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Do we really have conduction?

P

T

ne

NGC4649
(Churazov & Forman)

Either there is conduction or a vast cosmic 
conspiracy over 2 1/2 decades in density.
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Structure in M87

2 Temperature fit to SW arm

(Werner, et al 2010: arxiv:1003.5334)
Emission measure map of 1 keV plasma

Conduction is clearly efficient here.
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But...Cold Fronts

Requires suppression across front of ~100 to Spitzer
See John ZuHone’s Talks

(Markevitch & Vikhlinin 2007)

5Tuesday, August 24, 2010



 Presentation Outline

•Motivation
•Beyond MHD in the Intracluster Medium
  The MTI in Cluster Outskirts.

The cooling flow problem & the HBI.
Turbulence and Bimodality

•Filament Formation
•Conclusions
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Algorithm: MHD with Athena

∇ · B = 0

•Athena: Higher order Godunov 
Scheme.
•Constrained transport for preserving 
divergence free constraint.
•Anisotropic Heat flux (along B fields)

(Gardiner & Stone, 2008; Parrish & Stone, 2005)
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HBI (dT/dz > 0)MTI (dT/dz < 0)

a weakly magnetized plasma with anisotropic heat transport
is always buoyantly unstable, independent of dT/dz! 

Parrish & Stone 2005 Parrish & Quataert 2008

Buoyancy Instabilities in Magnetized Plasmas
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 Schwarzschild criterion ➔ clusters are stable

Radius (Rvir)

En
tr

op
y

 Piffaretti et al. 2005

ds/dr > 0

Cluster Entropy Profiles
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MTI
r ≳ 100 kpc

average cluster temperature profile

HBI
r ≲ 100 kpc

The Entire Cluster is Convectively Unstable!

 Piffaretti et al. 2005

Radius (Rvir)

T
/<

T
>

 

~ 300 kpc

The MTI & HBI in Clusters
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MTI in Clusters
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MTI in Clusters

Temperature Profile becomes Isothermal

(Parrish, Stone, &
 Lem

aster, 2008)

3D Sims of
Cluster Model

MTI growth time: 
~ 800 Myr
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MTI in Clusters

Magnetic Field 
Rearrangement:

Initially: 0.5 (tangled)
Peak: ~0.68

�b̂ · r̂�

B2
f

B2
0

≈ 100

Heat conduction becomes 
more efficient

(Parrish, Stone, & Lemaster, 2008)

�b̂
·r̂

�

Caveat: observed clusters are rarely isothermal:
temperature gradient fixed by cosmological processes & infall.
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MTI in Local Simulations

Can drive a strong dynamo, but 
only ~10 linear growth times in 

outer parts of ICM.
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MTI in Local Simulations with Turbulence

Stronger 
Turbulence

Consistent radial bias over 
isotropic, but small at large t.

See talk by Ruskowski on 
cosmological MTI 
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MTI Observed in Virgo?

Pfrommer & Dursi, Nature Physics 6 (2010)

Evidence for radially-oriented magnetic fields.
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 Presentation Outline

•Motivation
•Beyond MHD in the Intracluster Medium
  The MTI in Cluster Outskirts.
The cooling flow problem & the HBI.
Turbulence and Bimodality

•Filament Formation
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HBI in Clusters:  Abell 2199

T

ne

P

r (kpc)

Cluster Parameters:
•Mass 3.8 x 1014 Msun

•rs ~ 390 kpc
(Johnstone, et al 2002)
•Hydrostatic Equilibrium
•Thermal Equilibrium

Tangled Magnetic Fields

Ã = Ã0

�
k

kpeak

�−α

B = ∇×A

HBI Growth Time:
120 Myr(Parrish, Quataert, & Sharma 2009)

(Bogdanovic, et al 2009)
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HBI in Clusters: Radial Fields

T (keV)

(t = 0) (t = 1.6 Gyr)

(t = 4.8 Gyr) (t = 9.5 Gyr)

Radial magnetic fields this slide only.
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HBI in Clusters: A2199, Time Evolution
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• Magnetic geometry reorients to highly azimuthal
• Conduction is reduced, fSp → 0.13.
• HBI exacerbates cooling flow problem.       

 (Cooling catastrophe at 2.7 Gyr)
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Clusters and Entropy

C
avagnolo, Voit, D

onahue, et al (2009)

2 Populations!

• Hα
• Radio
•Blue Cores

• No Feedback 
Indicators

•More isothermal

K0 ≡
T

n2/3
e
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Effect of Conduction on High Entropy Cores

with conduction

no conduction

K0 = 123, central cooling time = 9.3 Gyr (estimated)
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Kolmogorov Turbulence:
Drive on outer scale L with velocity V(L)

Eddies turn over on timescale

Turbulence in Clusters & Cooling
Sources of Turbulence:
•Galaxy Wakes
•Substructure
•AGN
•Mergers

X-Ray + Hα in A3627 
Sun, Donahue, & Voit 2007

NASA/CXC/SOAR

ESO 137-001 leaves a wake

Galactic Wake Estimate
•5 galaxies of mass               within 
the central 200 kpc.
•Outer turbulent scale of L ~ 40 kpc. 
•Turbulent Velocity: 
•Turbulent Energy:    

1011 M⊙

δv ∼ 0.1cs

ėturb � ρ(δv)3

L ≈ 7.5× 10−30 erg
cm3 s

� ėcool ∼ 10−27 erg
cm3 s

teddy(L) = L/v(L)

v(λ) = v(L)
�

λ

L

�1/3
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The HBI and Turbulence

tHBI/teddy
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Local Simulations by McCourt

Two Limits:
1) HBI efficient:

2) Turbulence wins:           

tHBI < teddy

tHBI > teddy

fSp → 0

fSp → 1
3

Richardson Number (Ri)
Ri = Fr−1/2
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Turbulence and Bimodality
Fi

na
l T

em
pe

ra
tu

re
 P
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fil

es Exact Same 
Initial Conditions

Turbulence of L = 40 kpc.

tHBI ≈ 100 Myr
tcool ≈ 400 Myr

teddy ≈ 100− 450 Myr

Clear Bimodality:
~25 km/s velocity difference
•Stable ~isothermal profile
•Cooling Catastrophe

Parrish, Quataert, & Sharma (2010)
See also Ruszkowsi & Oh (2010)
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Turbulence and Bimodality

Same δv ~ 115 km/s

L = 40 kpc L = 100 kpc

teddy ∼ L/δv

HBI shuts off conduction

Turbulence keeps 
conduction at fsp~1/3.
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Turbulence and Bimodality

Snapshots at 7 Gyr

Stable Cooling Catastrophe
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• Hα
• Radio
•Blue Cores

• No Feedback 
Indicators

•More isothermal

K0 ≡
T

n2/3
e

K0 = 11 Kf = 110

Turbulence and Entropy

Turbulence with 250 km/s

No Turbulence: HBI + cooling

•Conduction is a natural way to volumetrically raise entropy
•Turbulence (energetically weak) can be a catalyst for changing 
the cool core/non-cool core state.
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Conclusions on Bimodality

•The HBI can shut off conduction and precipitate a cooling catastrophe.
•Conduction alone cannot stably heat a low-entropy, cool core cluster.  
These are mainly heated by feedback from a central AGN (bubbles, jets, etc).  
•Conduction can stably heat high entropy, fairly isothermal 
clusters...consistent with disturbed clusters being high entropy.
•Small changes in turbulence naturally lead to a strong bimodality between 
these states.

K0 ≡
T

n2/3
e
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Filament Observations in Perseus

NGC 1275: Observations (Fabian, et al)
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Formation of Filaments with Anisotropic Conduction

Sharma, Parrish, & Quataert, arXiv:1003.5546, Accepted to ApJ

λF =
�

Tκ(T )
nenpΛ(T )

�1/2

Field’s Length
Conduction Anisotropic

λF,� ≫ λF,⊥

• Cold, dense filaments aligned 
with magnetic field enhanced

by flux freezing.
• Velocities of up to 100 km/s 
preferentially aligned with filaments.
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