Candidates for Inelastic Dark Matter

David Morrissey

Harvard University

with

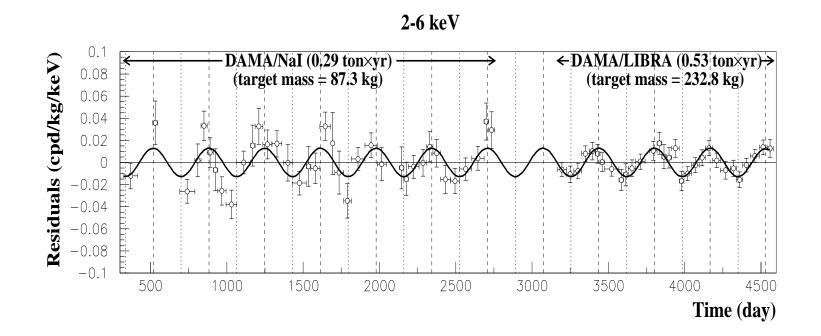
Yanou Cui, David Poland, Lisa Randall

hep-ph/0901.0557

(See also talks by S.Chang, N.Weiner, I. Yavin)

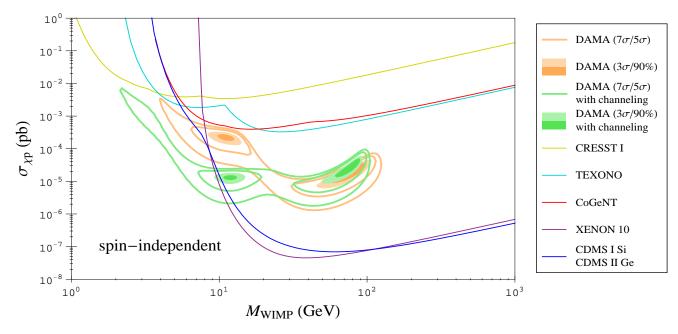
Toto, we're not at SPS1a' anymore

Surprises in Dark Matter


- DAMA observes an annual modulation signal.
- PAMELA, ATIC, PPB-BETS, INTEGRAL, and WMAP find signals above the expected astrophysical background.

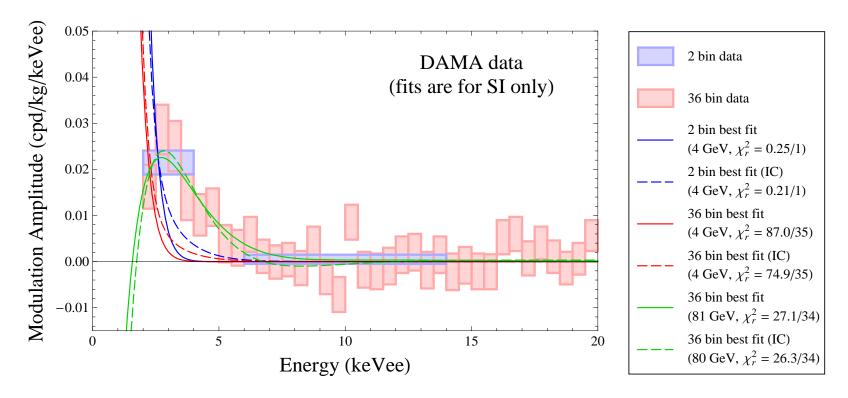
Dark matter in our galaxy?

- None of these signals is what we were expecting:
 - DAMA "seems" inconsistent with CDMS.
 - PAMELA et al. need a high annihilation rate and leptons.
 - INTEGRAL requires very light or exciting DM.


Annual Modulation at DAMA

 DAMA/NaI and DAMA/LIBRA searched for an annual variation in nuclear recoils using NaI-based detectors.

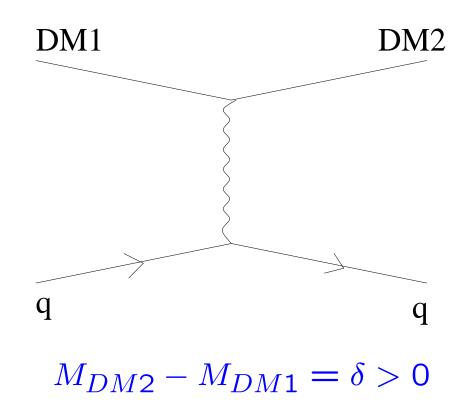
Explanations for DAMA


- Focus exclusively on DAMA, assume it is DM.
 What does this imply about the DM properties?
- Ordinary coherent DM scattering off Iodine is ruled out.
 Light DM scattering off Sodium is strongly constrained.

[Freese, Gelmini, Gondolo, Savage '08]

 Light DM is constrained by the shapes of the DAMA modulated and unmodulated energy spectra.

[Chang, Pierce, Weiner '08]



[Freese, Gelmini, Gondolo, Savage '08]

• Scattering of DM off detector electrons? [Bernabei et al. '07]
Also very constrained by the DAMA spectral shape.

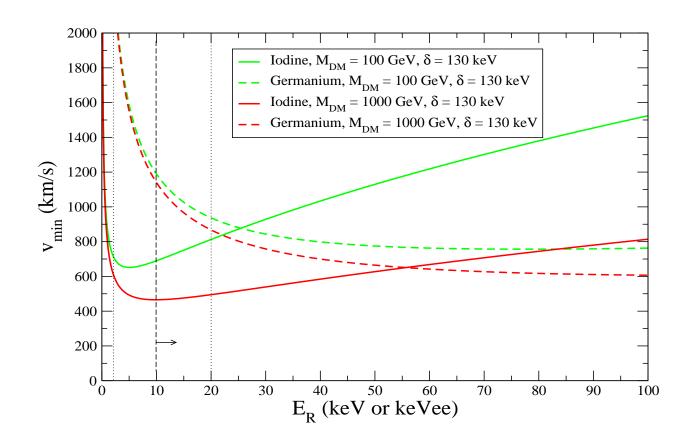
Inelastic Dark Matter (IDM)

 Assumption: DM scatters coherently off nuclei preferentially into a slightly heavier state. [Tucker-Smith+Weiner '01]

 Modified scattering kinematics enhances the modulated signal at DAMA and fixes the spectrum. ullet To produce a nuclear recoil with energy E_R , the minimum DM velocity is

$$v_{min} = \frac{1}{\sqrt{2m_N E_R}} \left(\frac{m_N E_R}{\mu_N} + \delta \right).$$

Signal Rate:

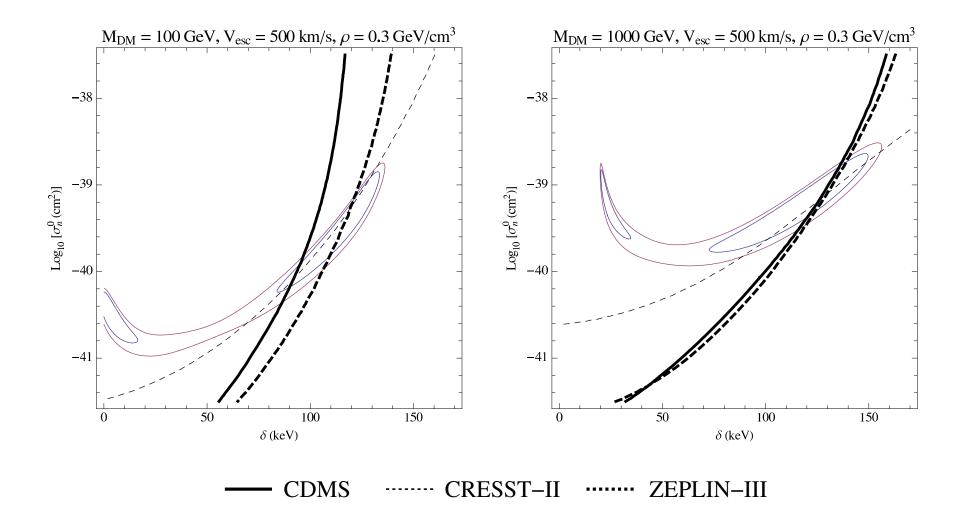

$$rac{dR}{dE_R} \propto \int_{v_{min}} d^3v \, f(\vec{v}, \vec{v}_e) \, v \, rac{d\sigma}{dE_R}.$$

ullet DM velocities are \sim Maxwellian with a cutoff v_{esc} , with a net boost from the motion of the Earth:

$$f(\vec{v}, \vec{v}_e) = 0$$
 unless $|\vec{v} + \vec{v}_e| < v_{esc}$.

- IDM: v_{min} is less for I $(A \simeq 127)$ than for Ge $(A \simeq 72)$.
 - ⇒ enhancement at DAMA relative to CDMS.

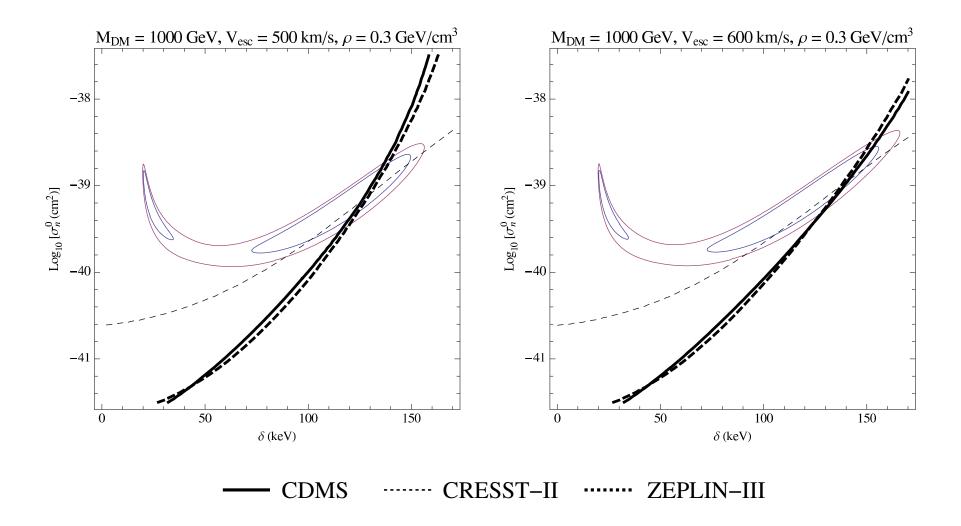
- IDM kinematics enhances the annual modulation.
- The signal is cut off at low E_R .


- Which IDM parameters fit the data?
- Where could IDM come from? LHC implications?

IDM vs. Data

IDM Fits

- DAMA (I)
 - lowest twelve 2-8 keV bins only
 - $-\chi^2$ goodness of fit estimator
- CDMS II (Ge)
 - combine 3 runs
 - treat events (2) in 10-100 keV as signal
- CRESST-II (W)
 - use latest commisioning run only
 - treat events (7) in 12-100 keV as signal
- ZEPLIN-III (Xe)
 - treat events (7) in 2-16 keVee as signal
- XENON, KIMS, etc. are less constraining.


• $M_{DM} = 100 \, \text{GeV}$, $1000 \, \text{GeV}$, $99 \% \, c.l.$ exclusion curves.

• Heavier IDM might work but is more constrained.

Note:
$$v_{min}(E_R) o rac{1}{\sqrt{2m_N E_R}} (E_R + \delta)$$
 for $M_{DM} \gg m_N$

• $v_{esc} = 500 \, km/s$, $600 \, km/s$, $99 \% \, c.l.$ exclusion curves.

Strong dependence on the DM velocity distribution.

[March-Russell, McCabe, McCullough '08]

General IDM Properties

General IDM Properties

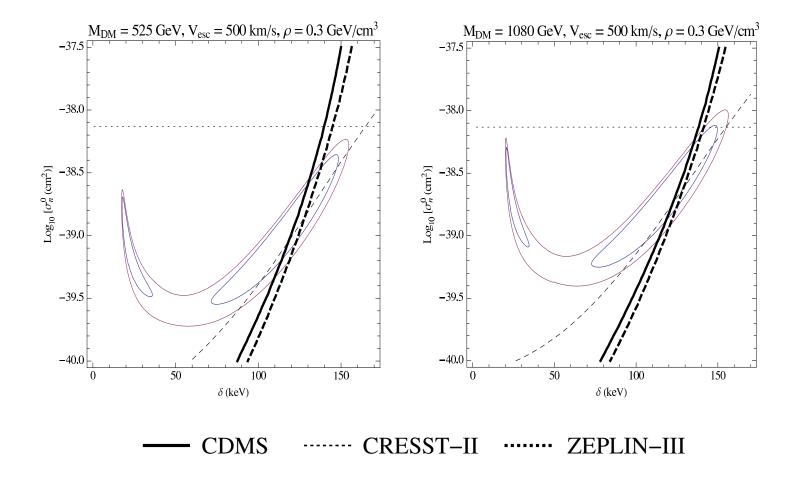
- Inelastic nuclear recoils can arise naturally if:
 - nuclear scattering is mediated by a massive gauge boson
 - DM is a nearly Dirac fermion or complex scalar
 - a small mass splits the two components of the DM

e.g.
$$-\mathcal{L}_{mass} = M \bar{\psi}\psi + \frac{1}{2}m \bar{\psi}^c \psi, \quad \text{with} \quad M \gg m$$
$$= \frac{1}{2}(M-m)\bar{\Psi}_1\Psi_1 + \frac{1}{2}(M+m)\bar{\Psi}_2\Psi_2$$

$$-\mathcal{L}_{int} = -g Z'_{\mu} \bar{\psi} \gamma^{\mu} \psi = ig Z'_{\mu} \bar{\Psi}_{2} \gamma^{\mu} \Psi_{1}$$

• The complex scalar story is similar.

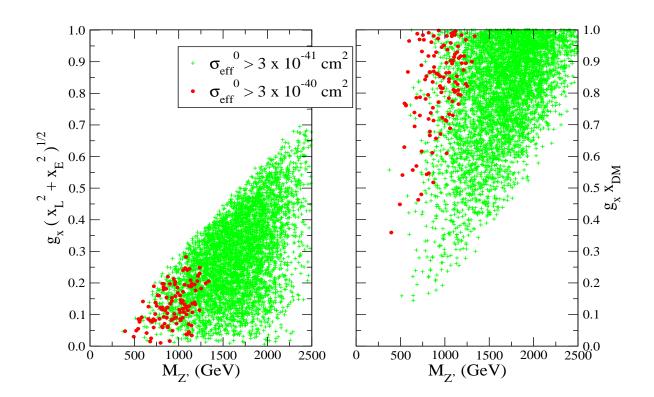
Nucleon Scattering from Gauge Bosons


- ullet Elastic DM scattering mediated by the SM Z^0 is ruled out.
 - \rightarrow effective nucleon cross-sections $\sigma_{n,p}^0$ are too big:

$$\sigma_n^0 = \frac{G_F^2}{2\pi} \mu_n^2 \simeq 7.44 \times 10^{-39} \, cm^2$$
 (vector doublet)

- IDM can only scatter in a limited region of phase space.
 - \rightarrow need a large nucleon cross-section $\sigma_{n,p}^0$.
- Three 'Abelian' possibilities:
 - 1. SM Z^0
 - 2. Heavy visible $U(1)_x$
 - 3. Light hidden $U(1)_x$

1. IDM Scattering through the SM Z^0


- Dirac Doublet: $M_{DM} \simeq 1080 \, \text{GeV} \Rightarrow \Omega_{DM} \, h^2 \simeq 0.1.$
- Scalar Doublet: $M_{DM} \simeq 525 \, \text{GeV} \Rightarrow \Omega_{DM} \, h^2 \simeq 0.1$.

• DAMA-allowed region is close to σ_n^0 for a doublet.

2. IDM Scattering through a Visible $U(1)_x$

- \bullet Visible Z's constrained by Tevatron, Precision Electroweak.
 - \rightarrow heavier $M_{Z'}$ is preferred
- ullet But $\sigma_{n,p}^0 \propto \left(rac{g_x}{M_Z'}
 ight)^4$
 - $ightarrow M_{Z'}$ cannot be too large for IDM scattering

3. IDM Scattering through a Light Hidden $U(1)_x$

Can arise if SM couplings come only from kinetic mixing,

$$\mathcal{L} \supset -\frac{1}{2} \epsilon B_{\mu\nu} X^{\mu\nu}.$$

 $\epsilon \sim 10^{-4} - 10^{-2}$ from integrating out heavy states. [Holdom '86]

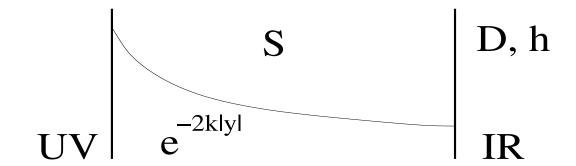
• $U(1)_x$ effectively mixes with $U(1)_{em}$ for $M_{Z'} \ll M_{Z^0}$.

SM states acquire Z' couplings of $-e c_W Q \epsilon$.

$$\sigma_p^0 = \left(\frac{g_x x_{DM}}{0.5}\right)^2 \left(\frac{\text{GeV}}{M_{Z'}}\right)^4 \left(\frac{\epsilon}{10^{-3}}\right)^2 (2.1 \times 10^{-36} \, cm^2)$$

• A multi-GeV mass Z' is allowed for $\epsilon \lesssim 10^{-2}$ [Pospelov '08]

Some IDM Models


Candidates for IDM

- ullet Need a large "Dirac" mass $M \sim 100\,{
 m GeV}$, and a small "Majorana" mass $m \sim 100\,{
 m keV}$.
- ullet Technically Natural: m breaks a global $U(1)_{DM}$ symmetry.
- Can arise from sneutrinos with small L violation.

[Tucker-Smith+Weiner '01]

- Some Other Candidates:
 - 1. Warped fermion seesaw IDM
 - 2. Warped scalar IDM
 - 3. Supersymmetric Doublet IDM
 - 4. Hidden Sector $U(1)_x$ IDM [Arkani-Hamed+Weiner '08, I.Yavin's talk]

1. Warped Fermion Seesaw

- Dirac Doublet $D=(D_L,D_R)$ on the IR brane. Dirac Singlet $S=(S_L,S_R)$ in the bulk. Both are odd under a \mathbb{Z}_2 .
- Couplings:

Bulk:
$$c\,k\,ar{S}S$$
 IR Brane: $\lambda\,(ar{D}_RS_L\,h + h.c.) + Mar{D}D$ UV Brane: $\frac{d_{UV}}{2}(ar{S}_L^cS_L + h.c.)$

• $U(1)_{DM}$ is broken only on the UV brane.

- Choose B.C.s such that S_L has a zero mode for $d_{UV}=0$.
- Zero mode gets mass from the UV brane mass.

 KK modes get mass primarily from the Dirac bulk mass. \Rightarrow integrate out S_L^0 to get the inelastic splitting:

$$-\mathcal{L} \supset -\frac{\lambda^2}{2d_{UV}} e^{-(c-1/2)\pi kR} \ hh \ \bar{D}_R^c D_R + h.c.$$

- With natural values $\lambda^2=1/M_{Pl},\ c=$ 0.13, $d_{UV}=$ 2, we find $\delta\simeq 100\,{\rm keV},$ mostly doublet DM.
- This model is similar to warped neutrino mass models.

[Huber+Shafi '03, Perez+Randall '08]

2. Warped Scalar IDM

• Scalar Doublet $D=(D_R+iD_I)/\sqrt{2}$ on the IR brane. Scalar Singlet $S=(S_R+iS_I)/\sqrt{2}$ in the bulk. Both are odd under a \mathbb{Z}_2 discrete symmetry.

• Couplings:

Bulk:
$$a k |S|^2$$
 IR Brane: $(\lambda e^{2\pi kR} DS^*h + h.c.) + M^2 |D|^2$ UV Brane: $\frac{m_{UV}}{2}(S^2 + h.c.)$

• $U(1)_{DM}$ is broken only on the UV brane.

- No scalar zero mode in general.
- UV brane mass modifies the B.C.s:

$$\partial_y S_R \mp m_{UV} S_R = 0|_{y=0}$$
$$\partial_y S_R = 0|_{y=\pi R}.$$

- \Rightarrow splits the masses and profiles of S_R , S_I .
- ullet Integrating out S KK modes yields a mass splitting for D. From the n-th KK mode:

$$\Delta m_D \sim \frac{v^2}{M} \left(\frac{1}{kR} \right) e^{-2\pi kR(2+\sqrt{4+a})} f_n^2(\pi R).$$

- Inelastic splitting requires $kR \sim 2$.
 - ⇒ Little RS [Davoudiasl, Perez, Soni '08; McDonald '08]

3. Supersymmetric Fermion Doublet IDM

- Idea: gauge $U(1)_{DM} \rightarrow U(1)_z$.
- Chiral Doublets D, D^c Chiral SM Singlets S, N

$$W \supset \lambda N H_u \cdot H_d + \lambda' S H_d \cdot D + \frac{\xi}{2} N S^2 + \zeta N D D^c.$$

Only these couplings are allowed by $U(1)_z$ charges.

• $N \to \langle N \rangle \sim \text{TeV}$ induced by SUSY breaking.

Integrate out S:

$$W_{eff} \supset -\frac{\lambda'^2}{2\xi \langle N \rangle} (D \cdot H_d)^2$$

- Fermion splitting for $\lambda' \sim 0.1$, $\tan \beta \sim 30$, $\xi \langle N \rangle \sim \text{TeV}$.
- Scalar mass splitting is a bit too big.

4. Hidden $U(1)_x$ SUSY IDM

- Models #1.-3. carry over to heavy visible $U(1)_x$ models.
- SUSY is a natural setting for a light hidden $U(1)_x$.

 Gauge mediation in the visible sector breaks SUSY in the hidden sector through kinetic mixing, [Zurek '08]

$$m_{hid} \sim \epsilon m_{E^c},$$
 $M_{\tilde{Z}'} \sim \epsilon^2 M_1.$

- $U(1)_x$ breaking can be induced by soft masses, D-terms ($\sim \sqrt{\epsilon} v$) naturally on the order of a GeV.
- ullet D-terms can also contribute to hidden SUSY breaking.

[Baumgart et al. '09, talks by L.-T. Wang, I. Yavin]

• Minimal hidden $U(1)_x$ IDM Model:

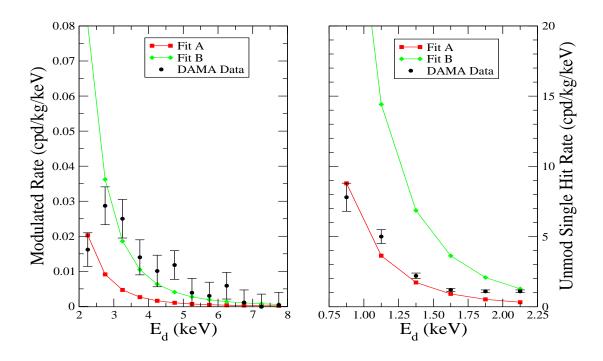
$$W \supset \mu' H H^c + M_a a a^c + \frac{1}{2} M_s S^2 + \lambda_1 S a^c H + \lambda_2 S a H^c,$$

- IDM from a, a^c if $M_s \sim M_a \sim \text{TeV}$, $\left\langle H^{(c)} \right\rangle \sim \mu' \sim \text{GeV}$.
- ullet $a,\ a^c,\ S$ must be stabilized by a new symmetry. Residual unbroken \mathbb{Z}_2 subgroup of $U(1)_x$? [Hur,Lee,Nasri '07]
- Multi- μ Mystery: $\mu' \ll M_s, M_a$?
 - $\mu' \sim {\rm GeV}$ from an NMSSM-mechanism in hidden sector. [Zurek '08, Chun+Park '08]
 - $-M_a \sim M_s \sim \text{TeV}$ from an NMSSM in the visible sector.
 - → additional contributions to hidden SUSY breaking

Summary

- Inelastic DM can be consistent with the DAMA signal and other direct detection experiments.
- Heavier DM masses can also work, but are more constrained.
- IDM scattering can be mediated by the Z^0 , a heavy visible Z', or a light hidden Z'.
- Reasonable models for IDM can arise in RS, SUSY.

Extra Slides


DM Scattering off Electrons

- DM scattering off detector electrons? [Bernabei et al. '07]
 Would generate a signal at DAMA.
 Other DM detectors filter out electromagnetic events.
- \bullet $E_R \sim eV$ for Halo DM scattering off an electron at rest.
- $E_R \sim \text{keV}$ possible if the electron is boosted: $p_e \sim \text{MeV}$. At large p_e , $P(p_e) \propto p_e^{-8}$ in atoms.

$$\frac{dR}{dE_R}\Big|_{tot} = \int dp P(p) \frac{dR}{dE_R} (p_e = p)$$

$$v_{min}^{DM} \simeq \frac{E_R}{2p}$$

- Signal falls quickly with E_R , like light DM. [Chang, Pierce, Weiner '08]
- For fermion DM with $(V \pm A)$ couplings to quarks:

- Using 12 lowest (2-12 keVee) modulated bins, 6 lowest (0.875-2.125 keVee) unmodulated bins, fit is very poor. (> 99% exclusion using χ^2)
- Similar conclusion for other Dirac structures, scalar DM.