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Identifiability
• Identifiability—Is it possible to uniquely determine 

the parameters from the data?

• Important problem in parameter estimation

• Many different approaches - statistics, applied math, 
engineering/systems theory

Ollivier 1990, Ljung & Glad 1994,  Evans & Chappell 2000, Audoly et al 2003, Hengl et al. 2007, Chis et al 2011
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Identifiability
• Practical vs. Structural 

• Broad, sometimes overlapping categories

• Noisy vs. perfect data 

• Example:  y = (m1 + m2)x + b 

• Unidentifiability - can cause 
serious problems when 
estimating parameters

• Identifiable combinations

m1+m2
b

x

y



Structural Identifiability

• Assumes best case scenario - data is known 
perfectly at all times

• Unrealistic!

• But, necessary condition for practical 
identifiability with real, noisy data



Structural Identifiability

• Reveals identifiable combinations and how 
to restructure the model so that it is 
identifiable

• Can give a priori information, help direct 
experiment design

• Global vs. local methods





Key Concepts

• Identifiability vs. unidentifiability

• Practical vs. structural

• Can be in between, e.g. quasi-identifiable

• Locally identifiable

• Identifiable Combinations

• Reparameterization



Reparameterization
• Identifiable combinations - parameter 

combinations that can be estimated

• Once you know those, why reparameterize?

• Estimation issues - reparameterization provides a 
model that is input-output equivalent to the 
original but identifiable

• Often the reparameterized model has ‘sensible’ 
biological meaning (e.g. nondimensionalized, etc.)

note about scaling



Methods we’ll talk 
about today

• Differential Algebra Approach - structural 
identifiability, global, analytical method

• Fisher information matrix - structural or 
practical, local, analytical or numerical method

• Likelihood Profiling - structural or practical, 
local, numerical method



Simple Methods

• Simulated data approach

• If you have a small system, you can even 
plot the likelihood surface (typically can’t 
though—more on this with profile 
likelihoods)



Analytical Methods for 
Structural Identifiability



Methods for Structural 
Identifiability

• Laplace transform - linear models only

• Taylor series approach - more broad 
application, but only local info & may not terminate

• Similarity transform approach - difficult to 
make algorithmic, can be difficult to assess 
conditions for applying theorem

• Differential algebra approach - rational 
function ODE models, global info

Bellman 1970, Cobelli & DiStefano 1980, Evans & Chappell 2000, Ollivier 1990, Ljung & Glad 1994,  Audoly et al 2003
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Structural Identifiability 
Analysis

• Basic idea: use substitution & differentiation to 
eliminate all variables except for the observed 
output (y)

• Clear (divide by) the coefficient for highest 
derivative term(s)

• This is called the input-output equation(s)

• Contains all structural identifiability info for the 
model



Structural Identifiability 
Analysis

• Use the coefficients to solve for 
identifiability of the model

• If unidentifiable, determine identifiable 
combinations

• Find identifiable reparameterization of the 
model?

• Easier to see with an example—



2-Compartment Example

• Linear 2-Comp Model

• state variables (x)

• measurements (y)

• known input (u) (e.g. IV injection)

x1 x2
u

y = x1/V

k01

k21

k12
k02 

x1 = u + k12x2 − k01 + k21( )x1
x2 = k21x1 − k02 + k12( )x2
y = x1 /V



2-Compartment Example

x1 x2
u

y

k01

k21

k12
k02

 yV = u + k12x2 − k01 + k21( )yV
 x2 = k21x1 − k02 + k12( )x2



2-Compartment Example

x1 x2
u

y

k01

k21

k12
k02

 

y + k01 + k21 + k12 + k02( ) y −
k12k21 − k02 + k12( ) k01 + k21( )( )y − u k12 + k02( ) /V − u /V = 0



2-Compartment Example

x1 x2
u

y

k01

k21

k12
k02

k01 + k21 + k12 + k02( ) = a3

k12k21 − k02 + k12( ) k01 + k21( )( ) = a4

k12 + k02( ) /V = a2

1 /V = a1



2-Compartment Example

x1 x2
u

y

k01

k21

k12
k02

k01 + k21 + k12 + k02( ) = a3

k12k21 − k02 + k12( ) k01 + k21( )( ) = a4

k12 + k02( ) /V = a2

1 /V = a1 ⇒V = 1 / a1



2-Compartment Example

x1 x2
u

y

k01

k21

k12
k02

k01 + k21 + k12 + k02( ) = a3

k12k21 − k02 + k12( ) k01 + k21( )( ) = a4

k12 + k02( ) /V = a2

1 /V = a1 ⇒V = 1 / a1

Unidentifiable



2-Compartment Example

x1 x2
u

y

k01

k21

k12
k02

k01 + k21 + k12 + k02( ) = a3

k12k21 − k02 + k12( ) k01 + k21( )( ) = a4

k12 + k02( ) /V = a2

1 /V = a1 ⇒V = 1 / a1

Unidentifiable



2-Compartment Example

x1 x2
u

y

k01

k21

k12
k02

k01 + k21 + k12 + k02( ) = a3

k12k21 − k02 + k12( ) k01 + k21( )( ) = a4

k12 + k02( ) /V = a2

1 /V = a1 ⇒V = 1 / a1

Unidentifiable



2-Compartment Example

x1 x2
u

y

k01

k21

k12
k02

k01 + k21 + k12 + k02( ) = a3

k12k21 − k02 + k12( ) k01 + k21( )( ) = a4

k12 + k02( ) /V = a2

1 /V = a1 ⇒V = 1 / a1

Unidentifiable



2-Compartment Example

x1 x2
u

y

k01

k21

k12
k02

 x1 = u + k12x2 − k01 + k21( )x1
 x2 = k21x1 − k02 + k12( )x2
y = x1 /V

x2 = k12x2

 x1 = u + x2 − k01 + k21( )x1
 x2 = k12k21x1 − k02 + k12( ) x2
y = x1 /V

Let

Or add information 
about one of 

the parameters



Differential Algebra 
Approach

• View model & measurement 
equations as differential polynomials

• Reduce the equations using 
grobner bases, characteristic sets, 
etc. to eliminate unmeasured variables (x)

• Yields input-output equation(s) only in terms 
of known variables (y, u)

• Use coefficients to test model identifiability

x1 x2
u

y

k01

k21

k12
k02

Ollivier 1990, Ljung & Glad 1994,  Audoly et al 2003, etc.



Differential Algebra 
Approach

• From the coefficients, can often determine:

• Simpler forms for identifiable 
combinations

• Identifiable reparameterizations for 
model

• But not always easy by eye—more on this 
in the next talk!



Numerical Methods for 
Identifiability Analysis



Numerical Approaches to 
Identifiability

• Analytical approaches can be slow, sometimes 
have limited applicability

• Wide range of numerical approaches

• Sensitivities/Fisher Information Matrix

• Profile Likelihood

• Many others (e.g. Bayesian approaches, etc.)



Numerical Approaches to 
Identifiability

• Most can do both structural & practical 
identifiability

• Wide range of applicable models, often 
relatively fast

• Typically only local

• Less attention to the problem of 
identifiable combinations



Simple Simulation Approach

• Simulate data using a single set of ‘true’ 
parameter values

• Without noise for structural 
identifiability

• With noise for practical identifiability (in 
this case generate multiple realizations of 
the data)



Simple Simulation Approach

• Fit your simulated data from multiple starting 
points and see where your estimates land

• If they all return to the ‘true’ parameters, likely 
identifiable, if they do not, examine the 
relationships between the parameters

• Note—unidentifiability when estimating with 
‘perfect’, noise-free simulated data is most likely 
structural
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where a0 ¼ aN. We used the parameter values in Table 1 as the
true parameters, and supposed that bW N¼ bIN¼ bI . Based on
this value, we calculated a¼ 0:035183. To determine a0 ¼ aN
and bW , we supposed an effective population size of 100,000
(to be on the same order of magnitude as the total epidemic,
which caused " 82,204 cases). This yields a0 ¼ aN¼ 3518:3 and
bW ¼ 2:64# 10$6.

As previously, we simulated 100 data sets for each distribution
and estimation method, with the resulting parameter estimates
given in Tables 4–7 and Fig. 10. In all cases, we found that adding
water data significantly decreases the variability on estimates of
the parameters, particularly those involved in the waterborne
transmission pathway. R0 estimates were also tighter when
water data was added. The inclusion of a second series of
measurements in the water also gives additional information on
the pathogen shedding rate, which was not available using case
data measurements alone.

5. Discussion

Parameter identifiability is an important question for epide-
miological modeling: the ability to estimate model parameters
from a given data set will determine the ability to estimate
fundamental quantities such as the basic reproduction number,
and to assess the efficacy of different intervention strategies. This
is particularly relevant for waterborne disease models because of
the public health importance of distinguishing multiple transmis-
sion pathways, which are often quite difficult to measure directly.
Mathematical modeling and parameter estimation has increas-
ingly been used to help guide public health practice (Temime
et al., 2008; Halloran and Lipsitch, 2005; Koopman, 2004; Chick
et al., 2003), and more specifically has been recently used in the
cholera epidemic in Haiti (Abrams et al., 2012; Tuite et al., 2011;
Date et al., 2011), making the issue of parameter identifiability an
important and commonly encountered problem in public health

Fig. 7. Scatterplots showing parameter estimates for 100 simulated data sets using least squares estimation for Poisson noise. True parameters (indicated by red stars) are
as given in Table 1. Note the significant dependence between x and bW . The wider range in bW results in a wider range of R0 estimates, as R0 is linear in bW . The
relationship between bW and x also results in a corresponding relationship betweenR0 and x. (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this article.)

Fig. 8. Examples of simulated data set using least squares estimation with four noise distributions (left to right): Poisson, Gaussian, negative binomial with variance equal
to 5 times the mean, and negative binomial with variance equal to 50 times the mean.

M.C. Eisenberg et al. / Journal of Theoretical Biology 324 (2013) 84–102 95



Parameter Sensitivities

• Design matrix/output 
sensitivity matrix

• Closely related to 
identifiability

• Insensitive parameters

• Dependencies between columns
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Fisher Information Matrix

• FIM - NP x NP matrix

• Useful in testing practical & structural ID - 
represents amount of information that the 
output y contains about p

• Cramer-Rao Bound:  FIM-1 ≤ Var(p)

• Rank(FIM) = number of identifiable 
parameters/combinations

• Identifiable Combinations



Fisher Information Matrix

• Special case when errors are normally 
distributed
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Fisher Information Matrix

• For looking at structural ID, often just use

 

X =

∂y t1( )
∂p1

…
∂y t1( )
∂pn

  
∂y tm( )
∂p1


∂y tm( )
∂pn

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

F = XT X

Design Matrix



Identifiability & the FIM

• Covariance matrix/confidence interval estimates 
from Cramer Rao bound

• e.g. large confidence interval —>probably unID

• Often can detect structural unID as ‘near-
infinite’ (gigantic) variances in Cov ~ FIM-1



Identifiability & the FIM

• Rank of the FIM is number of identifiable 
combinations/parameters - can do a lot by testing 
sub-FIMs and versions of the FIM

• Identifiable combinations - can often see what 
parameters are related, but don’t know form

• Interaction of combinations



Profile Likelihood

• Basic Idea: ‘profile’ one parameter at a 
time, by fixing it to a range of values & 
fitting the rest of the parameters

• Gives best fit at each point

• Evaluate curvature of likelihood to 
determine confidence bounds on 
parameter (and to evaluate parameter 
uncertainty)



Profile Likelihood

• Choose a range of values for parameter pi

• For each value, fix pi to that value, and fit 
the rest of the parameters

• Report the best likelihood/RSS/cost 
function value for that pi value

• Plot the best likelihood values for each 
value of pi—this is the profile likelihood



Profile Likelihood

p

-LL

p p



Profile Likelihood & ID

• Can generate confidence bounds based on 
the curvature of the profile likelihood

• Flat or nearly flat regions indicate 
identifiability issues

• Can generate simulated ‘perfect’ data to 
test structural identifiability



Raue et al. 2010



Profile Likelihood

• Can also help reveal the form of identifiable 
combinations

• Look at relationships between parameters 
when profiling

• However, can be problematic when too 
many degrees of freedom
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there are more e�cient approaches, in this work we
simply search for nearly full rank sets directly, by testing
the rank of decreasing sized parameter subsets beginning
with A until we find subsets which are full rank once any
individual parameter is removed. If in Step 1 we did not
remove the identifiable parameters, we note that these
parameters will not appear in any of the nearly full rank
subsets, as any rank deficient subset will still be rank
deficient when the identifiable parameter is removed.

4. Likelihood Profiles - Next we compute the likelihood
profiles for the parameters in each subset found in Step
3. We consider only the flat regions of the likelihood
profile for each parameter pi, and examine the relationship
between pi and each other parameter. Because the subsets
are nearly full rank, this will force the optimal values
of the other parameters to trace out the form of the
identifiable combinations.

5. Functional Form for the Identifiable Combinations By
fitting rational functions to the profile relationships, we
determine an algebraic form for the relationship between
p⇤ and each fitted parameter. These curves represent the
structurally identifiable combinations for the model, pro-
jected via evaluation maps for the remaining parameters to
their fitted values (i.e. to values satisfying the identifiable
combinations). From these relationships we can solve to
recover the form for the overall identifiable combinations
by combining these di↵erent projections together. While
in practice for smaller models this is typically easy to do
by inspection (see examples below), for more complicated
models a more algorithmic approach or multivariate poly-
nomial interpolation approach may be preferable, which
we aim to investigate further in future work. In general the
combinations need not be rational functions, and in this
case one could fit other combination functions to the pro-
file relationships (e.g. exponential or piecewise functions);
but we restrict to this case as it represents a commonly en-
countered class of models and there are existing methods
for quickly interpolating rational functions from data.

4. Examples

In this section, we give several examples of the overall ap-
proach and illustrate some potential pitfalls. In Examples 1 - 3
we have chosen models where the identifiable combinations can
also be determined analytically so as to compare our method
with known results, and in Examples 4 and 5 we determine
identifiable combinations for models with more complex non-
linearities. We implemented the method in Python 2.7, using
Numpy and Scipy for numerical computation [35, 36].

In Step 1, we used a fine uniform sampling of 5000 time
points to generate the sensitivity matrices and subsequent FIMs.
To pre-screen the identifiable parameters in Step 1, we take a
tolerance of %CV � 100 to indicate structural unidentifiability
(so that if the uncertainty is larger than the magnitude of the

x1 x2

k21

k12

k01 k02

y=x /V1

k02
k12 k21

k01

Figure 2: Linear 2-compartment model diagram (top) and parameter
graph (bottom).

parameter it is considered unidentifiable). However, as noted
above, a precise threshold is somewhat unnecessary, since for
most examples structurally unidentifiable parameter %CV’s are
much larger (e.g. > 106 as in the examples below) and several
orders of magnitude di↵erent from the %CV’s for the identifi-
able parameters (< 100%).

In Step 4, we found that a threshold requiring the residual
sum of squares to be less than 10�6 was su�cient for most
unidentifiable examples to make sure the profiles are taken in
a flat region of likelihood space, although in practice the pro-
files in this case are often significantly smaller, e.g. on the order
of 10�10. In general, this threshold will depend on a range of
factors, such as the number of time points used in generating
the model simulations, numerical integration error and the con-
vergence criterion for the optimizer.

To fit rational functions in Step 5, we used least squares to
numerically fit a series of increasing degree rational functions
and used the Bayesian information criterion (BIC) [37] to
select the simplest among them. We chose the BIC for its
larger penalty for overparameterization, though in practice
any similar information criterion should work equally well
(e.g. the Aikaike information criterion, etc.), as the resulting
rational functions yielded near-perfect fits to the data, with
sum of square residuals typically on the order of machine
precision. While the method given here is not implemented in
an algorithmic way, the likelihood profile computation time is
similar to that of [18], plus a relatively small overhead for the
preconditioning in Steps 1-3.

Example 1: Linear 2-compartment Model. The linear 2-
compartment model (Figure 3) is commonly used in pharma-
cokinetic modeling, with equations given by:

ẋ1 = k12x2 � (k01 + k21)x1

ẋ2 = k21x1 � (k02 + k12)x2

y = x1/V
(5)
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Figure 3: Parameter relationships determined from likelihood profiles
for the linear 2-compartment model in Example 1. We note that al-
though negative values for the rate constants are unrealistic in this
model, we also sampled negative values of the parameters in order
to better capture the curvature of the parameter combinations.

where x1 represents the mass of a substance in the blood (e.g. a
hormone or drug), and x2 represents the mass of the substance
in the tissue. The drug exchanges between blood and tissues,
and is degraded/lost in both compartments, at the rates given
by the ki j’s above. The model output y = x1/V is the blood
concentration of the drug, where V is the blood volume. The
ki j’s and V are unknown parameters to be estimated.

This model has previously been shown to be unidentifiable
using a range of analytical methods [3, 13], and the identifiable
combinations are known to be k12k21, k12 + k02, and k21 + k01,
with V identifiable. As an example set of parameters, we take
k12 = 1, k21 = 0.7, k02 = 0.4, k01 = 0.7,V = 3, and initial
conditions x1(0) = 15, x2(0) = 0, representing a bolus input
to the blood at t = 0. These parameter values were chosen
arbitrarily, however we tested a range of di↵erent parameters
with similar results.

Following the approach given above, in Step 1, we first note
that the overall FIM is indeed rank deficient, with a rank of 4
(as there are 3 combinations and one identifiable parameter).
The overall covariance matrix gives parameter %CV’s greater
than 106% for all ki j’s, with the %CV for V of 4.78%, indi-
cating that the individual ki j’s are unidentifiable, but that V is
identifiable. In Step 2, we note that all individual parameter
%CV’s (i.e. when fitting only a single parameter at a time) are
all < 25%, indicating that no parameters are completely insen-
sitive (i.e. they aren’t inherently unidentifiable). Thus, all ki j’s
must be involved in identifiable combinations. Indeed, the full

set of ki j’s satisfies the Step 3 condition, indicating that the pa-
rameter combinations form a single connected component (Fig-
ure 2).

In Step 4, we generate profiles for each of the unidentifi-
able ki j’s, and consider the relationship between the profiled
and fitted parameters in the flat regions of the profile likelihood,
shown in Figure 3. The likelihood profiles were consistently flat
over the parameter region tested with a residual sum of squares
< 10�10 for all parameters. In Step 5, fitting to the curves in
Figure 3 gives the following relationships (after clearing de-
nominators and factoring):

k12k21 = 0.7
k12 + k02 = 1.4

k12(1.4 � k01) = 0.7
k21 + k01 = 1.4

k21(1.4 � k02) = 0.7
(1.4 � k01)(1.4 � k02) = 0.7

(6)

From the rank of the original FIM, we expect to find 3 identi-
fiable combinations (as the rank was 4 and V is identifiable),
and indeed by inspection, we can see that the identifiable
combinations consistent with Eq. (6) are k12k21, k12 + k02, and
k21 + k01.

Example 2: 2-compartment model with a rank-deficient pa-
rameter pair. To illustrate how Step 3 works when the number
of parameters is greater than the number of combinations plus
one, we consider the following simple variant of the previous
example:

ẋ1 = k1x2 � (k2 + k3 + k4)x1

ẋ2 = k4x1 � (k5 + k1)x2

y = x1/V
(7)

which is equivalent to Eq. (5) with k12 = k1, k01 = k2 + k3, k21 =
k4, and k02 = k5. The identifiable parameter combinations are
thus k1k4, k2 + k3 + k4, and k1 + k5, with V again identifiable.
A diagram of these combinations is given as the bottom com-
ponent of the example in Figure 1. Based on these combina-
tions, note that one of k2 and k3 must be fixed when profiling
in order to yield an identifiable model (as there are 3 combi-
nations but 5 k’s). As an example set of parameters, we take
k1 = 2.3, k2 = 0.421, k3 = 0.52, k4 = 0.61, k5 = 1.23, and
V = 2.2, and the same initial conditions as in Example 1 (as
before, the results are similar for a range of parameter values).

The results for Steps 1 and 2 are similar to Example 1. The
full model FIM has rank 4 and V is identifiable so we expect
3 identifiable combinations. When we consider the subsets of
parameters in Step 3, we find that {k5, k1, k4, k2}, {k5, k1, k4, k3},
and {k2, k3} satisfy our criteria. These subsets form a single
connected component with a loose pair (Figure 4). Note that
the loose pair, {k2, k3} is the only rank deficient pair. As a result,
any subset including both of these parameters cannot satisfy the
condition in Step 3.

To illustrate the necessity of Step 3, Figure 5 shows an exam-
ple result of the relationship between k4 and k2 if all parameters

6

k12 



Likelihood Profiling 
Example

Figure 4: Parameter combinations for the model in Example 2. Nearly
full rank subsets shaded, as determined by subset rank search.

Example 2: 2-compartment model with a rank-deficient pa-
rameter pair. To illustrate how Step 3 works when the number
of parameters is greater than the number of combinations plus
one, we consider the following simple variant of the previous
example:

ẋ1 = k1x2 � (k2 + k3 + k4)x1

ẋ2 = k4x1 � (k5 + k1)x2

y = x1/V
(7)

which is equivalent to Eq. (5) with k12 = k1, k01 = k2 + k3, k21 =
k4, and k02 = k5. The identifiable parameter combinations are
thus k1k4, k2 + k3 + k4, and k1 + k5, with V again identifiable.
A diagram of these combinations is given as the bottom com-
ponent of the example in Figure 1. Based on these combina-
tions, note that one of k2 and k3 must be fixed when profiling
in order to yield an identifiable model (as there are 3 combi-
nations but 5 k’s). As an example set of parameters, we take
k1 = 2.3, k2 = 0.421, k3 = 0.52, k4 = 0.61, k5 = 1.23, and
V = 2.2 (as before, the results are similar for a range of param-
eter values).

The results for Steps 1 and 2 are similar to Example 1. The
full model FIM has rank 4 and V is identifiable so we expect
3 identifiable combinations. When we consider the subsets of
parameters in Step 3, we find that {k5, k1, k4, k2}, {k5, k1, k4, k3},
and {k2, k3} satisfy our criteria. These subsets form a single
connected component with a loose pair (Figure 4). Note that
the loose pair, {k2, k3} is the only rank deficient pair. As a result,
any subset including both of these parameters cannot satisfy the
condition in Step 3.

To illustrate the necessity of Step 3, Figure 5 shows an exam-
ple result of the relationship between k4 and k2 if all parameters
except k4 are fitted. As k4 is shifted along the x-axis, k2 and k3
are not fully constrained, i.e. they both may take on any values
that maintain k2+k3 = 0.941�k4. This results in the appearance
of a scatterplot in Figure 5 with no clear relationship between
k4 and k2, in spite of the fact that they are part of an identifiable
combination.

Thus, in Step 4, we profile parameters within each subset,
fitting only the remaining parameters in the subset. This re-
sults in 10 distinct parameter relationships from the likelihood
profiles, shown in Figure 6. For e�ciency, it is not necessary
to profile parameters twice where subsets overlap to capture all
pairwise relationships. That is, assuming parameters in sub-
sets {k5, k1, k4, k2} and {k2, k3} have been profiled, we need only

Figure 5: Example parameter relationship for k4 and k2 when there
are loose parameters in the profile fit (i.e. there are more parameters
than degrees of freedom) The resulting parameter relationship shows
no precise relationship between k4 and k2, even though the likelihood is
flat in this region. We note that the general trends of the relationships
between parameters can still be seen because we’re starting close to
the true values in each step of the profile, but the specific form of the
identifiable combinations can’t be determined.

compute a profile for k3 in the remaining subset.
In Step 5, rational function fitting of the parameter relation-

ships in Figure 6 yields the following equations:

k1 =
1.403

1.031 � k2

k4 = 1.031 � k2

k5 =
2.23643 � 3.53k2

1.031 � k2

k4 =
1.403

k1

k5 = 3.53 � k1

k5 = 3.53 � 1.403
k4

k1 =
1.403

1.13 � k3

k2 = 0.941 � k3

k4 = 1.13 � k3

k5 =
2.5859 � 3.53k3

1.13 � k3

(8)

From the second, fourth, fifth, eighth, and ninth equations
above, we see that k2 + k3, k3 + k4, k2 + k4, k1 + k5, and k1k4
must be terms within our identifiable combinations. As we
expect to have 3 identifiable combinations, we can see from
these expressions that our identifiable combinations are most
likely k2 + k3 + k4, k1 + k5, and k1k4. Testing this against the
remaining equations in Eq. (8) shows that indeed these are the
identifiable combinations, which matches the combinations
found analytically above.
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2. Framework and Definitions

2.1. Model Structure

We begin by introducing the overall modeling framework and
identifiability definitions used here. Let the model be given by

ẋ = f (x, t,u,p)
y = g(x, t,p)

(1)

where ẋ is a system of first order ODEs, with t representing
time, and u the experimental input function(s), if any. The set
of model parameters are given by p (typically real-valued). The
model output(s) are given by y, which represents the measured
variables—in our case assumed to be noise-free. We also let x0
represent the vector of initial conditions for x(t).

2.2. Identifiability

Identifiability analysis explores the question: given an input
u, model ẋ = f (x, t,u,p) and experimental output y, is it pos-
sible to uniquely identify the parameters p? Structural identifi-
ability examines a ‘best-case’ version of this question in which
we assume ‘perfect’ noiseless data. If parameter has a unique
value p⇤ which yields a given output y⇤, it is considered glob-
ally (or uniquely) structurally identifiable; if there is a unique
value p⇤ within a local neighborhood of parameter space yield-
ing y⇤, it is considered locally structurally identifiable; and if
there are a continuum of values of p which yield the output y⇤,
the parameter is considered unidentifiable. A model is said to be
globally structurally identifiable if all the parameters are glob-
ally structurally identifiable; if any parameters are locally struc-
turally identifiable or unidentifiable, the model is also consid-
ered locally structurally identifiable or unidentifiable, respec-
tively. In the case of model unidentifiability, the model parame-
ters typically form identifiable combinations, i.e. combinations
of parameters which are identifiable even though the individual
parameters are unidentifiable.

More formally, structural identifiability can be thought of in
terms of injectivity of the map � : p! y given by viewing the
model output y as a function of the parameters p [2, 10]. We
note that because there may be some ‘special’ or degenerate
parameter values or initial conditions for which an otherwise
identifiable model is unidentifiable (e.g. if all initial conditions
are zero and there is no input to the model), structural identifia-
bility is often defined for almost all parameter values and initial
conditions [2, 9, 10].

Definition 2.1. For a given ODE model ẋ = f (x, t,u,p) and
output y, an individual parameter p is uniquely (or globally)
structurally identifiable if for almost every point p⇤ and almost
all initial conditions, the equation y(x, t,p⇤) = y(x, t,p) implies
p = p⇤. A parameter p is said to be non-uniquely (or locally)
structurally identifiable if for almost any p⇤ and almost all ini-
tial conditions, the equation y(x, t,p⇤) = y(x, t,p) implies that p
has more than one solution, but each solution is unique within a
local neighborhood of the parameters. Otherwise, a parameter
is said to be unidentifiable.

k6
k7

k8

k5
k1 k4

k2

k3

Figure 1: An example set of parameter combinations. Circles indicate
the five identifiable parameter combinations, e.g. k1 and k5 are in-
volved in an identifiable combination. Some parameters are involved
in more than one identifiable combination (e.g. k1), so that there are
two overall connected components.

Definition 2.2. Similarly, a model ẋ = f (x, t,u,p) is said to be
uniquely (respectively non-uniquely) structurally identifiable
for a given choice of output y if every parameter is uniquely
(respectively non-uniquely) structurally identifiable, i.e. the
equation y(x, t,p⇤) = y(x, t,p) has only one solution, p = p⇤
(respectively finitely many solutions). Equivalently, a model is
uniquely structurally identifiable for a given output if and only
if the map � is injective almost everywhere, i.e. if there ex-
ists a unique set of parameter values p⇤ which yields a given
trajectory y(x, t,p⇤) almost everywhere.

2.3. Parameter Graph

In examining the parameter identifiability structure, it is of-
ten convenient to consider a parameter graph of the identifiable
combinations. We draw this as a hypergraph with the parame-
ters as nodes and the identifiable combinations as edges, with
an example shown in Figure 1. As we will see in Sections 3
and 4, the structure and connected components of the parame-
ter graph will be used to precondition the degrees of freedom
when estimating parameters in the likelihood profiles.

2.4. Fisher Information Matrix

The Fisher Information Matrix F is an N ⇥ N symmetric
matrix that represents the amount of information contained in
the data, y⇤, about parameters A = {p1, ..., pN} where A ⇢ p
[17, 18]. If F is singular, A is unidentifiable. In practice, A
may be unidentifiable when the determinant of F is non-zero but
small. Regardless, the rank of the FIM corresponds to the num-
ber of identifiable parameters or combinations inA [1, 19, 21].
Inverting the FIM results in the Cramér-Rao bound Covariance
Matrix, C. The diagonal entries of C correspond to the individ-
ual variances of parameters inA. IfA is a singleton parameter
set {p}, the variance C is simply the reciprocal of the squared

2



FIM Subset Approach

http://arxiv.org/abs/1307.2298



FIM Subset Approach
• Basic idea - evaluate the rank of the FIM for 

subsets of parameters to elucidate the 
structure of the identifiable combinations

• Can then combine this with profile likelihood 
approach by Raue et al. to determine the form 
of the combinations
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Figure 7: Parameter combinations for the model in Example 3. Left: Grey circles indicate identifiable parameter combinations, e.g. p1 and p2 are
involved in an identifiable combination. Some parameters are involved in more than one identifiable combination (e.g. p2), so that there are two
overall connected components. Right: Nearly full rank subsets (shaded) and overall connected components as determined by subset rank search.

Example 3: Multiple connected components of parameter
combinations. Next, we demonstrate the method using a sim-
ple example that gives multiple connected components of pa-
rameters. In this case, we will use a nonlinear variation of the
two compartment model, which has been shown previously to
be structurally identifiable [9]. The model equations are as fol-
lows:

ẋ1 = k12x2 �
Vmaxx1

Km + x1
� k21x1

ẋ2 = k21x1 � (k12 + k02)x2

y = x1

(9)

To generate an unidentifiable model with parameter combi-
nations which form multiple connected components, we take
k12 = p1 p2, Vmax = p2 + p3 + p4, Km = p4 + p5, k21 = p6 + p7,
and k02 = p7 + p8, and let p1, . . . , p8 be our parameters to be
estimated. As the original model is identifiable, these forms are
also our identifiable combinations. Figure 7 shows a diagram of
the connected parameter components of this model. As an ex-
ample set of parameter values, we take p1 = 2, p2 = 0.4, p3 =
3, p4 = 0.8, p5 = 1.2, p6 = 0.8, p7 = 1.5, and p8 = 0.3.

In Step 1, the full FIM gives rank 5, correctly indicating
that we expect to have 5 identifiable combinations, and gives
each of the parameter %CV’s on the order of 105-108, indicat-
ing that all the individual parameters are unidentifiable. The
single-parameter %CV’s in Step 2 are all < 10%, so we know
that none of the parameters are completely insensitive, and thus
are all likely to be involved in identifiable combinations.

In Step 3, we search the subsets in order of decreasing size to
find nearly full rank subsets for estimation. Namely, the subsets
{p1, p2, p4, p5}, {p1, p2, p3}, {p3, p4, p5} and {p6, p7, p8} satisfy
our selection criteria (Figure 7). The first three subsets share
parameters, indicating that {p1, p2, p3, p4, p5} form a connected
component while {p6, p7, p8} form another.

We use these subsets for the profile likelihoods in Step 4,
noting that the subsets capture all 13 unique pairwise parame-
ter relationships (Figure 8). Rational function fitting in Step 5

yields the following parameter relationships:

p2 =
0.8
p1

p4 = 1.2 � 0.8
p1

p5 = �0.8 +
0.8
p1

p4 = 1.2 � p2

p5 = p2 + 0.8
p5 = 2 � p4

p1 =
0.8

3.4 � p3

p2 = 3.4 � p3

p4 = 3.8 � p3

p5 = �1.8 + p3

p7 = 2.3 � p6

p8 = �0.5 + p6

p8 = 1.8 � p7

(10)

For the first component, we examine the first ten equations
above. From the first, fourth, fifth, sixth, eighth, ninth, and tenth
equations, we see that we would expect p1 p2, p4 + p2, p5 � p2,
p5 + p4, p2 + p3, p4 + p3, and p5 � p3 to be parts of various
combinations. As this component has rank 3, we expect these
to collapse to form 3 combinations. We first propose p1 p2 as
an identifiable combination. For the remaining paired sums and
di↵erences, there are several equivalent ways we can collapse
them into combinations. For example, as all three pairs p2+ p3,
p4 + p3, p4 + p2 appear in the list of functions, we propose the
sum p2 + p3 + p4 as a combination. This then leaves p5 � p2,
p5 + p4, and p5 � p3, all of which can be explained by letting
p5 + p4 be a combination. This set of three combinations p1 p2,
p2 + p3 + p4, and p5 + p4 is consistent with all the profiled pa-
rameter relationships in this component, gives the appropriate
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Example Model

Figure 4: Parameter combinations for the model in Example 2. Nearly
full rank subsets shaded, as determined by subset rank search.

Example 2: 2-compartment model with a rank-deficient pa-
rameter pair. To illustrate how Step 3 works when the number
of parameters is greater than the number of combinations plus
one, we consider the following simple variant of the previous
example:

ẋ1 = k1x2 � (k2 + k3 + k4)x1

ẋ2 = k4x1 � (k5 + k1)x2

y = x1/V
(7)

which is equivalent to Eq. (5) with k12 = k1, k01 = k2 + k3, k21 =
k4, and k02 = k5. The identifiable parameter combinations are
thus k1k4, k2 + k3 + k4, and k1 + k5, with V again identifiable.
A diagram of these combinations is given as the bottom com-
ponent of the example in Figure 1. Based on these combina-
tions, note that one of k2 and k3 must be fixed when profiling
in order to yield an identifiable model (as there are 3 combi-
nations but 5 k’s). As an example set of parameters, we take
k1 = 2.3, k2 = 0.421, k3 = 0.52, k4 = 0.61, k5 = 1.23, and
V = 2.2 (as before, the results are similar for a range of param-
eter values).

The results for Steps 1 and 2 are similar to Example 1. The
full model FIM has rank 4 and V is identifiable so we expect
3 identifiable combinations. When we consider the subsets of
parameters in Step 3, we find that {k5, k1, k4, k2}, {k5, k1, k4, k3},
and {k2, k3} satisfy our criteria. These subsets form a single
connected component with a loose pair (Figure 4). Note that
the loose pair, {k2, k3} is the only rank deficient pair. As a result,
any subset including both of these parameters cannot satisfy the
condition in Step 3.

To illustrate the necessity of Step 3, Figure 5 shows an exam-
ple result of the relationship between k4 and k2 if all parameters
except k4 are fitted. As k4 is shifted along the x-axis, k2 and k3
are not fully constrained, i.e. they both may take on any values
that maintain k2+k3 = 0.941�k4. This results in the appearance
of a scatterplot in Figure 5 with no clear relationship between
k4 and k2, in spite of the fact that they are part of an identifiable
combination.

Thus, in Step 4, we profile parameters within each subset,
fitting only the remaining parameters in the subset. This re-
sults in 10 distinct parameter relationships from the likelihood
profiles, shown in Figure 6. For e�ciency, it is not necessary
to profile parameters twice where subsets overlap to capture all
pairwise relationships. That is, assuming parameters in sub-
sets {k5, k1, k4, k2} and {k2, k3} have been profiled, we need only

Figure 5: Example parameter relationship for k4 and k2 when there
are loose parameters in the profile fit (i.e. there are more parameters
than degrees of freedom) The resulting parameter relationship shows
no precise relationship between k4 and k2, even though the likelihood is
flat in this region. We note that the general trends of the relationships
between parameters can still be seen because we’re starting close to
the true values in each step of the profile, but the specific form of the
identifiable combinations can’t be determined.

compute a profile for k3 in the remaining subset.
In Step 5, rational function fitting of the parameter relation-

ships in Figure 6 yields the following equations:

k1 =
1.403

1.031 � k2

k4 = 1.031 � k2

k5 =
2.23643 � 3.53k2

1.031 � k2

k4 =
1.403

k1

k5 = 3.53 � k1

k5 = 3.53 � 1.403
k4

k1 =
1.403

1.13 � k3

k2 = 0.941 � k3

k4 = 1.13 � k3

k5 =
2.5859 � 3.53k3

1.13 � k3

(8)

From the second, fourth, fifth, eighth, and ninth equations
above, we see that k2 + k3, k3 + k4, k2 + k4, k1 + k5, and k1k4
must be terms within our identifiable combinations. As we
expect to have 3 identifiable combinations, we can see from
these expressions that our identifiable combinations are most
likely k2 + k3 + k4, k1 + k5, and k1k4. Testing this against the
remaining equations in Eq. (8) shows that indeed these are the
identifiable combinations, which matches the combinations
found analytically above.
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We begin by introducing the overall modeling framework and
identifiability definitions used here. Let the model be given by

ẋ = f (x, t,u,p)
y = g(x, t,p)

(1)

where ẋ is a system of first order ODEs, with t representing
time, and u the experimental input function(s), if any. The set
of model parameters are given by p (typically real-valued). The
model output(s) are given by y, which represents the measured
variables—in our case assumed to be noise-free. We also let x0
represent the vector of initial conditions for x(t).

2.2. Identifiability

Identifiability analysis explores the question: given an input
u, model ẋ = f (x, t,u,p) and experimental output y, is it pos-
sible to uniquely identify the parameters p? Structural identifi-
ability examines a ‘best-case’ version of this question in which
we assume ‘perfect’ noiseless data. If parameter has a unique
value p⇤ which yields a given output y⇤, it is considered glob-
ally (or uniquely) structurally identifiable; if there is a unique
value p⇤ within a local neighborhood of parameter space yield-
ing y⇤, it is considered locally structurally identifiable; and if
there are a continuum of values of p which yield the output y⇤,
the parameter is considered unidentifiable. A model is said to be
globally structurally identifiable if all the parameters are glob-
ally structurally identifiable; if any parameters are locally struc-
turally identifiable or unidentifiable, the model is also consid-
ered locally structurally identifiable or unidentifiable, respec-
tively. In the case of model unidentifiability, the model parame-
ters typically form identifiable combinations, i.e. combinations
of parameters which are identifiable even though the individual
parameters are unidentifiable.

More formally, structural identifiability can be thought of in
terms of injectivity of the map � : p! y given by viewing the
model output y as a function of the parameters p [2, 10]. We
note that because there may be some ‘special’ or degenerate
parameter values or initial conditions for which an otherwise
identifiable model is unidentifiable (e.g. if all initial conditions
are zero and there is no input to the model), structural identifia-
bility is often defined for almost all parameter values and initial
conditions [2, 9, 10].

Definition 2.1. For a given ODE model ẋ = f (x, t,u,p) and
output y, an individual parameter p is uniquely (or globally)
structurally identifiable if for almost every point p⇤ and almost
all initial conditions, the equation y(x, t,p⇤) = y(x, t,p) implies
p = p⇤. A parameter p is said to be non-uniquely (or locally)
structurally identifiable if for almost any p⇤ and almost all ini-
tial conditions, the equation y(x, t,p⇤) = y(x, t,p) implies that p
has more than one solution, but each solution is unique within a
local neighborhood of the parameters. Otherwise, a parameter
is said to be unidentifiable.
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Figure 1: An example set of parameter combinations. Circles indicate
the five identifiable parameter combinations, e.g. k1 and k5 are in-
volved in an identifiable combination. Some parameters are involved
in more than one identifiable combination (e.g. k1), so that there are
two overall connected components.

Definition 2.2. Similarly, a model ẋ = f (x, t,u,p) is said to be
uniquely (respectively non-uniquely) structurally identifiable
for a given choice of output y if every parameter is uniquely
(respectively non-uniquely) structurally identifiable, i.e. the
equation y(x, t,p⇤) = y(x, t,p) has only one solution, p = p⇤
(respectively finitely many solutions). Equivalently, a model is
uniquely structurally identifiable for a given output if and only
if the map � is injective almost everywhere, i.e. if there ex-
ists a unique set of parameter values p⇤ which yields a given
trajectory y(x, t,p⇤) almost everywhere.

2.3. Parameter Graph

In examining the parameter identifiability structure, it is of-
ten convenient to consider a parameter graph of the identifiable
combinations. We draw this as a hypergraph with the parame-
ters as nodes and the identifiable combinations as edges, with
an example shown in Figure 1. As we will see in Sections 3
and 4, the structure and connected components of the parame-
ter graph will be used to precondition the degrees of freedom
when estimating parameters in the likelihood profiles.

2.4. Fisher Information Matrix

The Fisher Information Matrix F is an N ⇥ N symmetric
matrix that represents the amount of information contained in
the data, y⇤, about parameters A = {p1, ..., pN} where A ⇢ p
[17, 18]. If F is singular, A is unidentifiable. In practice, A
may be unidentifiable when the determinant of F is non-zero but
small. Regardless, the rank of the FIM corresponds to the num-
ber of identifiable parameters or combinations inA [1, 19, 21].
Inverting the FIM results in the Cramér-Rao bound Covariance
Matrix, C. The diagonal entries of C correspond to the individ-
ual variances of parameters inA. IfA is a singleton parameter
set {p}, the variance C is simply the reciprocal of the squared
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Example 2: 2-compartment model with a rank-deficient pa-
rameter pair. To illustrate how Step 3 works when the number
of parameters is greater than the number of combinations plus
one, we consider the following simple variant of the previous
example:

ẋ1 = k1x2 � (k2 + k3 + k4)x1

ẋ2 = k4x1 � (k5 + k1)x2

y = x1/V
(7)

which is equivalent to Eq. (5) with k12 = k1, k01 = k2 + k3, k21 =
k4, and k02 = k5. The identifiable parameter combinations are
thus k1k4, k2 + k3 + k4, and k1 + k5, with V again identifiable.
A diagram of these combinations is given as the bottom com-
ponent of the example in Figure 1. Based on these combina-
tions, note that one of k2 and k3 must be fixed when profiling
in order to yield an identifiable model (as there are 3 combi-
nations but 5 k’s). As an example set of parameters, we take
k1 = 2.3, k2 = 0.421, k3 = 0.52, k4 = 0.61, k5 = 1.23, and
V = 2.2 (as before, the results are similar for a range of param-
eter values).

The results for Steps 1 and 2 are similar to Example 1. The
full model FIM has rank 4 and V is identifiable so we expect
3 identifiable combinations. When we consider the subsets of
parameters in Step 3, we find that {k5, k1, k4, k2}, {k5, k1, k4, k3},
and {k2, k3} satisfy our criteria. These subsets form a single
connected component with a loose pair (Figure 4). Note that
the loose pair, {k2, k3} is the only rank deficient pair. As a result,
any subset including both of these parameters cannot satisfy the
condition in Step 3.

To illustrate the necessity of Step 3, Figure 5 shows an exam-
ple result of the relationship between k4 and k2 if all parameters
except k4 are fitted. As k4 is shifted along the x-axis, k2 and k3
are not fully constrained, i.e. they both may take on any values
that maintain k2+k3 = 0.941�k4. This results in the appearance
of a scatterplot in Figure 5 with no clear relationship between
k4 and k2, in spite of the fact that they are part of an identifiable
combination.

Thus, in Step 4, we profile parameters within each subset,
fitting only the remaining parameters in the subset. This re-
sults in 10 distinct parameter relationships from the likelihood
profiles, shown in Figure 6. For e�ciency, it is not necessary
to profile parameters twice where subsets overlap to capture all
pairwise relationships. That is, assuming parameters in sub-
sets {k5, k1, k4, k2} and {k2, k3} have been profiled, we need only

Figure 5: Example parameter relationship for k4 and k2 when there
are loose parameters in the profile fit (i.e. there are more parameters
than degrees of freedom) The resulting parameter relationship shows
no precise relationship between k4 and k2, even though the likelihood is
flat in this region. We note that the general trends of the relationships
between parameters can still be seen because we’re starting close to
the true values in each step of the profile, but the specific form of the
identifiable combinations can’t be determined.

compute a profile for k3 in the remaining subset.
In Step 5, rational function fitting of the parameter relation-

ships in Figure 6 yields the following equations:

k1 =
1.403

1.031 � k2

k4 = 1.031 � k2

k5 =
2.23643 � 3.53k2

1.031 � k2

k4 =
1.403

k1

k5 = 3.53 � k1

k5 = 3.53 � 1.403
k4

k1 =
1.403

1.13 � k3

k2 = 0.941 � k3

k4 = 1.13 � k3

k5 =
2.5859 � 3.53k3

1.13 � k3

(8)

From the second, fourth, fifth, eighth, and ninth equations
above, we see that k2 + k3, k3 + k4, k2 + k4, k1 + k5, and k1k4
must be terms within our identifiable combinations. As we
expect to have 3 identifiable combinations, we can see from
these expressions that our identifiable combinations are most
likely k2 + k3 + k4, k1 + k5, and k1k4. Testing this against the
remaining equations in Eq. (8) shows that indeed these are the
identifiable combinations, which matches the combinations
found analytically above.
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Figure 4: Parameter combinations for the model in Example 2. Nearly
full rank subsets shaded, as determined by subset rank search.
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ẋ2 = k4x1 � (k5 + k1)x2

y = x1/V
(7)

which is equivalent to Eq. (5) with k12 = k1, k01 = k2 + k3, k21 =
k4, and k02 = k5. The identifiable parameter combinations are
thus k1k4, k2 + k3 + k4, and k1 + k5, with V again identifiable.
A diagram of these combinations is given as the bottom com-
ponent of the example in Figure 1. Based on these combina-
tions, note that one of k2 and k3 must be fixed when profiling
in order to yield an identifiable model (as there are 3 combi-
nations but 5 k’s). As an example set of parameters, we take
k1 = 2.3, k2 = 0.421, k3 = 0.52, k4 = 0.61, k5 = 1.23, and
V = 2.2 (as before, the results are similar for a range of param-
eter values).

The results for Steps 1 and 2 are similar to Example 1. The
full model FIM has rank 4 and V is identifiable so we expect
3 identifiable combinations. When we consider the subsets of
parameters in Step 3, we find that {k5, k1, k4, k2}, {k5, k1, k4, k3},
and {k2, k3} satisfy our criteria. These subsets form a single
connected component with a loose pair (Figure 4). Note that
the loose pair, {k2, k3} is the only rank deficient pair. As a result,
any subset including both of these parameters cannot satisfy the
condition in Step 3.

To illustrate the necessity of Step 3, Figure 5 shows an exam-
ple result of the relationship between k4 and k2 if all parameters
except k4 are fitted. As k4 is shifted along the x-axis, k2 and k3
are not fully constrained, i.e. they both may take on any values
that maintain k2+k3 = 0.941�k4. This results in the appearance
of a scatterplot in Figure 5 with no clear relationship between
k4 and k2, in spite of the fact that they are part of an identifiable
combination.

Thus, in Step 4, we profile parameters within each subset,
fitting only the remaining parameters in the subset. This re-
sults in 10 distinct parameter relationships from the likelihood
profiles, shown in Figure 6. For e�ciency, it is not necessary
to profile parameters twice where subsets overlap to capture all
pairwise relationships. That is, assuming parameters in sub-
sets {k5, k1, k4, k2} and {k2, k3} have been profiled, we need only

Figure 5: Example parameter relationship for k4 and k2 when there
are loose parameters in the profile fit (i.e. there are more parameters
than degrees of freedom) The resulting parameter relationship shows
no precise relationship between k4 and k2, even though the likelihood is
flat in this region. We note that the general trends of the relationships
between parameters can still be seen because we’re starting close to
the true values in each step of the profile, but the specific form of the
identifiable combinations can’t be determined.

compute a profile for k3 in the remaining subset.
In Step 5, rational function fitting of the parameter relation-

ships in Figure 6 yields the following equations:

k1 =
1.403

1.031 � k2

k4 = 1.031 � k2

k5 =
2.23643 � 3.53k2

1.031 � k2

k4 =
1.403

k1

k5 = 3.53 � k1

k5 = 3.53 � 1.403
k4

k1 =
1.403

1.13 � k3

k2 = 0.941 � k3

k4 = 1.13 � k3

k5 =
2.5859 � 3.53k3

1.13 � k3

(8)

From the second, fourth, fifth, eighth, and ninth equations
above, we see that k2 + k3, k3 + k4, k2 + k4, k1 + k5, and k1k4
must be terms within our identifiable combinations. As we
expect to have 3 identifiable combinations, we can see from
these expressions that our identifiable combinations are most
likely k2 + k3 + k4, k1 + k5, and k1k4. Testing this against the
remaining equations in Eq. (8) shows that indeed these are the
identifiable combinations, which matches the combinations
found analytically above.

6

2. Framework and Definitions

2.1. Model Structure

We begin by introducing the overall modeling framework and
identifiability definitions used here. Let the model be given by

ẋ = f (x, t,u,p)
y = g(x, t,p)

(1)

where ẋ is a system of first order ODEs, with t representing
time, and u the experimental input function(s), if any. The set
of model parameters are given by p (typically real-valued). The
model output(s) are given by y, which represents the measured
variables—in our case assumed to be noise-free. We also let x0
represent the vector of initial conditions for x(t).

2.2. Identifiability

Identifiability analysis explores the question: given an input
u, model ẋ = f (x, t,u,p) and experimental output y, is it pos-
sible to uniquely identify the parameters p? Structural identifi-
ability examines a ‘best-case’ version of this question in which
we assume ‘perfect’ noiseless data. If parameter has a unique
value p⇤ which yields a given output y⇤, it is considered glob-
ally (or uniquely) structurally identifiable; if there is a unique
value p⇤ within a local neighborhood of parameter space yield-
ing y⇤, it is considered locally structurally identifiable; and if
there are a continuum of values of p which yield the output y⇤,
the parameter is considered unidentifiable. A model is said to be
globally structurally identifiable if all the parameters are glob-
ally structurally identifiable; if any parameters are locally struc-
turally identifiable or unidentifiable, the model is also consid-
ered locally structurally identifiable or unidentifiable, respec-
tively. In the case of model unidentifiability, the model parame-
ters typically form identifiable combinations, i.e. combinations
of parameters which are identifiable even though the individual
parameters are unidentifiable.

More formally, structural identifiability can be thought of in
terms of injectivity of the map � : p! y given by viewing the
model output y as a function of the parameters p [2, 10]. We
note that because there may be some ‘special’ or degenerate
parameter values or initial conditions for which an otherwise
identifiable model is unidentifiable (e.g. if all initial conditions
are zero and there is no input to the model), structural identifia-
bility is often defined for almost all parameter values and initial
conditions [2, 9, 10].

Definition 2.1. For a given ODE model ẋ = f (x, t,u,p) and
output y, an individual parameter p is uniquely (or globally)
structurally identifiable if for almost every point p⇤ and almost
all initial conditions, the equation y(x, t,p⇤) = y(x, t,p) implies
p = p⇤. A parameter p is said to be non-uniquely (or locally)
structurally identifiable if for almost any p⇤ and almost all ini-
tial conditions, the equation y(x, t,p⇤) = y(x, t,p) implies that p
has more than one solution, but each solution is unique within a
local neighborhood of the parameters. Otherwise, a parameter
is said to be unidentifiable.

k6
k7

k8

k5
k1 k4

k2

k3

Figure 1: An example set of parameter combinations. Circles indicate
the five identifiable parameter combinations, e.g. k1 and k5 are in-
volved in an identifiable combination. Some parameters are involved
in more than one identifiable combination (e.g. k1), so that there are
two overall connected components.

Definition 2.2. Similarly, a model ẋ = f (x, t,u,p) is said to be
uniquely (respectively non-uniquely) structurally identifiable
for a given choice of output y if every parameter is uniquely
(respectively non-uniquely) structurally identifiable, i.e. the
equation y(x, t,p⇤) = y(x, t,p) has only one solution, p = p⇤
(respectively finitely many solutions). Equivalently, a model is
uniquely structurally identifiable for a given output if and only
if the map � is injective almost everywhere, i.e. if there ex-
ists a unique set of parameter values p⇤ which yields a given
trajectory y(x, t,p⇤) almost everywhere.

2.3. Parameter Graph

In examining the parameter identifiability structure, it is of-
ten convenient to consider a parameter graph of the identifiable
combinations. We draw this as a hypergraph with the parame-
ters as nodes and the identifiable combinations as edges, with
an example shown in Figure 1. As we will see in Sections 3
and 4, the structure and connected components of the parame-
ter graph will be used to precondition the degrees of freedom
when estimating parameters in the likelihood profiles.

2.4. Fisher Information Matrix

The Fisher Information Matrix F is an N ⇥ N symmetric
matrix that represents the amount of information contained in
the data, y⇤, about parameters A = {p1, ..., pN} where A ⇢ p
[17, 18]. If F is singular, A is unidentifiable. In practice, A
may be unidentifiable when the determinant of F is non-zero but
small. Regardless, the rank of the FIM corresponds to the num-
ber of identifiable parameters or combinations inA [1, 19, 21].
Inverting the FIM results in the Cramér-Rao bound Covariance
Matrix, C. The diagonal entries of C correspond to the individ-
ual variances of parameters inA. IfA is a singleton parameter
set {p}, the variance C is simply the reciprocal of the squared
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Figure 7: Parameter combinations for the model in Example 3. Left: Grey circles indicate identifiable parameter combinations, e.g. p1 and p2 are
involved in an identifiable combination. Some parameters are involved in more than one identifiable combination (e.g. p2), so that there are two
overall connected components. Right: Nearly full rank subsets (shaded) and overall connected components as determined by subset rank search.

Example 3: Multiple connected components of parameter
combinations. Next, we demonstrate the method using a sim-
ple example that gives multiple connected components of pa-
rameters. In this case, we will use a nonlinear variation of the
two compartment model, which has been shown previously to
be structurally identifiable [9]. The model equations are as fol-
lows:

ẋ1 = k12x2 �
Vmaxx1

Km + x1
� k21x1

ẋ2 = k21x1 � (k12 + k02)x2

y = x1

(9)

To generate an unidentifiable model with parameter combi-
nations which form multiple connected components, we take
k12 = p1 p2, Vmax = p2 + p3 + p4, Km = p4 + p5, k21 = p6 + p7,
and k02 = p7 + p8, and let p1, . . . , p8 be our parameters to be
estimated. As the original model is identifiable, these forms are
also our identifiable combinations. Figure 7 shows a diagram of
the connected parameter components of this model. As an ex-
ample set of parameter values, we take p1 = 2, p2 = 0.4, p3 =
3, p4 = 0.8, p5 = 1.2, p6 = 0.8, p7 = 1.5, and p8 = 0.3.

In Step 1, the full FIM gives rank 5, correctly indicating
that we expect to have 5 identifiable combinations, and gives
each of the parameter %CV’s on the order of 105-108, indicat-
ing that all the individual parameters are unidentifiable. The
single-parameter %CV’s in Step 2 are all < 10%, so we know
that none of the parameters are completely insensitive, and thus
are all likely to be involved in identifiable combinations.

In Step 3, we search the subsets in order of decreasing size to
find nearly full rank subsets for estimation. Namely, the subsets
{p1, p2, p4, p5}, {p1, p2, p3}, {p3, p4, p5} and {p6, p7, p8} satisfy
our selection criteria (Figure 7). The first three subsets share
parameters, indicating that {p1, p2, p3, p4, p5} form a connected
component while {p6, p7, p8} form another.

We use these subsets for the profile likelihoods in Step 4,
noting that the subsets capture all 13 unique pairwise parame-
ter relationships (Figure 8). Rational function fitting in Step 5

yields the following parameter relationships:

p2 =
0.8
p1

p4 = 1.2 � 0.8
p1

p5 = �0.8 +
0.8
p1

p4 = 1.2 � p2

p5 = p2 + 0.8
p5 = 2 � p4

p1 =
0.8

3.4 � p3

p2 = 3.4 � p3

p4 = 3.8 � p3

p5 = �1.8 + p3

p7 = 2.3 � p6

p8 = �0.5 + p6

p8 = 1.8 � p7

(10)

For the first component, we examine the first ten equations
above. From the first, fourth, fifth, sixth, eighth, ninth, and tenth
equations, we see that we would expect p1 p2, p4 + p2, p5 � p2,
p5 + p4, p2 + p3, p4 + p3, and p5 � p3 to be parts of various
combinations. As this component has rank 3, we expect these
to collapse to form 3 combinations. We first propose p1 p2 as
an identifiable combination. For the remaining paired sums and
di↵erences, there are several equivalent ways we can collapse
them into combinations. For example, as all three pairs p2+ p3,
p4 + p3, p4 + p2 appear in the list of functions, we propose the
sum p2 + p3 + p4 as a combination. This then leaves p5 � p2,
p5 + p4, and p5 � p3, all of which can be explained by letting
p5 + p4 be a combination. This set of three combinations p1 p2,
p2 + p3 + p4, and p5 + p4 is consistent with all the profiled pa-
rameter relationships in this component, gives the appropriate

8

Figure 8: Parameter relationships determined from likelihood profiles for Example 3.
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Example 3: Multiple connected components of parameter
combinations. Next, we demonstrate the method using a sim-
ple example that gives multiple connected components of pa-
rameters. In this case, we will use a nonlinear variation of the
two compartment model, which has been shown previously to
be structurally identifiable [9]. The model equations are as fol-
lows:

ẋ1 = k12x2 �
Vmaxx1

Km + x1
� k21x1

ẋ2 = k21x1 � (k12 + k02)x2
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nations which form multiple connected components, we take
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ing that all the individual parameters are unidentifiable. The
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parameters, indicating that {p1, p2, p3, p4, p5} form a connected
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We use these subsets for the profile likelihoods in Step 4,
noting that the subsets capture all 13 unique pairwise parame-
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combinations. Next, we demonstrate the method using a sim-
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To generate an unidentifiable model with parameter combi-
nations which form multiple connected components, we take
k12 = p1 p2, Vmax = p2 + p3 + p4, Km = p4 + p5, k21 = p6 + p7,
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our selection criteria (Figure 7). The first three subsets share
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combinations. Next, we demonstrate the method using a sim-
ple example that gives multiple connected components of pa-
rameters. In this case, we will use a nonlinear variation of the
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k12 = p1 p2, Vmax = p2 + p3 + p4, Km = p4 + p5, k21 = p6 + p7,
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estimated. As the original model is identifiable, these forms are
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component while {p6, p7, p8} form another.

We use these subsets for the profile likelihoods in Step 4,
noting that the subsets capture all 13 unique pairwise parame-
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two compartment model, which has been shown previously to
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p2 + p3 + p4, and p5 + p4 is consistent with all the profiled pa-
rameter relationships in this component, gives the appropriate
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Example: Modeling Cholera

deposited with an MSPP statistician for each Department. Contacting Health Cluster and MSPP
officials by phone or email is difficult from outside Haiti. One of the purposes of our trip is to make
contact with Health Cluster officials and the MSPP Department statisticians face to face, and thus lay
the groundwork for future collaboration.

The severity of the cholera outbreak in Haiti emphasizes the fundamental importance of clean
water and sanitation for health and well being. One of the goals of this proposal is to highlight this
fact, by explicitly incorporating data on water quality and sanitation into dynamic models of cholera
epidemics. Given the extensive body of research in mathematical epidemiology (e.g. [1, 6]), surpris-
ingly little work has been done on modeling waterborne diseases – and even less on incorporating
empirical measures of water quality and sanitation into the types of mathematical models for which
the theory has been developed. This is of direct practical importance. By identifying “hot spots”
of cholera risk and understanding their role in disease transmission through mathematical modeling,
public health officials can pinpoint priority areas for intervention. Insights from our modeling efforts
in Haiti will also be relevant for future outbreaks in other regions of the world. One of the primary
concerns in epidemic situations is forecasting where the outbreak is likely to spread. This involves
calibration of mathematical models of the outbreak before the disease has reached a given area, which
is a challenging task. The research proposed here represents a step towards this goal, by examining
the relationship between water quality and sanitation indicators with parameter values in our dynamic
models for cholera spread. A goal of our larger research program is to assemble a database of case
data from cholera outbreaks worldwide, together with water and sanitation measurements from the
affected locales. This database can then be used to examine the relationship between water and sanita-
tion indicators with mathematical model parameters in more general terms. This type of information
will be of interest to organizations involved in outbreak response, such as the Preparedness Modeling
Unit of the Centers for Disease Control, and the National Biosurveillance Integration Center within
the Department of Homeland Security.

Figure 3: One panel from an educational poster about
cholera made by the Haitian MSPP.

The requested funds in this proposal will be
used to lay the groundwork for evaluating in-
tervention efforts for cholera in Haiti. A key
component of the short term preventative inter-
ventions to date involves education campaigns
through a variety of media, including posters,
radio announcements and songs, and cell phone
text messages (see e.g. Figure 3). The effec-
tiveness of these education campaigns has not
been evaluated. By establishing contacts with
the UN Health Cluster overseeing the coordi-
nation of these campaigns, we will be able to
work towards obtaining data on both the cover-
age level of these education messages, as well as
on cholera case data at a corresponding level of
spatial resolution. Mathematical and statistical
models will then be used to quantify the impact of these intervention efforts. Of particular interest
are the use of text messages for cholera education. In our previous work on cholera in Haiti, we have
established a collaboration with Digicel, the primary cell phone carrier in Haiti. Linus Bengtsson and
colleagues at the Karolinska Institute (Sweden) initially forged an agreement with Digicel in order to
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Cholera: SIWR Model

S I Rµ
µs

βI si
µi µr

γ i

W

βW sw
ξi

ξw

 W = pathogen concentration in water reservoir
Tien & Earn, Bull. Math. Biol. 2010



SIWR Model Equations
ds
dt

= µ − βWws − βI si − µs

di
dt

= βWws + βI si − γ i − µi

dw
dt

= ξ i − w( )
dr
dt

= γ i − µr

Tien & Earn, Bull. Math. Biol. 2010

S I R

W

Same process, 
but the polynomials aren’t as nice...

y = ki



SIWR Identifiability Results

• The scaled SIWR model is uniquely (globally) 
structurally identifiable for measurements of a 
portion of the infected population, y = ki. 

• However, identifiability can be lost in the limit as 
pathogen lifetime decreases (ξ→∞)

Eisenberg, Robertson, Tien 2013 (JTB)

S I R

W



Identifiability as ξ→∞

βW + βI forms an identifiable combination

→

ξ=0.01 ξ=100

βw

βI βI

βw

Eisenberg, Robertson, Tien 2013 (JTB)



Practical Identifiability 
for the SIWR model

• Simple simulated data approach - simulate noisy 
data and see if you can estimate parameters 

• Simulate data + noise 

• Poisson, negative binomial,
normal

• Repeated runs—how well do 
estimates match true values?

where a0 ¼ aN. We used the parameter values in Table 1 as the
true parameters, and supposed that bW N¼ bIN¼ bI . Based on
this value, we calculated a¼ 0:035183. To determine a0 ¼ aN
and bW , we supposed an effective population size of 100,000
(to be on the same order of magnitude as the total epidemic,
which caused " 82,204 cases). This yields a0 ¼ aN¼ 3518:3 and
bW ¼ 2:64# 10$6.

As previously, we simulated 100 data sets for each distribution
and estimation method, with the resulting parameter estimates
given in Tables 4–7 and Fig. 10. In all cases, we found that adding
water data significantly decreases the variability on estimates of
the parameters, particularly those involved in the waterborne
transmission pathway. R0 estimates were also tighter when
water data was added. The inclusion of a second series of
measurements in the water also gives additional information on
the pathogen shedding rate, which was not available using case
data measurements alone.

5. Discussion

Parameter identifiability is an important question for epide-
miological modeling: the ability to estimate model parameters
from a given data set will determine the ability to estimate
fundamental quantities such as the basic reproduction number,
and to assess the efficacy of different intervention strategies. This
is particularly relevant for waterborne disease models because of
the public health importance of distinguishing multiple transmis-
sion pathways, which are often quite difficult to measure directly.
Mathematical modeling and parameter estimation has increas-
ingly been used to help guide public health practice (Temime
et al., 2008; Halloran and Lipsitch, 2005; Koopman, 2004; Chick
et al., 2003), and more specifically has been recently used in the
cholera epidemic in Haiti (Abrams et al., 2012; Tuite et al., 2011;
Date et al., 2011), making the issue of parameter identifiability an
important and commonly encountered problem in public health

Fig. 7. Scatterplots showing parameter estimates for 100 simulated data sets using least squares estimation for Poisson noise. True parameters (indicated by red stars) are
as given in Table 1. Note the significant dependence between x and bW . The wider range in bW results in a wider range of R0 estimates, as R0 is linear in bW . The
relationship between bW and x also results in a corresponding relationship betweenR0 and x. (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this article.)

Fig. 8. Examples of simulated data set using least squares estimation with four noise distributions (left to right): Poisson, Gaussian, negative binomial with variance equal
to 5 times the mean, and negative binomial with variance equal to 50 times the mean.

M.C. Eisenberg et al. / Journal of Theoretical Biology 324 (2013) 84–102 95



Poisson Noise
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Water Info Improves Estimates
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SIWR Identifiability Results

• SIWR model is uniquely structurally identifiable

• However, identifiability can be lost in the limit as 
pathogen lifetime decreases (ξ→∞)

• With noise, can also lose practical identifiability

• Adding water information can 
improve identifiability & make it 
possible to estimate relative 
contribution of transmission pathways

Eisenberg, Robertson, Tien 2013 (In press)
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Cholera & the environment
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Figure 1: Cholera hospitalizations in Haiti from October -
December 2010.

The recent natural disasters are an im-
portant facet of predicting epidemic dy-
namics in Haiti— much of the country’s
already poor water and sanitation infras-
tructure was destroyed in the recent Jan-
uary 2010 earthquake. The damage from
the earthquake displaced approximately 1.6
million people [16], over one million of
whom remain in tent camps [15] without
electricity, running water, or sewage dis-
posal. This disarray exacerbated the risk of
infectious disease, particularly waterborne
diseases such as cholera, contributing to the
spread of the outbreak [7]. Additionally,
after the earthquake many residents of the
major cities such as Port au Prince (the cap-

ital of Haiti) fled the cities to return to the outlying departments. The resulting higher population
densities in rural areas is likely to have affected disease spread. To compound these issues, flooding
due to the subsequent Hurricane Tomas is believed to have caused a resurgence in the epidemic [11],
highlighting the direct link between the status of available water and the course of the epidemic (see
Figure 1).

Aspects of social and human behavior also affect cholera dynamics and case counts. The social
stigma associated with cholera is severe [10], with at least 45 lynchings reported within the Grande
Anse department [17]. Cholera victims and their families may be reluctant to reveal that a sickness or
death is due to cholera (in some cases hiding the body of the deceased [11]). This makes it difficult
to evaluate mortality and case counts within the community at large outside of hospitals, particularly
in more remote villages [10].

Figure 2: A man suffering from cholera is bathed, St Marc,
Artibonite, Haiti (Photo by AP/Ramon Espinosa).

The ongoing cholera outbreak in Haiti
thus provides an example of the type of
public health crisis where insights from
cholera modeling are needed rapidly from
incomplete data, and where forecasting the
spatial dynamics of the cholera outbreak is
an important but difficult task [2, 4, 14, 19,
20]. Currently, daily cholera cases and hos-
pitalizations by Department are available
through the Haitian Ministere de la Sante
Publique et de la Population (MSPP) [9],
with the outbreak beginning in the St. Marc
region of the Artibonite Department in Oc-
tober 2010. Additionally, due to the ensu-
ing relief efforts following the earthquake,
a number of unusual data sets are available
from Haiti. These include highly detailed information on the spatial location and population sizes of
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Rainfall Data

• NASA TRMM Data - 
satellite precipitation 
data (resolution 0.25° × 
0.25°) averaged over 
each area

• USGS Rain Gauges in the 
Morne Gentilehomme 
and Foret de Pins regions



SIWR Model & Rainfall

ds
dt

= µ − βW frain t( )ws − βI si − µs

di
dt

= βW frain t( )ws + βI si − γ i − µi

dw
dt

= ξ i − w( )
dr
dt

= γ i − µr

y = ki

W

S I Rµ
µs

βI si
µi µr

γ i

βW sw
ξi

ξw

a slower / delayed pathway. Previous studies have
shown the need for including multiple timescales of
transmission for modeling cholera dynamics [40, 41].

The scaled form of the model is shown in Fig-
ure 3, where s represents the fraction of the popu-
lation which is susceptible, i the fraction infected,
and r the fraction of the population which is recov-
ered/removed. The w compartment represents the
concentration of pathogen in the water, scaled to the
pathogen shedding and decay rates [27].

Additionally, �W is the transmission parameter for
waterborne transmission, �I the transmission param-
eter for direct transmission, ⇥ the recovery/removal
rate, and ⇤ the pathogen decay rate in the water.
Note that ⇤ appears in the shedding term of the model
due to the rescaling of the model given in [27], which
eliminates the shedding rate parameter and makes
the parameters identifiable (estimate-able) from case
data [41].

To account for the e�ects of rainfall on cholera
transmission, we modified the waterborne transmis-
sion term, �W sw, to include a rainfall data forcing
function, denoted frain(t). This incorporates a mech-
anistic connection between the environment, rainfall,
and cholera disease dynamics. We take frain(t) for a
given rainfall data set to the be linear interpolation of
the rainfall data points (though very similar results
are obtained using other interpolation methods, e.g.
cubic splines). The full model equations are thus:

ṡ = ��W swfrain(t)� �Isi

i̇ = �W swfrain(t) + �Isi� ⇥i

ẇ = ⇤ (i� w)
ṙ = ⇥i

y = ki,

(1)

where the equation y = ki is a measurement equa-
tion indicating that we take the data to be given by
a fraction k of the infected population, where k incor-
porates the reporting rate and the total population
size (see [41] for details). We neglect birth and death
processes in the model given the relatively short time
scale considered.

Model parameters were estimated for four re-
gions/spatial scales, each paired with associated rain-
fall data for the region:

! "# #

$ "%

#

%
Rainfall

&''''()*
!"#$

Figure 3: Flow diagram for the scaled SIWR model with
rainfall forcing.

• HAS case data using NASA rainfall data for the
HAS region in Deschappelles

• IDP camp case data using USGS rainfall data in
the Port au Prince region

• Port au Prince MSPP case data using USGS
rainfall data in the Port au Prince region

• Country-wide MSPP case data using NASA
rainfall data for all of Haiti

Both USGS rain gauges are in a similar spatial loca-
tion (southeast of Port au Prince), so we tested both
rain gauges for the IDP camp case data and the Port
au Prince MSPP case data. For comparison, model
parameters were also estimated without any rainfall
forcing (i.e. using the model as given in Eq. (1) with
frain(t) = 1). In all cases, ⇥ was fixed to 0.25, corre-
sponding to an infectious period of 4 days, based on
[43, 44]. Parameters were estimated using maximum
likelihood assuming Poisson distributed data in the
software Matlab [45].

As a preliminary test of the predictive ability of the
model, the model was also fitted to truncated data,
where the last two weeks of data were removed. The
resulting models were then used to generate rainfall-
forced predictions which were compared to the two
case data points not used in fitting the model.

6
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Rainfall Forcing & 
Identifiability

• Adding satellite rainfall data corrects the 
structural identfiability problem when 
ξ→∞

• Allows      and     to be estimated separately

• Can also improve practical identifiability

βW βI



Eisenberg, Kujbida,Tuite, Fisman Tien 2013
Figure 7: Model (solid line) fits to data (circles) for each site using the rainfall forcing function (dashed line) generated
from weekly rainfall data (diamonds). Clockwise, the panels are: HAS case data with NASA rainfall data, IDP Camp
case data with USGS rainfall data from Morne Gentilehomme, Port au Prince (PaP) MSPP case data with USGS
rainfall data from Foret de Pins, national MSPP case data with NASA rainfall data.

Parameter Units HAS Estimate IDP Camp Estimate PaP Estimate
�I days�1 0.212 0.243 0.155
�W days�1mm�1 0.00432 0.00128 0.00292
⇥ days�1 0.196 0.111 0.185

k�1 people�1 1.92� 10�6 2.93� 10�5 1.39� 10�5

Table 3: Scaled SIWR parameter estimates fitted to weekly case data with rainfall forcing functions as shown in
Figure 7. PaP = Port au Prince.
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Eisenberg, Kujbida,Tuite, Fisman Tien, Epidemics, 2013

Figure 8: Model fits (black line) to case data (grey circles) with the last two data points dropped. Subsequent model
predictions compared to data points not used for fitting shown in red. Data sources are, clockwise: HAS data, IDP
Camps data, MSPP Port au Prince (PaP) data, and MSPP national case counts.
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Figure 8: Model fits (black line) to shortened case data (grey circles) with the last two (leftmost column), three (center column), or four (rightmost column) data
points dropped. Subsequent model predictions compared to data points not used for fitting shown in red. Data sources are, from the top row to bottom row: HAS
data, IDP Camps data, MSPP Port au Prince (PaP) data, and MSPP national case counts.
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Figure 8: Model fits (black line) to case data (grey circles) with the last two data points dropped. Subsequent model
predictions compared to data points not used for fitting shown in red. Data sources are, clockwise: HAS data, IDP
Camps data, MSPP Port au Prince (PaP) data, and MSPP national case counts.
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