between them to be 100. A modified version of his scale is
used today almost everywhere but the United States. However, this is
not enough, since we have not said what it means for a thermometer
to be linear, i.e., how do we measure temperatures between the fixed
points.

William Thomson, Lord Kelvin, gave a much more fundamental def-
inition when he realized that by adding a constant to the temperature
on the right side of Eq. (2.5) he could make the equation linear in tem-
perature. The advantage is that all ideal gases have the same equation
of state, so we have a universal thermometer, namely T = PV/kBN .
The constant, kB , determines the size of the degree.

This also defines the absolute zero of T by T = T
� − 273.15. What

this means will become clearer later, but we can get some insight by
comparing Eq. (2.4) and Eq. (2.5):

kBT = (2/3)tE , (2.6)

(or kBT = (2/d)tE .) Taken literally, this means that the thermal
motion of a gas ceases at T = 0. Of course, all gases liquefy long
before that, and it is an extrapolation.

For the moment we take Eq. (2.6) as our first definition of temper-
ature. We will do so even for interacting systems. This is something
that will be justified later.

2.1.3. Virial theorem

We can look at the previous section another way by considering a
quantity defined by Rudolf Clausius, the virial ; see Goldstein et al.
(2002):

G =
�

j

rj · pj .
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Consider the time derivative of G:

dG

dt
=

�

j

�
drj

dt
· pj + rj ·

dpj

dt

�

=
�

j

�
m

�
drj

dt

�2

+ rj · Fj

�

= 2TE +
�

j

rj · Fj , (2.7)

where TE is the total kinetic energy and Fj is the force on atom j.
The time average of any quantity is defined to be the integral of the
quantity over [0, τ ] divided by τ . Applying this:

�dG/dt�
τ
≡ 1

τ

�
τ

0
dG/dt = G(τ)−G(0). (2.8)

In equilibrium this quantity is zero – that is what we mean by equi-
librium. Thus:

2 �TE�τ = −
�
�

j

rj · Fj

�

τ

. (2.9)

There are two sorts of forces on an atom: there are the the internal
forces, Fint

j
and the forces on the wall, Fwall = −pndA, where n is

the normal to the wall. For the latter we can write:
�
�

j

rj · Fwall

j

�

τ

= −p

�
r · ndA = −p

�
∇ · rd3r = −3pV. (2.10)

We have used Gauss’ theorem. Thus, by comparing Eq. (2.6) and
replacing the average over the distribution by the time average:

�TE�τ = NtE =
3

2
pV − 1

2

�
�

j

rj · Fint

j

�

τ

pV = NkBT +
1

3

�
�

j

rj · Fint

j

�

τ

(2.11)

In 2d the 1/3 becomes 1/2. If the internal forces can be neglected,
we have the ideal gas equation, Eq. (2.5). In practice, the ideal gas
equation applies for dilute gases. For air at atmospheric pressure, it
works quite well.

Eq. (2.11) is very useful in computer simulations. It is possible
to compute the pressure by counting collisions on the walls, but Eq.
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(2.11) is superior numerically because it uses all the molecules. And,
it allows the use of periodic boundary conditions, no walls, and still
get the pressure.

We can express the equation of state in terms of the pair distribution
function, g(R) of Eq. (1.31) in the following way. First note that Fint

j

is the total force on atom j due to all the others:

F
int

j
=

�

k �=j

F(rj − rk).

Now note that:
�

j

rj · Fint

j
=

�

j �=k

rj · F(rj − rk)

=
1

2

�

j �=k

(rj − rk) · F(rj − rk), (2.12)

by Newton’s third law. Recall the definition;

c(r, s) =

�
�

j �=k

δ(r− rj)δ(r− rk)

�
,

Eq. (1.30). Combining this with Eq. (2.12) gives:

�
�

j

rj · Fint

j

�
=

1

2

�
dr ds c(r, s)(r− s) · F(r− s)

= −1

2

�
dr ds c(r, s)(r− s) · ∇rφ(|r− s|

= −
�

dr ds c(r, s)R

�
∂φ

∂R

�
, (2.13)

where R = |r − s|. We have used the identity ∇rφ(r) = (r/r)dφ/dr.
Now change variables in the integral, use translational invariance, and
c = n

2
g(R):

�
�

j

rj · Fint

j

�
= −V n

2

2

�
dRR

�
∂φ

∂R

�
g(R). (2.14)

This gives another form for the equation of state:

p

kBT
= n− n

2

6kBT

�
dRR

�
∂φ

∂R

�
g(R). (2.15)
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2.1.4. Dense gases; the van der Waals’ equation

We can go a bit further by following the work of Johannes van der
Waals and guessing the difference in the equation of state that inter-
actions might cause.

First we note, from the previous chapter, that molecules cannot
really explore the whole volume of the gas. When we try to compress
a gas so that the hard cores touch, the pressure must rise enormously.
So we can, tentatively, replace the volume by the “free volume”:

Vf = V −Nb, (2.16)

where b is of the order of the molecular volume, i.e., of order σ3.

The attractive forces can be expected to change the equation of state
by changing the pressure. If a molecule approaches the wall of the
container, it is pulled back by the attractive forces. Thus the “kinetic
pressure” that Bernoulli considered is not the observed pressure, but
bigger. The difference must be proportional to the total attractive
force between pairs of molecules within the range of the interaction:

p = pK − an
2
, (2.17)

where n is the number density. Combining Eq. (2.16) with Eq. (2.17)
gives:

pKVf = (p+ a
N

2

V 2
)(V −Nb) = NkBT ;

p =
nkBT

1− nb
− an

2
. (2.18)

The remarkable thing about this simple derivation and relatively
simple equation is that it correctly represents a great deal of physics
reasonably well. For example let us use the equation to look at
isotherms, curves of constant temperature on a n, p plot; see Figure
2.3. As we can see, as the temperature decreases the isotherms depart
from the ideal gas equation (which is linear in this representation).
The prediction is that at a certain temperature, the critical temper-
ature, Tc, there is a place where the curve becomes flat; i.e. where
∂p/∂n = 0. Note that this quantity is proportional to the inverse
of the compressibility, −(1/V )∂V/∂p. What is happening is that the
attractive interactions are leading to a liquid-gas transition, and at
this point the compressibility is infinite because the gas “wants” to
condense. This is an effect which is also observed in nature for any
gas: it is called the critical point.
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Figure 2.3.: Isotherms of the van der Waals equation. All quantities are
scaled to their critical values, i.e., p/pc as a function of n/nc

(see problems). The isotherms are, from top to bottom: T/Tc =
1.2, 1.6, 1.0 (bold line, the critical isotherm) and 0.9. Note that
for the bottom curve an increase in density can cause a decrease
in pressure: see text.

Below the critical point the isotherms become non-monotonic. This
is unphysical. We cannot have ∂p/∂n < 0 because then the gas would
collapse spontaneously. We will see in Chapter 8 how to interpret this
behavior, and how to produce the familiar gas-liquid coexistence from
the equation.

Van der Waals’ constants are available in published tables. For
example, for N2, a = 1.370 bar L2/mol2, b = 0.0387 L/mol.

2.2. Classical systems

What we have done so far is encouraging: simple mechanical methods
lead to important results for macroscopic systems. However, we have
not gotten very far: for example, we have no way to compute f(p)
from the Hamiltonian, or, say, the van der Waals constants a, b. And
we have used some ideas rather loosely: we talk about “randomness”,
for example, without understanding how it might arise. We will now
take a closer look at the fundamental issues in macroscopic systems.
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2.2.1. Phase space and phase trajectories

We first define the problem, for the moment using classical mechanics.
In a macroscopic system we want to predict the result of experiments
to measure physical quantities. Such measurements involve taking
data by means of some instrument. Let us suppose that we take data
at some sampling rate, so we generate measurements at a series of
time points, tj , j = 1, . . . ,m.

A classical system obeys Hamilton’s equations, so that all the infor-
mation is in the set qi(t), pi(t). Suppose there are N molecules. We
then have 6N numbers for each time. We imagine that these numbers
are the coordinates of a point in a 6N dimensional space, phase space.
We denote a point in phase space by γ(tj) = (qi(tj), pi(tj)). The γ(t)
form the the phase trajectory ; it is generated by the equations of mo-
tion. The measurements correspond to a discrete set of points on the
trajectory. A measurement means that we can find whether a phase
point is within some volume of phase space, δΓ. If we take δΓ = h

3N ,
where h is Planck’s constant, we are measuring each p, q pair as well
as is consistent with Heisenberg’s principle. (We will show later that
the factor should be h, not some other quantity of the same order, see
Section 6.1.4.) Of course, in a normal measurement we cannot mea-
sure this well. We call each such region of Γ-space a microstate. We
will use the same notation later for quantum states.

What do we know about γ(t)? One thing is clear for a closed system:
γ(t) lives on a surface of constant energy, H(qi, pi) = E. This is called
the energy shell: it has dimension 6N−1. The area of the energy shell
is found by integrating over phase space and restricting the variables
to the surface H = E with a Dirac δ-function:

Ω =

�
dΓ δ(H− E). (2.19)

This area depends on energy and real-space constraints, e.g. the size
of the box containing the system.

The number of microstates on the energy shell is:

W = Ω∆/h
3N

, (2.20)

where we have multiplied by an energy increment, ∆, to make the units
come out right. (You could think of ∆ as the accuracy with which we
know E.) Now this is not quite right: if we have Nk identical particles
of type k we have overcounted the number of states: states that differ
by interchange of identical particles are the same. We really should
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write:

W =
Ω∆

ΠkNk!h3N
. (2.21)

The significance of the factorials in the denominator, sometimes called
the rule of correct Boltzmann counting, will be discussed later.

2.2.2. Time averages and phase-space averages

Boltzmann and Maxwell made the bold and remarkable proposition
that when a system is in equilibrium γ(t) visits all of the energy shell,
and does so uniformly, so that the trajectory spends equal time in
every microstate. This means that γ will pass arbitrarily close to
every point on the energy shell. Such a trajectory is called ergodic.

What we measure in an experiment is some quantity which depends
on the mechanical coordinates, Q(qi, pi). Macroscopic experiments
always involve averages over time, �Q�

τ
, (c.f. Eq. (2.8)). Recall,

for example, the time average in the kinetic pressure. This is what
we want to calculate. But, if the phase point uniformly explores the
energy shell, it follows that, as τ → ∞:

1

τ

�
τ

0
Q(γ(t))dt =

�
Q(qi, pi)δ(H− E) dΓ

Ω

�Q�
τ

= �Q� , (2.22)

since both integrals explore the same points in a different order. This
equation defines the phase (or ensemble) average: �Q�. Thus the phys-
ical quantity on the left is the same as a phase space average.

Gibbs gave a colorful interpretation of this equation: he imagined
that we have a large number, or ensemble1, of identical equilibrated
systems with different initial conditions so that, at some time t, they
densely and uniformly cover the energy shell. Then we average over
this set of systems at a fixed instant of time. He called this the en-
semble average, and the proposition is that the time average is equal
to the ensemble average. Gibbs gave the ensemble with fixed energy
(the one we are studying) the odd name microcanonical.

We can say this another way: define the probability for a system
point to be in a region of phase space to be P ≡ ρ(qi, pi)dΓ, where ρ

1The word ensemble means set or group in this context.
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is called the ensemble density. We can write, for our particular case:

�Q� =

�
Q ρ dΓ;

ρmc =
δ(H− E)�
δ(H− E) dΓ

. (2.23)

The subscript mc refers to the fact that this particular ρ is for the
microcanonical ensemble. We will meet other ensembles later. The
first line of the equation is general.

When we call ρ a probability density we mean nothing more than
this: if we make a large number, N , of observations of Q and record
the number giving a certain value, q then P = N (q)/N . This is called
the frequentist interpretation of probability. It is also the same as Eq.
(2.22). It does not imply any “real” randomness in the system such as
the randomness observed in a radioactive decay. It just looks similar.

There are several remarks to make here. It is not obvious, but it
will become so, that computing the ensemble average is much easier
than computing the time average. In practice, the results from using
Eq. (2.22) are remarkably good: this is how everyone does statistical
mechanics, and when you can do it, the results agree with experiments
perfectly in almost all cases. Note that we do not need to know how
equilibrium is approached, but only the states available: to find �Q�
we do not solve equations of motion.

Also, as we will see below, this approach gives us a neat definition
of entropy:

S = kB lnW (2.24)

This famous discovery of Boltzmann completely solves the problem of
the rational foundation of thermodynamics. We will discuss this at
length in the next chapter.

Thus it is clear that Boltzmann’s assumption of ergodicity is use-
ful. There is a much more difficult question: is it correct? We could
imagine that the time average and the ensemble average are the same
for some other reason, for example, or that the agreement with ex-
periment is accidental. There has been more than a century of very
interesting work on this question, which will be treated in the next
sections.

2.2.3. Ergodicity and mixing

This subject has a large literature, much of it highly mathematical.
For introductions, see Lebowitz & Penrose (1973), Penrose (1979),
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Uhlenbeck, Ford & Montroll (1974), and Chapter 26 of Ma (1985).
We will sketch a few major developments.

Liouville theorem

The first thing to notice is that the way trajectories cover phase space
is special to Hamiltonian systems. In other kinds of systems things
are quite different; for example, in the presence of friction trajectories
can converge into an attractor or a fixed point. However, we deal with
closed systems here, so nothing like this happens. A demonstration of
this is given by Liouville’s theorem, based on the work of J. Liouville,
but first published by Gibbs. It gives the equation of motion for the
ensemble density, ρ.

To get an equation of motion, we start with a bunch of initial condi-
tions (perhaps corresponding to initial experimental uncertainty); we
represent them by ρ(qi, pi, t = 0). The fraction of systems in dΓ is
ρdΓ. Now we follow the systems in time to find ρ(t).

Since systems cannot be created or destroyed ρ acts like the density
of a “fluid” in phase space, namely it obeys a continuity equation of
the form:

∂ρ/∂t+∇ · (ρv) = 0.

We need to interpret v in the 6N dimensional phase space as (q̇i, ṗi).
Similarly the divergence is (∂/∂qi, ∂/∂pi). That is:

∂ρ

∂t
= −

�

i

�
∂(ρq̇i)

∂qi
+

∂(ρṗi)

∂pi

�

= −
�

i

�
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

�
− ρ

�

i

�
∂q̇i

∂qi
+

∂ṗi

∂pi

�

= −
�

i

�
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

�

−ρ

�

i

�
∂
2H

∂qi∂pi
− ∂

2H
∂pi∂qi

�
. (2.25)

The last term is zero, and thus:

∂ρ

∂t
+
�

i

�
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

�
=

dρ

dt
= 0. (2.26)

Here dρ/dt is the Lagrangian derivative, the change of ρ as it is swept
along in the Hamiltonian flow. Thus ρ(γ(0)) = ρ(γ(t)), i.e., the density
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around a phase point is constant as it moves around on the energy
surface. The fluid that we deal with is incompressible. In the language
of chaos theory, there are no attractors for Hamiltonian systems2.

Another consequence is that if ρ is constant over a volume, ∆Γ, and
zero elsewhere, then the volume is conserved as it moves around under
the dynamics, though it will, in general, change shape. This follows
from the fact that ρ = N/∆Γ, where N is the number of systems
represented.

Ergodic theorems

Boltzmann reasoned that if you consider a whole trajectory, the den-
sity near one point is the same as the density near its image. Thus
if the point goes nearly everywhere on the energy shell, the density is
constant nearly everywhere. Thus we should average over the whole
shell with ρ = constant. That is exactly Eq. (2.22). However, we do
not know that a single trajectory goes everywhere.

Formal theorems by George D. Birkhoff and John von Neumann
made this idea rigorous, see Uhlenbeck et al. (1974). Birkhoff proved
that if the energy shell could not be divided into pieces such that
trajectories never cross the boundary (this is called “metrically inde-
composable”) then Eq. (2.22) holds. The trick, then, is to show what
class of Hamiltonians have this property. Physically reasonable exam-
ples were hard to produce for a long time. However, there has been
quite a lot of progress since Birkhoff and Neumann.

Mixing

It is necessary to point out that ergodicity is really not enough. A real
macroscopic system, or even the few atom system we have simulated,
has a stronger property called mixing. To see this consider a one-
dimensional harmonic oscillator. Its phase space is two-dimensional,
and since the conserved Hamiltonian is p

2 + q
2 (in the proper units)

the energy shell is a circle. Consider a group of initial conditions:
they will all travel around the circle so the system is certainly ergodic.
However, it is really different from an equilibrium macroscopic system
since it is periodic with period 2π; it never “settles” down to a steady
state.

We need to make a further assumption: we require that the states
in any small group of initial conditions spreads out in such a way that

2For the chaos groupies: the only generic fixed points are saddle points and foci.
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R

Figure 2.4.: Mixing. Left: the energy shell of a harmonic oscillator and
a group of initial conditions. They flow around the circle un-
changed in shape. In order to have mixing we need a positive
Lyapunov exponent (see Eq. (2.28).) In this case (and even for a
non-linear oscillator) the Lyapunov exponent is zero. Right: In
a mixing system the initial conditions in the small disk spread
out into Gibbs tendrils while preserving volume. In the limit of
large times the fraction of the image that overlaps any region R

is simply the fraction of R in the whole shell. This means that
the tendrils cover the shell uniformly.

they cover the shell uniformly. That is, take ρ to be non-zero for some
small region initially, and consider the ρ(t), i.e. the result of letting all
the points in the region develop for time t. Suppose t is a long time.
A system is mixing if:

�
ρ(t)RdΓ =

�
R dΓ

Ω
(2.27)

for any phase space function R. For example, if R is constant over
some region and zero elsewhere (a so-called indicator function), this
says that the fraction of points that end up in that region is just the
fraction of the shell that R occupies. See Figure 2.4.

Why is this important for our problem? It means, for example, that
if we have some initial condition that stays in a periodic orbit, as in
the harmonic oscillator, neighboring points will wander away, because
any small initial region will spread out to cover the shell. Almost all
initial conditions will settle down to equilibrium.

Gibbs (1902) already had this idea. He compared the spread of
initial conditions to stirring ink into water. The volume of ink is
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Figure 2.5.: The track of the Sinai billiard in the x, y plane. On the cover
is a similar track for a rectangular billiiard table.

constant, but after stirring it is uniformly dispersed. As in Figure
2.4, there will be tendrils of the initial blob that get finer and finer in
time (to conserve volume as required by the Liouville theorem). Any
measurement with finite precision will see the tendrils dispersed over
the volume.

Instability of orbits: playing billiards

It is clear that some systems of many atoms are not mixing — the ideal
gas with no interactions at all is an example. From the work of Yakov
Sinai we can give an example of a simple Hamiltonian system which
is more-or-less like interesting physical systems, and which is mixing
and ergodic. This is called the Sinai billiard; see Penrose (1979).

For the Sinai billiard a hard disk bounces against the walls of a
square box, and also against a circular obstacle in the center. We
show, in Figure 2.5 the trajectory of the disk. In this case the phase
space is four dimensional, x, y, px, py but the energy shell is three-
dimensional. It is also very simple because for elastic collisions |p| is
conserved, the momentum can only change its direction, θ. Thus the
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Figure 2.6.: Left: the subspace of phase space in the px, py plane. The
points are samples taken from the track. The momentum
changes in direction only. Right: the energy shell. The axes
in the front are x, y and the axis parallel to the excluded blue
cylinder is θ, where 0 ≤ θ < 2π is the angle from the x-axis of
p.

energy shell is a circle in p-space. We can plot discrete sampling times
in the three-dimensional space x, y, θ. The points fill up the space, as
we see in the Figure 2.6.

We can trace the source of mixing here: the ball bounces against a
convex surface, so two trajectories that start from a point with direc-
tions differing by δθo will have the angular difference magnified. The
result, after a number of collisions will be that

δθt ≈ δθo exp(αt). (2.28)

The number, α, is called a Lyapunov exponent, and is positive for
diverging trajectories.

Lorentz gas and hard sphere gas

Research in this area has extended to deal with more realistic systems,
notably the Lorentz gas (hard disks bouncing on fixed obstacles) and
interacting hard spheres. The Lorentz model is used for electrons in
solids: the obstacles are impurities in a crystal. It is close to the
standard way to treat electrical conduction; see Sander (2009).

As of this writing, there are some solid results in this area, e.g.
Simányi (2009). Oddly enough, it is easier to prove mixing for systems
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of a few hard spheres than for many, and for small numbers like 2 and
3 in dimensions 2 or greater the theorem is proved.

Numerical “proofs”

The mathematicians are hard at work in this area, but a physicist may
wonder if their results are really important. For a physicist (in any
case, for this physicist) it is sufficient to know that numerical investi-
gations of realistic models of microscopic behavior give the results that
we expect from ergodic/mixing theory. This is certainly the case, and
the rigorous mathematical proofs of Boltzmann’s proposition in semi-
realistic cases go to support this position. In fact, most textbooks in
statistical physics simply skip the discussion altogether, and start by
assuming that Eq. (2.22) is correct.

2.2.4. Objections to the theory

When Boltzmann and Maxwell advanced the idea of ergodicity it met
with fierce opposition. The opponents claimed that it was not consis-
tent with experiment. These objections are all incorrect. It is enlight-
ening to see why.

We will not discuss further the small but vocal class of scientists
such as Mach who had not yet (at the end of the ninteenth century!)
accepted the idea that matter is made of atoms and molecules. This is
of only historical interest. There were more substantive and interest-
ing objections raised. These are known in the older literature as the
Wiederkehreinwand (objection about recurrences) and the Umkehrein-
wand (objection about reversibility).

Recurrence and reversal paradoxes

In his famous work that founded modern chaos theory, Poincaré proved
a theorem that seemed contrary to the ideas of Boltzmann. For a
closed dynamical system of the type we are studying he showed that
the system will return infinitely often to an arbitrarily small region
near to its original state. This is troubling: it seems to say that if we
confine a gas to a box of volume V , and then break a wall so that the
atoms can wander in a bigger box, say of volume 2V , and then wait,
the atoms will go back into the smaller box. This objection was raised
by Ernst Zermelo.
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This is not really an objection. In fact, ergodic theory says the same
thing: we average over all phase space, including parts where all the
atoms are in the smaller volume. The problem is how long we have to
wait. Ergodic theory gives us a hint: consider an ideal gas, for which
H only depends on pi. Now the fraction of phase space occupied in
the initial state is:

�
δ(H(pi)− E)d3Np

�
V
d
3N

q�
δ(H(pi)− E) d3Np

�
2V d3Nq

=
V

N

(2V )N
=

1

2N
. (2.29)

For a mixing system, if we sample the observations N times, we will
find the original state N/2N times. So for two particles 1/4 of the
observations will be like this, but for a macroscopic system the fraction
will be of order 210

20
. Put another way, we will have to wait 2Nτ , where

τ is the shortest time for an independent measurement (e.g. the time
for particle to traverse the system). This time, called the Poincaré
cycle time, is longer than the age of the universe.

Boltzmann’s answer to Zermelo (translated in Brush & Hall (2003))
was marked by his characteristic caustic wit:

Thus when Zermelo concludes, from the theoretical fact
that the initial states in a gas must recur — without hav-
ing calculated how long a time this will take — that the
hypotheses of gas theory must be rejected or else funda-
mentally changed, he is just like a dice player who has
calculated that the probability of a sequence of 1000 one’s
is not zero, and then concludes that his dice must be loaded
since he has not yet observed such a sequence!

Johann Loschmidt objected to Boltzmann’s ideas on the ground
that mechanics has time-reversal invariance. Thus you cannot deduce
irreversible behavior, like approach to equilibrium, from mechanics.
Boltzmann’s response was, in effect, that if you prepare a system out
of equilibrium, the boundary conditions set a direction of time, not
the equation of motion. In fact, if the experimenter is working on
the system, the Hamiltonian is different for t < 0, so we should not
expect reversibility. An interesting discussion of this point is given
by Ambegaokar & Clerk (1999) in terms of the Ehrenfest “dog-flea”
model (equivalent to the Ising model with J = h = 0).

There are deep philosophical questions about the “arrow of time”
connected with this point. Our interest here is physics, not philosophy;
we will go no further.
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2.2.5. Relaxation times

Mathematical approaches to ergodic theory are silent on the question
of relaxation times. This is as it should be: relaxation depends cru-
cially on the system studied. A system such as the Sinai billiard can
approach equilibrium very quickly. Other systems do not.

To chose a random example, diamonds are not the ground state of
carbon at room temperature: the stable structure is graphite — di-
amonds are not forever. However, the time to convert your diamond
ring to an ugly bit of pencil lead is very long, as witnessed by the
presence of diamonds in old geological formations. We may confi-
dently expect that if we are willing to wait many geological eras for
conversion, and then do our time averaging, we would get a correct
average. We could even wait a Poincaré cycle time and hope our ring
comes back.

Does this mean that statistical physics is useless for diamond? Not
at all: we can use a constrained ensemble, namely assume that the very
long conversion time is infinite, and get good results for diamonds in
the laboratory.

One more point needs to be made: for a system that, empirically,
comes to equilibrium quickly, we do not need to wait a Poincaré cycle
time to do our averages. The Gibbs tendrils (see Figure 2.4) cover the
whole shell coarsely at first, and then more and more finely. The time
to wait for averages over R to settle down depends on the size of R.
If R is large, in some sense, we have a coarse-grained measurement,
a typical macroscopic experiment. For finer details, we have to wait
longer.

This explains why for experiments (and numerical experiments) we
can use phase space averages for macroscopic purposes as long as we
don’t insist on very fine details.

2.3. Quantum systems

We have confined our discussion to classical mechanics. For quantum
systems the situation is more involved because of the discrete spectrum
and the structure of eigenstates.

In fact, the situation is quite confusing. We could imagine that,
for an isolated system, we prepare a quantum state in wavefunction,
Ψ({r}, t). Here {r} is the set of all the coordinates of all the particles.
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Now we can, as is usual in quantum mechanics, expand in energy
eigenfunctions:

Ψ =
�

k

cke
−iEkt/�ψk. (2.30)

The problem here is that if the ψk are really energy eigenfunctions,
this is an exact solution of the problem. The analogue of visiting the
whole energy shell doesn’t happen: we are stuck with a particular
combination of eigenfunctions, the ck, for all time. And, there will be
quantum interference effects between the various eigenfunctions. This
is exactly the situation discussed in quantum mechanics textbooks for
two level systems, say in magnetic resonance.

2.3.1. Random phases

However, in a big quantum system this is never observed. The lovely
interference effects of small, isolated systems disappear because of in-
teractions with the environment. The reason, roughly speaking, is that
statistical systems have many closely spaced eigenvalues so that tran-
sitions between them are impossible to avoid. What seems to happen
is that these interactions don’t have much effect on the energy, but
scramble the phases causing decoherence of the wavefunctions.

The practical effect of this is as follows: suppose we take Ψ and try
to compute an expectation value so that we can observe something.
But, we need to average over the “stray” interactions that scramble
the phases. We will denote this average as c. Then, for some operator,
R̂:

�
Ψ|R̂|Ψ

�
=

�

k,l

c
∗

k
cle

i(Ek−El)t/�
�
ψk|R̂|ψl

�

→
�

k

|ck|2
�
ψk|R̂|ψk

�
. (2.31)

The off-diagonal terms “average out”, but the diagonal terms do not,
because the phases cancel. Further, in our situation of nearly con-
served energy, we must assume that the average means that each of
the diagonal terms average to be the same:

|ck|2 = 1/N ,

where N is the degeneracy, the number of states with nearly the same
energy. For example, for the Ising model in zero field, N = 2N .
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2.3.2. Density matrix

Another way to put it is to write down the thermal equilibrium density
matrix, which is the quantum analogue of the phase space density. For
all the degenerate states:

ρ
k,l

mc
≡ c

∗

k
cl = δk,l/N . (2.32)

The analogue to Eq. (2.23) is:

�
R̂

�
=

�

k,l

ρ
k,l

mc

�
ψk|R̂|ψk

�
=

�

k

�
ψk|R̂|ψk

�

N . (2.33)

Sometimes it is useful (though we will never use this in this book)
to define a density operator, in this case the microcanonical version.

ρ̂mc =
δ(E − Ĥ)

�
k

�
k|δ(E − Ĥ)|k

� =
δ(E − Ĥ)

Tr(δ(E − Ĥ))
(2.34)

Here, Tr means the trace. The average can be written:

�R� = Tr(ρ̂R̂) (2.35)

This all sounds complicated, and justifying it (at the same level that we
did classical systems) would be. However, the recipe for calculation
is simple. For a nearly closed quantum system average over all the
degenerate states with equal weight. As we will see, this is not terribly
hard — if the model is tractable. For the simple case of the Ising
model, we can get useful explicit answers this way, as we will see.

Later we will see how to deal with systems at fixed temperature.
In this case we average over states with a probability distribution
(the Boltzmann factor). This changes the form of the density matrix.
There are several examples of this in Chapter 4.

2.4. Method of the most probable distribution

It is instructive to follow Boltzmann and use the ideas above to derive
the velocity distribution function, f(p), for atoms in an ideal gas.

2.4.1. Maxwell-Boltzmann distribution

In a classical ideal gas we can consider molecules separately, and each
one lives in its own phase space, called µ-space, which is 6 dimensional.
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We divide µ-space into many cells of the same size dµ = drdp located
at different ri,pi.

We want to know how many molecules are in each cell; we call this
set ni, i = 1, . . . ,M where

�
M

1 ni = N . Molecules in cell i have
energy �i = p

2
i
/2m. The total energy, for non-interacting particles,

is E =
�

�ini.

To get to Γ-space we note that a given set, {ni} will live in a region
of volume:

dΓ = dµ
n1
1 dµ

n2
2 . . . dµ

nM
M

.

However, there are many different places in Γ-space that correspond
to the same set of ni’s, namely the number of ways to permute N

molecules among M cells given {ni}. This number is:

N !

n1!n2! . . . nM !
.

The probability to have {ni} is proportional to the total volume in
phase space occupied:

Γ({ni}) = N ! Πi

dµ
ni
i

ni!
. (2.36)

We need to maximize the volume with respect to each of the occupa-
tion numbers.

We take the logarithm and use two Lagrange multipliers to preserve
energy and number conservation. We are led to the following equation
for the maximum with respect to each nj :

∂

∂nj

�
ln Γ({ni})− α

�

i

ni − β

�

i

�ini

�
= 0

We can use Stirling’s approximation in the form lnni! ≈ ni lnni − ni.
We must solve:

0 =
∂

∂nj

�

i

[−(ni lnni − ni) + ni ln dµi − αni − β�ini],

0 = − lnnj − α− β�j + ln dµj

nj = dµje
−α

e
−β�j . (2.37)

We set e
−α = A. We can determine the constants, A, β by applying

the constraints. For the ideal gas:

E =
�

i

�ini =

�
dpdr(p2/2m)Ae

−βp
2
/2m;
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N =
�

i

ni =

�
dpdrAe

−βp
2
/2m

.

In particular, carrying out some Gaussian integrals we get:

E

N
≡ tE =

�
dp(p2/2m)e−βp

2
/2m

�
dpe−βp2/2m

=
3

2β
. (2.38)

If we compare this with Eq. (2.6) we have:

β = 1/kBT

ni ∝ f(pi) ∝ exp(−p
2
i
/2mkBT ). (2.39)

This is the famous Maxwell-Boltzmann distribution. The normaliza-
tion, and some variants on the distribution are in the problems.

It is possible to show that, not only is this the most probable dis-
tribution, but most of phase space is occupied by distributions that
differ very little from this one. The method is to show that most of
the probability is contained in the region where the fractional differ-
ence of the average of ni differs from the Maxwell-Boltzmann value
by less than O(1/

√
N) = 10−10; see Huang (1987). We will get the

distribution and the fluctuations in a different way later.

2.4.2. Fermi distribution

We can use the same method for a system of non-interacting fermions,
the ideal Fermi gas. For non-interacting particles the antisymmetry of
the wavefunction means that we cannot have more than one fermion
in each single particle state. The derivation of Boltzmann makes no
such restriction, and thus breaks down at high density because each
cell has a degeneracy that is too large.

We proceed in the same way, but the volume elements on phase
space, dµi need to be replaced by cells that group a number of quantum
states, gi. Now, as before, we have to figure out the number of ways
to put the fermions into the cells. For classical particles, each cell gave
a factor wi = dµ

ni/ni!. Now we need to make sure that there is no
double occupancy. Thus the number of interchanges is different: we
must distribute ni particles in gi states with single occupancy:

wi =
gi!

ni!(gi − ni)!
.

Now we proceed as before:

Γ({ni}) =
�

i

gi!

ni!(gi − ni)!
. (2.40)
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Now take the log, use Stirling’s approximation, and set the variation
to zero subject to two Lagrange multipliers. The result is:

ni/gi =
1

eβ(�i−µ) + 1
, (2.41)

We have set α = −βµ for reasons that will become evident in the next
chapter. We will show that β = 1/kBT below. This is the Fermi-Dirac
distribution. We will use it below for the physics of electrons in metals.

2.4.3. Bose distribution

For the Bose gas we need to do the counting differently because now
there is no restriction on the number in a state, but we still need to
make sure that we count different quantum states for indistinguishable
particles. We can see how to count by picturing the cell, gi, as a line
with ni particles and gi − 1 boundaries between the different states in
the cell. For example:

◦ ◦ || ◦ | ◦ ◦||| . . . ,

means that the first state has 2 particles, the second is empty (two
adjacent partitions) the third has one, the fourth has two, and the
fifth and sixth states have no particles. The number of ways to realize
this is the number of distinct ways to permute ni + gi − 1 partitions
and particles:

wi =
(ni + gi − 1)!

ni!(gi − 1)!
.

Proceeding as before gives:

Γ({ni}) =
�

i

(ni + gi − 1)!

ni!(gi − 1)!
. (2.42)

And therefore:

ni/gi =
1

eβ(�i−µ) − 1
. (2.43)

This is the Bose-Einstein distribution. We will use it below for the
physics of liquid He, and for thermal properties of phonons and pho-
tons.

2.4.4. Classical limit

We can take the classical limit for both distributions by noting that
if ni/gi << 1 we should get back to classical physics where particle
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identity plays no real role. This can occur, in both cases, if β(�i −
µ) >> 1. Then we have:

1

eβ(�i−µ) ± 1
→ e

βµ
e
−β�i . (2.44)

We have the Maxwell-Boltzmann distribution, as we should expect, if
we identify β = 1/kBT . Later we will show that µ is the thermody-
namic chemical potential.

Suggested reading

There are many excellent references and textbooks for this subject
that the student can explore.

The classic undergraduate texts are:

Kittel & Kroemer (1980).

Reif (1965)

There is an undergraduate text which emphasizes numerics:

Gould & Tobochnik (2010)

At the graduate level there are many texts. Here are a few choices:

Huang (1987)

Pathria & Beale (2011)

Landau & Lifshitz (1980)

Chaikin & Lubensky (1995)

Ma (1985)

Peliti (2011)

Problems

1. The Maxwell-Boltzmann distribution is easy to observe in molec-
ular dynamics. But we need to do some preliminary work first.

a.) Write down the full expression for f(p) including the con-
stants in front in 2 and 3 dimensions. Do this by requiring that�
dpf(p) = N .
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b.) Find the distribution of speeds, f(v), v = p/m, in 2 and 3d.
Figure out the mean speed, i.e.:

� ∞

0
vf(v)dv/

� ∞

0
f(v)dv.

c.) In a molecular dynamics code display a histogram of the
speeds, and compare to the results above. You should average
the histogram over time after equilibration. Use the total kinetic
energy to get the temperature.

2. a.) Generalize your MD program to include an attractive force.
Show that for small enough initial energy you get something
resembling condensation.

b) Use Eq. (2.11) to get the pressure in molecular dynamics.
Show that for high enough T you approach the ideal gas law.
Plot some isotherms in the non-ideal region.

3. a.) The derivation of the Maxwell-Boltzmann distribution can be
generalized to the case when each molecule is subject to gravity.
Work out f(z,p) for this case. Show that the dependence on z

gives rise to the barometric distribution, n(z) = n(0)e−βmgz.

b.) Derive the result of a.) by macroscopic reasoning as follows:

• Argue that p(z)− p(z + dz) = n(z)mgdz.

• Use this to make a first-order differential equation relating
p(z) to n(z).

• Use the ideal gas law, and solve the equation.

4. Does the reasoning leading to the Maxwell-Boltzmann distribu-
tion change if some particles are heavier than others? Suppose
that there is just one particle with mass M and the rest have
mass m < M . What is the mean kinetic energy of the heavy
particle? What is its mean speed? Verify this roughly with
molecular dynamics.

5. Figure out pc, Tc, nc for the van der Waals equation in terms of
a, b. You need to set dp/dn = d

2
p/dn

2 = 0. Explain why.

6. Fill in the steps in Eq. (2.38).

7. Scuba divers use a compressed air cylinder called an Aluminum-
80 which means that 80 cubic ft of air at atmospheric pressure,
room temperature, is jammed into a cylinder that you can carry
on your back. The pressure is 3000 psi. (One atmosphere is 14.7
psi.) What is the internal volume of the cylinder? Work this out
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for an ideal gas and a real gas (using the van der Waals constants
for Nitrogen).

8. Consider a hot gas in a furnace with a hole through which a spec-
tral line is observed. Show that the line is Doppler broadened so
that the wavelength distribution of light intensity is given by:

I(λ) ∝ exp

�
−mc

2(λ− λ◦)2

2λ2
◦kBT

�

Here T is the temperature of the furnace, m the mass of the
molecule, and λ◦ the wavelength when the molecule is at rest.

Hint: The Doppler effect works in the following way: the ob-
served wavelength is:

λ ≈ λ◦(1 + vx/c),

where vx is the velocity of the molecule emitting the light along
the line of sight.

9. Compute the probability of having more than 0.001% difference
in the number of molecules of ideal gas in two sides of a room.
Suppose there are N = 1020 total. We want P (|R − L|/N >

10−5). Here R+ L = N and R,L = number on right, left.

Hint: Assume that each molecule is on each side of the room
with equal probability. Argue that the probability for a given
value of R is (N !/R!L!)2−N . Use Stirling’s approximation, and
express the result in terms of m = (R− L)/N for small m. You
should show that

P (m) ∝ e
−Nm

2
/2
.

Find the normalization by setting
� ∞

−∞

P (m)dm = 1.

Argue that the probability, P (|m| > r) is given by 2
�∞

r
P (m)dm.

10. Here is an example of using Liouville’s theorem. Show that the
Verlet algorithm in one dimension is symplectic. This means that
it conserves the phase space area dx× dp. This is a property of
the exact dynamics as well, as Liouville’s theorem shows, so it is
a desirable property for the approximate, numerical dynamics.
It also implies that energy is conserved very well by Verlet – but
this is more complicated, and we will not discuss it.
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Hint: Start by showing that the algorithm in the problem in the
previous chapter can be rewritten as follows. Set m = 1 so that
v = p. Suppose you start with xn, vn at the n

th step. Then:

(a) vn+1/2 = vn + dt ∗ a(xn)/2,

(b) xn+1 = xn + dt ∗ vn+1/2,

(c) vn = vn+1/2 + dt ∗ a(xn+1)/2.

Now consider this as three transformations,

(a) A : (xn, vn) → (xn, vn+1/2);

(b) B : (xn, vn+1/2) → (xn+1, vn+1/2)

(c) C : (xn+1, vn+1/2) → (xn+1, vn+1).

If the area is to be preserved, the Jacobian of the transformation
must be unity (make sure you remember what a Jacobian is).
Show that J = J(C)J(B)J(A) = 1.


