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Some Background Reading

Textbook by Michael Nielsen & Isaac Chuang
Lectures notes of John Preskill

PhD Thesis of Dan Gottesman
PhD Thesis by Ben Reichardt

Arxiv: quant-ph/0110143 by Dennis, Landahl, Kitaev,Preskill
on use of surface codes
Arxiv: quant-ph/0610063 by Aliferis, Cross on

Bacon-Shor Codes
Arxiv: 0711.1556 by Cross, DiVincenzo, Terhal with

threshold studies



The 5 DiIVincenzo Criteria

1. Architecture needs to be scalable with well-defined
gubits.

2. Ability to initialize qubits to |00...0> state

3. Qubits should undergo little decoherence

4. Ability to enact a discrete set of logical gates. For
example:

2-qubit gate: CNOT (C-X) or CPHASE (C-2)

1-qubit gates: Pauli X, Z, Y, Hadamard, Phase gate, T gate

5. Ability to measure single qubits in the computational
(0,1) basis.



Some Quantum Formalism

Density matrices p:

1. p=pl.
2. p > 0, non-negative eigenvalues
3. I'r(p) = L.

Von Neumann projective measurement:
Rank 1 projectors {II;},> . II;, =1
p(t) = TrlLip

POVM measurement:
{E;},E]=F;>0,Y,E; =1.
p(i) = TrE;p



Superoperators
S(p) =>_, A;pAl, Kraus operators A, .
SLATA =1
-Superoperators, TCP maps, map density
matrices onto density matrices.
-Can always be viewed as a unitary
interacting with system and environment
-Number of Kraus operators {A4;} at most
d?. Kraus operators are non-unique.
-1 ® § also TCP, compare with
matrix transposition.



Examples

1. Depolarizing Channel :

S(p) =1 —-plp+p(XpX+YpY +ZpZ)/3
2. Amplitude Damping Channel:

0) — |0)

1) decays with rate v to |0).

3. Over/Under-Rotation Channel:
Gaussian distribution around U = e
with, say, 8 = 7 /8.

What is a discrete set of Kraus operators?

67



Superoperator Noise Model

Each location in a quantum circuit is represented

by its own superoperator which ideally is close to the ideal
operation.

(Simplest) Noise Model considered in Fault-Tolerance Theory

In what situations is this model sufficient....



(In)Sufficiency of Superoperator
Noise Picture

Cross-talk between neighboring qubits (addressing the wrong
gubits with the control fields)
Couplings we cannot turn off...

Some noise is best modeled as a system interacting
with a quantum environment. Correlations in time and space,
non-markovian environment.

Some noise can be clearly approximated by classical
fluctuations of control parameters, correlations in time and
space of these parameters.



Error Rates

Error rate of a superoperator?

S(p) =UpU" + &(p).
U is ideal gate.
|E]|? should be ||I ® &|].

Diamond norm with usetul norm properties

Elle = max x|, =1 ||({ & E)(X)]|ir
X\, = TrvXtX.




Error-Correction

Classical error-correction is fairly common:

Satellite communication & deep-space communication
Soft (radiation errors) in dynamical RAM in satellites
Compact discs (Reed Solomon codes) and hard discs.
Hard-wired coding of bits as ferromagnetic domains ->
2D repetition code

Noise levels of quantum operations are high

Quantum error-correction will be crucial in any robust
Implementation of quantum computation.

Passive EC (e.g. topological quantum computation) or active
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Classical Repetition Code

0) — |00...0)
1) — |11...1)

0), n (odd) bits
1)

-Hamming distance d between codewords is n.

-Code can correct t = (n — 1)/2 errors
where d = 2t + 1 by taking majority of bits.

-Logical bit flip is X = X; X,....X,,



Classical Repetition Code

Can we do error-correction without finding
out whether the state is |0) or |1)7

Yes, ‘measure’ Z;Z; 1 for adjacent bits
and match the places where a
—1 error syndrome for Z;Z;1 is found.

Note: CNOT and Toftoli can be performed

block-wise or transversal on encoded qubits.



Quantizing Repetition Code

First quantum code:

Shor’s 9 qubit code, [[n=9,k=1,d=3]].
First, preserving 1 qubit against bitflip errors (X)

-Stabilizer S of a code, abelian subgroup of the

Pauli group. S is here generated by Z; 2>
and ZQZ;_?,.

-k=+# encoded qubits=n-(# generators of S),
here 3 —2 =1.



Error Correction

Measure generators of stabilizer.
Syndrome determines error.
EC for this code: Single errors get corrected.

Two errors X; X5, say, become logical (X) errors.

How to measure a Pauli or product of Paulis....
nondestructively?

IR AYALA]
111U QL

1.e. superoperator noise....

FPNATM T ‘)“'1(\1’\0 f\'F AYTYYrYNrTra on
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Phase flip errors on {|000),[111)} code:
logical Z, Z = Z;.

Stabilizer picture:

-Logical operators commute with S.
Normalizer group N(S): all operators in
Pauli group which commute with S.
Lowest weight element in N(S)-S is
distance of code.

-Detectable errors anticommute with some
elements in S.



[19,1,3]] Shor code

Correct for Z errors with Chhage

0) = [+++), [1) = )

Use concatenation, encode with Chy;
-y — (]000) + [111))/v/2,

) — (]000) — [111))/+/2.

X and Z are weight 3 Pauli operators, d=3.
2+6=8 stabilizer generators.

D\ R\




Other Quantum Codes

More efficient quantum code than [[9,1,3]]: [[5,1,3]]
but this code has a non-transversal CNOT

Steane code [[7,1,3]]:

-transversal CNOT', most studied code for FT.
-1s CSS code, stabilizers are X or Z-stabilizers,
never mix.

Bacon-Shor Code Family....
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Bacon-Shor Codes

Lattice of 3 x 3 qubits (or5x5o0r 7 x 7 etc.)

X-stabilizers are 2 adjacent horizontal lines of Xs.
Z-stabilizers (linear combinations of [[9,1,3]] stabilizers) are
adjacent vertical lines of Zs.

9-4=5 encoded qubits...(in general n?-2(n-1) qubits).

Elements in N(S)-S:

| EEE 3 Horizontal Z;7,4.
E Vertical X;X;.1.
oo o o

Z, along 1st vertical line
X along 1st horizontal line.



Bacon-Shor Codes

Elements in N(S)-S of weight 2, no protection against those
errors...?

Elements in N(S)-S:

/122, X2X5: Logical ops. of gauge qubit 1
Zyls, X5Xg: gauge qubit 2

ZQZ;;, X3X6, gauge q11bit 3

Z5Z(3, X6X9, gauge QUblt 4

L1 4427, X7XgXg logical qubit!

Can correct 1 error on logical qubit.
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Measuring Stabilizers

Measure Z1 /494474527 /g row by row, 1.e.
measure £/, and Z4Z5 and Z;Zg.

Each_of these commutes with S and X
and Z of logical qubit.

Same for horizontal lines of Xs.
Advantage: simple (local) circuits

for measuring stabilizer!

“Symmetrized, quantized, repetition code”



Surface Code Family

Qubits live on edges.

Stabilizer generated by:

-plaquette operators: 2777 around plaquette
-star operators: XXXX on edges touching vertex
13 qubits - 12 stabilizers=1 encoded qubit.

Elements in N(S)-S:
Z7....7 tfrom rough boundary to other rough boundary.
XX...X on “dual lattice” from smooth boundary to

other smooth boundary.

Distance of this code is 3: [[13, 1, 3]] code



Surface Code Family

More general: L x L lattice of vertical links
L(L — 1) plaquettes, L(L — 1) stars, so
L?+ (L —1)?—-2L(L —1) =1 encoded qubit.

Distance is L. [[L* + (L — 1)%,1, L]] code
(Bacon-Shor codes [[n?,1,n]])

Trivial operations on code space can be made
from composing plaquette and star operators.
These are loops of ZZ...7Z on lattice and

loops of XX..X on ‘dual lattice’.



Errors on Surface Codes

Measure plaquette stabilizer. Note that this can be
done locally. If outcome is -1, put a defect
in the plaquette.

Defects appear in pairs (except at boundary),
like in classical repetition code.

Error-Correction: match up defects pair-wise
(or with ghost defects at boundary), so that
the length of the strings connecting defects is small.

Code can correct many errors of weight more than L!
= Topological Protection



Passive Noise Protection

Hamiltonian, sum of stabilizer generators
H=->_5.

2-dimensional ground-space is surface code space.
H has a gap. But is there topological protection
at nonzero temperature T7

Pairs of defects created, string can grow
without energy penalty to become a logical error!

Topological order destroyed at T' > 0: needed:
1. fancier Hamiltonian? (e.g. 4-dim surface code..)
2. active EC.



Noise Threshold

Encoded operation: encoded gate followed by EC.
Assume code can correct a single error.

Every location in encoded gate and error-correction
has an error probabability p.

Assume no single error can cause two errors on an
encoded block! (idea of fault-tolerance).

p1=Prob(incorrectable error) =Np? where N
1s number of pairs of locations leading
to 2 or more errors in the block.

If p1 < p, coding helps, below threshold p. = 1/N
If p1 > p, coding makes things worse.



How can 1 error become 2 errors on data during EC?

Low-weight stabilizers are good!

Tricks for making EC fault-tolerant:
-Shor EC, instead of |[+) use cat-state
|+) o< [00..0) + [11..1) =

Z(s)
o) «l—&:ll

-Steane EC T
Copy X errors onto an ancilla,
prepared in logical state.

Read oftf X errors on ancillas.

Similar for 7 errors.

] X(s) —
4 @—“

Advantage: get info for all Z stabilizers in one go.
Bad overhead of preparing verified ancilla.



Threshold Studies

PARAMETERS NOTES
5,1,3]] non-CSS five qubit code [24]
[[7,1,3]| Steane’s 7-qubit code (doubly-even dual-contamning)
9,1,3]], [[25,1,5]], [[49.1,7]], [[81, 1, 9]] Bacon-Shor codes [14]
15,1,3 Quantum Reed-Muller code [19]20]
[[13,1,3]], [[41,1,5]], [[85, 1, 7]] Surface codes [17. (18]
21,3.5 Dual-containing polynomial code on GF(2°) [26]
23,1.7 Doubly-even dual-contamning Golay code (cvelic) [27]
[[47,1,11]] Doubly-even dual-contaning quadratic-residue code (cyclic) [21]]
49,1,9 Concatenated [[7, 1,3]] Hamming code [22]
60,4, 10]] Dual-containing polynomial code on GF(24) [26]

[[79,1,15]],[[89, 1,17]], [[103, 1, 19]], [[127, 1, 19]]

Cross, DiVincenzo, Terhal, 2007

BCH codes, not analyzed [21]



What we study
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Extended-rectangle.

Here 1-Ga taken as transversal CNOT.
Steane EC.

Generate random X,Y,Z errors with probability p on all locations.
Follow errors through gates in the rectangle. If errors add up to
logical error between state at t and state at t’, call it a failure.

Estimate probabillity for failure p, as function of p.
Threshold: p,=p.



Perfect Ancillas for Steane EC
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level-1 depolanzing pseudothreshold

Thresholds

|
= o |
0.001 | - = E
0.0001 E -
- surface codes 4+ 7
- surface codes (Shor-EC) ¢ 1
[[513]] dual-contaming codes p—k—
- bacon-shor codes HE
other codes or constructions
le.05 L | | | | |

10 20 i 40 50 a0 70 80 90 100
block size n



Surface Code
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Figure 11: Surface code level-1 depolanizing pseudo-threshold versus ¢ for ¢ = £ surface code (the block-size
n = 2 4+ (£ — 1)*). The ex-Rec 1s a transversal CNOT gate with ¢ sequential Shor-EC steps per EC. The
pseudo-threshold increases with ¢ and 1s expected to approach a constant value in the linut of large ¢, unlike
the other codes n this study.

We find for L £ @, p. goes to 3.5 x 103



Overhead versus logical error-rate
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