NC State - Identifiability Activity Aug9, 2014

Part 1 - Structural Identifiability for the SIR Model. Consider the SIR model below:

S = uN — BSI — uS

I[=pBSI—(u+vy)I

R =yl —puR

y =kl
where S, I, and R represent the number of susceptible, infectious, and recovered individuals,
and y indicates that we are measuring a proportion of the infected population. The
parameters w,f3,v, N, and k represent the birth/death rate, transmission parameter,
recovery rate, total population size, and proportion of the infected population which is
measured/observed. Are the parameters for this model structurally identifiable? (Show
how you determined this.) If not, what are the identifiable combinations? What happens if
N is known?

Part 2 - Cholera Transmission

Cholera and many waterborne diseases
exhibit multiple pathways of infection,
which can be modeled (for example) as
direct and indirect transmission. A major
public health issue for waterborne
diseases involves understanding the
modes of transmission in order to
improve control and prevention strategies (Hartley 2006). An important epidemiological
question is therefore: given data for an outbreak, can we determine the role and relative
importance of direct (human-mediated) vs. environmental/waterborne routes of
transmission?

Model: To examine this question, we will use the SIWR model developed by Tien and Earn
(2010), shown in the figure above. We will combine this model with modified data from a
recent cholera outbreak. The scaled SIWR model is given by the following equations:

N = — BiSI = PpwSW — uS

I =B,SI+ BySW —yl — ul

W=¢UI—-w)
R =yl —puR
where
e S, 1, and R are the fractions of the population who are susceptible, infectious, and
recovered

W is a scaled version of the concentration of bacteria in the water

e [, and fy, are the transmission parameters for direct (human-human) and
environmental (indirect) cholera transmission

e ¢ isthe pathogen decay rate in the water
y is the recovery rate

e uisthe birth/death parameter for the population
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Since we are considering a short-term outbreak (less than one year), it is reasonable to
assume that the effects of births and deaths are negligible, so we set ¢ = 0. In addition, the
recovery time for cholera is reasonably well known, so we can fixy = 0.25 based on
previous work (Tuite2011, etc.) (i.e. we don’t need to estimate this).

Data & Measurement Equation: Data from a recent outbreak in Angola is given on the
course website. To connect the model with the data, we will use the following
measurement equation: y = [ /k, where 1/k is a combination of the reporting rate, the
asymptomatic rate, and the total population size.

Estimation: For fitting, use maximum likelihood assuming a Poisson distribution—you can
calculate the cost function for yourself or get it from the slides. (Or feel free to use ordinary
or weighted least squares if you'd prefer, e.g. assuming the SD of the data is 10% of the data
values).

1) SIWR Model Simulation. Write code to simulate the SIWR model and plot both the data
set provided and the measurement equation y = I /k (i.e. plot both the data and y in one
graph vs. time). Use the following parameter values: §; = Sy = 0.75, £ =0.01, k =
1/89193.

For initial conditions, we can determine them from the data by noticing that ify = [ /k,
then 1(0) = ky(0) = kz(0), i.e. we can approximate /(0) by the first data point times k (i.e.
data(1)*k in MATLAB). Since the data begins early in the epidemic, we can take R(0) = 0,
and let S(0) = 1-1(0), since the sum of the fractions of the population in S, I, and R must
sum to 1. Lastly, let W (0) = 0.

2) Parameter Estimation. Write code to estimate the model parameters S;, By, ¢, and k
using the data set provided. The parameter y will be fixed (not fit). Use the parameter
values from 1) as starting values and the initial conditions from 1) as well.

In addition, change the settings in the optimization function in your main code so that you
can see the progress of the optimization algorithm as it goes. This can be done as follows in
MATLAB (see underlined text):

ParamEsts = fminsearch(@(params)siwr ML(tspan,x0,params,data), params,
optimset ('Display’','iter'));

Note: be sure to set your initial conditions inside the cost function file, since 1(0) and S(0)
depend on the parameter values (so they will change as you estimate the parameters).

Plot the cholera data together with your model using the parameter estimates you found.

Be sure to plot the data as circles (‘o’ in the plot function) and your model simulation as a
line so that you can compare your model with the data easily.
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e Based on the ‘eyeball test’, how well does the model fit the data? Do you notice any
runs or correlated residuals? Are there any potential problems with the model fit?
You may want to plot your residuals to see this more clearly.

e Based on your estimated parameters, which transmission pathway would you say is
more important/contributes more to this outbreak?

3) Practical Identifiability Issues. Unfortunately, it turns out that the waterborne
transmission pathway parameters, 5,and &, are often practically unidentifiable when noisy
data is considered (Eisenberg 2013). To examine this in an approximate way, try
simulating your model twice, first with the estimated parameters you found in 2), and then
again where you take f,to be 5/6 the value in 2) and to be 6/5 the value in 2).

Plot both versions of the models together, along with the data. How different are the two
fits to the data? What does this tell you about the identifiability of these two parameters?
How does that affect the certainty of our estimates of the relative contributions of the two
transmission pathways?

4) Simulated Data. To explore how noise is affecting the identifiability of your parameters,
simulate 20 sets of noisy data assuming a Poisson distribution with your best-fit model
trajectory as the mean. Re-estimate the parameters of your model to each of these
simulated data sets, and generate scatterplots of your estimated parameter values (do this
in pairs, e.g. betal vs. betaW, betaW vs. xi, gamma vs. k, etc.). Also plot the true values of
your parameters on these same scatterplots in a different color. How well do the parameter
estimates recover the true values? What does this suggest about the model identifiability?

m + 1) (optional) Profile Likelihood. Generate profile likelihood plots of your parameters
(you can choose the range of values to profile over, but it should include your best-fit
parameter values from Problem 2). How does this match up with the results of Problems 2-
4?7 How certain are your parameter values?

T + 2) (optional) Fisher Information Matrix (FIM). Generate the design matrix (output
sensitivity matrix) for the model, at the time points given by the data set. Use this to
calculate the simplified version of the FIM, given by X™X, where X is your output sensitivity
matrix. What is the rank of the FIM? What does this tell you about the identifiability of your
model? Invert your FIM and take a look at the resulting estimate for the covariance matrix.
How does this compare to your results in part m + 1)?

m + 3) (optional) Practical vs. Structural Identifiability. Try parts 4) and w + 1) for both

simulated, noise-free data (to test structural identifiability) and for the real data you used
for fitting. How do your results compare?
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