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Motivations

• Give a Boundary = Holographic theory of flat 
spacetime and the S-Matrix (the only 
observable), defining it non-perturbatively

• think of Hawking evaporation as a scattering 
process, and compute it holographically

• (also: Recast CFT to make physics transparent 
and greatly simplify AdS/CFT computations)
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What’s left to understand about 
Black Holes?

• Large (R_s > R_AdS) BHs in AdS ~ a Hot CFT, but...

• Small (R_s << R_AdS) BHs evaporate, leading to

Only gravity has scattering amplitudes like this; 
reproducing it with AdS/CFT is a sharp question

that should have a generic solution!

Planck scale should emerge as a dimension in the CFT.

�nout� ≈
�

s

M2
pl

�D−2
2

�Eout� ≈ Mpl

�
M2

pl

s

�D−3
2
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Outline
• Mellin Space as `Momentum Space’ for CFTs, 

or how to think of CFT Correlators as 
Scattering Amplitudes

• Mellin Amplitude as Holographic S-Matrix

• Analyticity (locality!?) from Meromorphy, 
some loop level examples

• Unitarity as a consequence of the OPE

• S-Matrix program as the Bootstrap program, 
and a peak at black holes
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AdS/CFT Preliminary

With AdS in Global Coordinates

the Dilatation Operator generates time translations.

ds2 =
1

cos2 ρ
(dt2 + dρ2 + sin2 ρdΩ2)

Bulk Effective Field Theory in Energy corresponds to 
``Effective Conformal Theory“ in Dimension.
One can use a cutoff on Energy/Dimension.

t

ρ

Monday, November 14, 2011



Let’s Try to think 
of CFT 

Correlators as 
Scattering 
Amplitudes.
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CFT Analog of “Free 
Particles”?

Scattering amplitudes involve states composed 
of particles that are asymptotically free.

The CFT analog is the large N expansion,
because given operators      and      , there must existO1 O2

“O1O2”
with dimension ≈ ∆1 +∆2
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How should we compute 
Correlators?

Previous computations in AdS used position space.
Analogous to computing Feynman diagrams as...
�

ddxDF (x1 − x)DF (x2 − x)DF (x3 − x)DF (x4 − x)

Even the 4-pt function is a box integral!!

In AdS, computations have been even worse,
with very few results beyond 4-pt.

(We will see how to compute at n-pt, easily.)
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The Advantages of 
Momentum Space

Eq. of Motion become algebraic  

∇2 = −p2

In flat space we go to momentum space, 
which has several familiar advantages.

because the Laplacian acts very simply
on the momentum space representation.

We find a similar simplification in Mellin space,
because the Conformal Casimir acts nicely.
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Factorization and 
Momentum Space

Also, flat space scattering amplitudes Factorize

M(pi) → ML(piL , PL)
1

P 2
L

MR(−pL, piR)

Involves analyticity and unitarity,
since factorization poles follow from the exchange

of single-particle states.

Also, there are purely algebraic Feynman Rules.

So position space obscures a lot of physics!
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The CFT Analog of 
Factorization

Factorization also occurs in CFTs, but this is
obscure in position space.

=
�

α

Oα

�O1O2

�
�

α

|α��α|

�
O3O4�

By the operator-state correspondence, the OPE
decomposition is just a sum over intermediate states:

Mellin space will display this as a sum 
over factorization channels.
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So what is the Mellin 
Amplitude?A natural answer is to use the variables that are conjugate to the dilatation parameter λ.

In these variables the CFT correlator will have a pole with residue given in terms of lower-

point correlators. To implement this philosophy, one introduces the Mellin representation

An(xi) =

�
[dδ]Mn(δij)

n�

i<j

(xi − xj)
−2δijΓ(δij) (9)

where the parameters δij are symmetric in ij, but δii = 0, and they are constrained to give

the correct behavior under conformal transformations. This means that

�

j

δij = ∆i (10)

Taking into account these constraints, the symbol [dδ] in (9) denotes an integral over a subset

of precisely n(n− 3)/2 of the δij which are independent of each other, normalized as

�
[dδ] =

�
dδ12
2πi

dδ13
2πi

. . . (11)

The contour of integration for each of the independent δij runs parallel to the imaginary

axis. An extremely useful analogy that will pervade what follows is to think of the δij as

kinematic invariants pi ·pj in an n-particle scattering amplitude, and to think of the ∆i as the

masses of these n particles. Then the constraint eq. 10 follows simply from the requirement

of momentum conservation
�

j pj = 0 and the on-shell conditions p2i = −∆i [1]. We will

discuss below why it is especially natural for theories with a large N expansion to include

the Γ(δij) factor in the definition of the Mellin amplitude.

Now if we rescale the xi → e−λxi for i ≤ k as above and consider the large λ limit of the

Mellin representation, we find

�
[dδ]Mn(δij)e

2λ
�k

i<j δij

n�

i<j

Γ(δij)
k�

i<j

(x2
ij)

−δij

n�

j>k

(x2
j)

−
�k

i=1 δij

n�

k<i<j

(x2
ij)

−δij (12)

To match the leading behaviour at large λ between the Mellin amplitude and our OPE result,

the Mellin amplitude must have a pole at

k�

i=1

∆i − 2

k�

i<j

δij = τp +m (13)

for all non-negative integers m. Notice that the left hand side is the precise analog of the

flat space kinematic invariant −(p1 + . . . + pk)2. Corresponding poles arise explicitly when

we consider Witten diagrams in AdS/CFT, and a major goal in what follows will be to give

a precise and computationally useful formula for the residues of these poles.

7

A CFT Correlator written in Mellin Space (Mack):

Roughly speaking, the      variables are a space
of relative scaling dimensions between operators.

δij

The Mellin Amplitude for scalar operators 
is Conformally Invariant.

�

j �=i

δij = ∆i
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Mellin Space ~ Space of 
Mandelstam Invariants

You can always think of                        with

and p2i = ∆i

n�

i=1

pi = 0

δij = “pi · pj”

(fake) momentum conservation and on-shell conditions

    are symmetric, and withδij δii = 0

We will often see combinations in propagators such as
K�

i,j=1

δij = (p1 + ...+ pK)2
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How does the 
Mellin Amplitude 

mimic 
Scattering 

Amplitudes?
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In Mellin Space: 
The Functional Equation

G∆(X,Y )

C∆2

(−2P2 ·X)∆2

C∆1

(−2P1 ·X)∆1

F (Y ;P3, ..., Pn)

C∆2

(−2P2 ·X)∆2

C∆1

(−2P1 ·X)∆1

F (X;P3, ..., Pn)

∇2
AdS +∆(d−∆)

Figure 1: By acting with the conformal Casimir on a Witten diagram with a bulk to bulk propaga-
tor, we collapse the propagator into a delta function. We derive the functional equation by looking
at this process in Mellin space.

it collapses G∆(X, Y ) into a delta function. This gives an equation
�
1

2
(J1 + J2)

2 −∆(d−∆)

�
A = A0 (30)

where in A0 the propagator has been collapsed into a contact interaction. In [25], this was

used to convert Witten diagrams with bulk to bulk propagators to contact interactions.

In Mellin space, this equation takes a remarkably simple form. When the conformal

Casimir of particles 1 and 2 acts on the product
�

i<j(Pij)−δij in the definition (9) of the

Mellin amplitude, where Pij = −2Pi · Pj, we find
�
(δLR −∆)(d−∆− δLR) +

�

i �=j≥3

2δ1iδ2j

�
1− P1jP2i

P1iP2j
+

P12Pij

P1iP2j

���

i<j

(Pij)
−δij (31)

where δLR = ∆1+∆2−2δ12 is the natural analog of the momentum space variable −(p1+p2)2;

later on we will see that the Mellin amplitude has poles in this δLR. This expression can

be simplified by noting that multiplication by the kinematic invariants Pij is equivalent to

shifting the δij, so that for example

P12P34

P13P24
A(P1, . . . , Pn) =

�
[dδ]

�
δ12δ34M(δ12 + 1, δ13 − 1, δ34 + 1, δ24 − 1, . . . )

(δ13 − 1)(δ24 − 1)

� n�

i<j

Γ(δij)P
−δij
ij

This allows us to write the functional equation

(δLR −∆)(d−∆− δLR)M +
�

i �=j≥3

2
�
δ1iδ2jM − δ1jδ2iM

1j,2i
1i,2j + δ12δijM

12,ij
1i,2j

�
= M0 (32)

11

Find a finite difference equation for Mellin amp:
(δ12 − a1)(δ12 − a2)M(δ12) = (δ12 − a3)(δ12 − a4)M(δ12 − 1)−M0

(similar technique key physical point in “How to succeed at z-integrals without really trying”)
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OPE Factorization

The Operator Product Expansion lets us factorize:

But let us first give an intuitive explanation for why these residues should be intimately

related to lower point correlation functions. The residue corresponding to a specific OPE

channel is most conveniently written by introducing for every primary field Op a correspond-

ing shadow field �Op
1, defined such that:

�Op(x)
�Op�(y)� = δd(x− y)δp,p� (14)

Clearly, if Op has scaling dimension ∆p, the shadow field must have scaling dimension

d−∆p. An intuitive way to write the shadow field is via the convolution:

�Op(x) =

�
d
d
y

Op(y)

(x− y)2(d−∆p)
(15)

but formally this integral is divergent and needs regularization.

Using the OPE, we find that at least schematically

An(xi) ∼
�

p

�
d
d
y

�
k�

i=1

Oi (xi)Op(y)

��
�Op(y)

n�

i=1+k

Oi (xi)

�
(16)

This equation is however only formal as the integral over y of the insertion point of Op(y)

implies that we may destroy the convergence of the OPE of the other operators. Nevertheless,

it can be used to offer a reasonable CFT intuition of the OPE in Mellin space. In particular, if

we were to substitute the Mellin transform of the two correlation functions on the right-hand

side of (16), the resulting Mellin transform of An has poles precisely at (13). These poles

isolate specific terms in the sum, and have residues which are given in terms of the product

of Mellin transforms of the lower point correlators. In section 3 we will see an explicit and

precise confirmation of this rough OPE intuition in the case of Witten diagrams.

2.2 Conformally Covariant Notation

We will be discussing CFT correlation functions, so it is natural to use variables [40, 41]

that are acted on linearly by the Euclidean conformal group SO(1, d+ 1). If we begin with

(d+ 2)-dimensional Minkowski spacetime, then the conformal generators will simply be

J
AB

= X
A ∂

∂XB
−X

B ∂

∂XA
(17)

1Very roughly speaking, one introduces shadow fields in order to write the operator 1 as a sum of
primary operators acting on the vacuum,

�
p Op|0��0| �Op. Shadows are necessary to ensure that the correlator

transforms correctly under dilatations; their necessity is analogous to the fact that on a certain very formal
sense, the bra and ket in-states �p| and |p� have opposite energy.

8

We want to use variables where there is a pole here,
with a residue that is the product of lower correlators.

Each       in the sum has a definite dimension,
so each term scales as a definite power law.

Op

Mellin space = the space of these powers.
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OPE Factorization 
Formula for AdS/CFT

the Mellin amplitude �M with a shadow field replacement to the original Mellin amplitude:

��
[d�δ]�Mn−k+1(

�δij)
n�

k<i<j

Γ(�δij)Γ(δij − �δij)
Γ(δij)

�

δLR=∆+2m

=



−Γ(∆− h)(−1)mm!

(∆− h+ 1)m

�
�

nij=m

Mn−k+1(δij + nij)

n�

k<i<j

(δij)nij

nij!





δLR=∆+2m

(65)

Notice that the arguments of MR
n−k+1 again satisfy the required constraints. Inserting this

identity into equation (64), we obtain half of our factorization formula (42). The other half

comes from the collision of poles in R with the pole at c = h−∆ in (52).

3.1.3 The Complete Factorization Formula and Its Interpretation

We have shown that any Witten diagram will have a Mellin representation with the above

poles and residues in the δLR channel. If the Mellin amplitude vanishes for large δLR then it

would be completely determined by its poles and residues, and we would be able to write:

M =

∞�

m=0

Res(m)

δLR −∆− 2m
(66)

with

Res(m) = −4πhΓ2(∆− h+ 1)m!

Γ(∆− h+ 1 +m)
[Lm(δij)Rm(δij)]δLR=∆+2m (67)

where Lm and Rm are given in (43). In fact, we will see in all examples that a stronger

statement is true. Our formula is equivalent to its projection onto all of its poles, not just the

specific δLR singularity in the factorization formula, so that all of the explicit Pochhammer

symbols (δij)nij can be evaluated at poles. If M vanishes as any propagator goes to infinity,

then this follows from the simple fact from complex analysis that

�

i

fi(z)

z − ai
=

�

i

fi(ai)

z − ai
(68)

when the sum vanishes as z → ∞. In what follows, when we refer to our factorization

formula we will almost always be referring to equation (67) with all δij in the numerator

projected onto poles, because it is this pole-projected formula that we will be able to prove.

In the remainder of this paper we provide strong evidence that the Mellin amplitude is

in fact completely determined by its poles and therefore (66) is the full answer. This we will

do as follows. We will first show that our factorization formula implies a set of diagrammatic

rules for the computation of Mellin amplitudes, and then we will show that these rules satisfy

22

An explicit AdS/CFT factorization formula:

where

δLR =
�

i,j≤k

δij = “(p1 + ...+ pk)
2”

Res(m) ∝ [Lm(δij)Rm(δij)]δLR=∆+2m
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Mellin Amplitudes Are 
Meromorphic

In general, expect Mellin amplitudes must always 
be meromorphic functions to get an OPE.

In fact, expect only simple poles, and that all 
poles will lie on the real axis for a unitarity CFT.

Provides a hint of analyticity for later...
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Diagrammatic Rules?

We have a factorization formula, and we can
factorize on any propagator, and reason to believe
that Mellin amplitudes are basically just rational 

functions, so it would be surprising if there wasn’t a 
constructive method for generating Mellin Amps.
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Diagrammatic Rules

Vabc(ma,mb,mc)

a

b

c

Sa(ma)a

!a-ma

Figure 6: Diagrammatic Rules. The expression for Vabc is given in eq. (87), and that for Sa

is given in eq. (76).

very natural in that it automatically explains why the factorization formula gives the same

answer when applied to any propagator in diagram, a very strong consistency condition.

The first step is to simplify the Pochhammer symbols. Since all dependence on the δijs

in ML and MR is through the propagator variables, we can always use eq. (79) like we

did in the case of the five-point function in section 4. There we grouped all the δijs into

terms that depend on only the propagator variables, the δis. However, each δij appears in a

Pochhammer symbol exactly once, so each δij can only appear in a single linear combination

of the δi. For instance, in the five-point function, we had to use the latter two identities in

eq. (79) to write δ12 and δ23 + δ13 as

δ12 = −δ6 +∆12,6, δ13 + δ23 = −δ7 + δ6 +∆36,7. (93)

In general, this regrouping can always be performed, so that for every vertex we have a

Pochhammer symbol of the form

(∆ab,c + δa + δb − δc)nc−na−nb

(nc − na − nb)!
, (94)

as depicted in Fig. 7. Here, a and b are the two propagators leading into the vertex and

c is the propagator leading out, as we work from the external lines inward toward the

δLR propagator. For completeness, we note that this identity generalizes to arbitrary n-pt

interactions, with the a and b indices replaced by a sum over all the propagators flowing

into the vertex, towards the propagator on which we are factorizing. Each δij shows up in

5All external lines are taken to have index m = 0. To save space, we will abbreviate S∆a(m) to Sa(m),
and similarly for V .

31

Conserve fictitious
``momentum’’ 
at all vertices.

Propagators and vertices determined and proven
via the finite difference equation 

(very nice forms found by Paulos, 1107.1504). 
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So We Can Compute!

12

3

4

a

b c

5 6

7

8

d

e

M8 =
�

me

Se(m)

δe −me



�

na,nb
nc+nd+ne=me




�

ma,mb,
mc,md

V12a(ma)Sa(ma)V34b(mb)Sb(mb)Vabc(ma,mb,mc)V56d(md)Sd(md)Vcde(me)

(δa −ma − na)(δb −mb − nb)(δc −mc − nc)(δd −md − nd)

(∆12,a − δa)na

na!

(∆34,b − δb)nb

nb!

(∆ab,c + δa + δb − δc)nc−na−nb

(nc − na − nb)!

(∆56,d − δd)nd

nd!

(∆cd,e + δc + δd −me)ne

ne!

���
(∆78,e −me)me

me!

�
(96)

We can eliminate ne through nc + nd + ne = me, and then the sum on ni’s is unrestricted.

To simplify further, we first redefine mi → mi − ni in the sums on mi in order to shift the

poles back to mi, and then as usual we evaluate all the δi’s in the numerator on the poles

(i.e. δi → mi).

Now we want to show that M8 also satisfies the diagrammatic rules. We will first show

that the correct V and S factors are associated with the residues of the poles in δa and δb.

This follows from the following identity, which we have verified numerically:

ma,mb�

na,nb=0

�
V12a(ma − na)Sa(ma − na)

(∆12,a −ma)na

na!

��
V34,b(mb − nb)Sb(mb − nb)

(∆34,b −mb)nb

nb!

�

×Vab,c(ma − na,mb − nb,mc − nc)
(∆ab,c +ma +mb −mc)nc−na−nb

(nc − na − nb)!
(97)

= V12a(ma)Sa(ma)V34b(mb)Sb(mb)
Vabc(ma,mb,mc)

Vabc(mc)
Vabc(mc − nc)

(∆ab,c −mc)nc

nc!

33

AdS/CFT Witten 
Diagrams such as this 

can be computed 
straightforwardly.

Previously, very few computations beyond 4-pt!!
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Relation to 
Flat Space 
S-Matrix?
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the Flat Space Limit

• Recall Bulk Energy = CFT Dimension
• Flat Space Limit requires

• This means that we must study CFT 
states of very large dimension, while

EbulkRAdS → ∞

N2 ∝ (Md+1RAdS)
d−1 → ∞
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The Flat Space Limit

But we know that        ~ dimension.δij

Natural to guess (and Penedones did) that

And it works!  Checked explicitly for theories of 
scalars at tree level for any number of particles, 

and some 1-loop examples.  More precisely...

lim
R→∞

M(δij = R2sij) ∼ T (sij)
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the Flat Space Limit

The exact relation for massless external states:

This equation can be simplified further to give

Vm1...mn =
�

i≥2

[mi(∆i − h+mi)Vm1−1,...,mi−1,...,mn ] +

�
m1 +

∆1

2
−

n�

i=2

�
mi +

∆i

2

��
Vm1−1,m2,...,mn

where we assume that m1 > 0. Of course we also get similar equations from each of the n legs,
for a total of n recursion relations. I have checked in mathematica that this recursion relation
is satisfied by the Lauricella-function vertices from Miguel’s paper, so we have a rigorous
derivation/proof of his formulas.

2 Flat Space Limit

Penedones has conjectured [] that the S-Matrix of the bulk theory dual to a CFT can be
obtained from a simple integral transform of the Mellin amplitude

T (sij) = Γ (∆Σ − h) lim
R→∞

� i∞

−i∞
dα eααh−∆ΣM

�
δij =

R2sij
2α

,∆a = Rma

�
(7) FlatSpaceLimitFormula

where we have introduced the short-hand symbol∆Σ = 1
2

�
i ∆i for half the sum of the external

dimensions, and ∆a are the dimensions of internal fields to which we wish to assign a non-zero
mass in the flat space limit. The integration contour in the α plane runs to the right of all
poles of the Mellin amplitude. Penedones provided many pieces of evidence for equation 7,
showing that it works for tree-level and one-loop 4-pt amplitudes, and that it accords with
earlier observations [] about a certain singularity in CFT correlators connected with flat space
scattering amplitudes. This evidence was further bolstered when it was shown in [] that Mellin
amplitudes can be constructed directly from diagrammatic rules that reduce to the Feynman
rules in the flat space limit. In effect, this proved that equation 7 is correct for all tree
amplitudes in scalar field theories.

In what follows we will prove equation 7 using the constructions of []. The flat space S-
Matrix can be extracted from AdS/CFT correlation functions in a straightforward manner;
here we will only give a brief discussion and refer the readers to [] for a thorough discussion.

Individual particles are created by single-trace CFT Operators in the large N limit. We
would like to prepare and then measure scattering states that correspond to many particles
with definite energy and momentum in the center of AdS. To create a massless particle with
energy ω and velocity v̂ that passes through the center of AdS at time t = 0, we act with the
single-trace operator O(t, x̂) on the vacuum as

|ω, v̂� =
� −πR

2 +τ

−πR
2 −τ

dteiωtO(t,−v̂)|0� (8)

where τ � R, and then we send R → ∞ followed by τ → ∞ to take the flat space limit,
keeping the physical energy ω fixed. To prepare a multi-particle in-state one simply acts on
the vacuum with several different operators. One measures the out-states in an identical way,
except replacing −πR

2 → πR
2 , v̂ → −v̂, and taking the Hermitian conjugate. The overlap

2

A one-dimensional contour integral applied
to the (meromorphic) Mellin Amplitude.

Now let’s derive it...

Note that as one might expect, 
single trace <--> single particle.
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Deriving 
the Flat Space Limit

Create in and out states by CFT operator smearing:

This equation can be simplified further to give

Vm1...mn =
�

i≥2

[mi(∆i − h+mi)Vm1−1,...,mi−1,...,mn ] +

�
m1 +

∆1

2
−

n�

i=2

�
mi +

∆i

2

��
Vm1−1,m2,...,mn

where we assume that m1 > 0. Of course we also get similar equations from each of the n legs,
for a total of n recursion relations. I have checked in mathematica that this recursion relation
is satisfied by the Lauricella-function vertices from Miguel’s paper, so we have a rigorous
derivation/proof of his formulas.

2 Flat Space Limit

Penedones has conjectured [] that the S-Matrix of the bulk theory dual to a CFT can be
obtained from a simple integral transform of the Mellin amplitude

T (sij) = Γ (∆Σ − h) lim
R→∞

� i∞

−i∞
dα eααh−∆ΣM

�
δij =

R2sij
2α

,∆a = Rma

�
(7) FlatSpaceLimitFormula

where we have introduced the short-hand symbol∆Σ = 1
2

�
i ∆i for half the sum of the external

dimensions, and ∆a are the dimensions of internal fields to which we wish to assign a non-zero
mass in the flat space limit. The integration contour in the α plane runs to the right of all
poles of the Mellin amplitude. Penedones provided many pieces of evidence for equation 7,
showing that it works for tree-level and one-loop 4-pt amplitudes, and that it accords with
earlier observations [] about a certain singularity in CFT correlators connected with flat space
scattering amplitudes. This evidence was further bolstered when it was shown in [] that Mellin
amplitudes can be constructed directly from diagrammatic rules that reduce to the Feynman
rules in the flat space limit. In effect, this proved that equation 7 is correct for all tree
amplitudes in scalar field theories.

In what follows we will prove equation 7 using the constructions of []. The flat space S-
Matrix can be extracted from AdS/CFT correlation functions in a straightforward manner;
here we will only give a brief discussion and refer the readers to [] for a thorough discussion.

Individual particles are created by single-trace CFT Operators in the large N limit. We
would like to prepare and then measure scattering states that correspond to many particles
with definite energy and momentum in the center of AdS. To create a massless particle with
energy ω and velocity v̂ that passes through the center of AdS at time t = 0, we act with the
single-trace operator O(t, x̂) on the vacuum as

|ω, v̂� =
� −πR

2 +τ

−πR
2 −τ

dteiωtO(t,−v̂)|0� (8)

where τ � R, and then we send R → ∞ followed by τ → ∞ to take the flat space limit,
keeping the physical energy ω fixed. To prepare a multi-particle in-state one simply acts on
the vacuum with several different operators. One measures the out-states in an identical way,
except replacing −πR

2 → πR
2 , v̂ → −v̂, and taking the Hermitian conjugate. The overlap

2

Single-trace Operator = Single Particle

2τ

2τ

πR

ψin

ψout

πR

ψin

ψout

2τ

2τ

AdS CFT
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Deriving 
the Flat Space Limit

This equation can be simplified further to give

Vm1...mn =
�

i≥2

[mi(∆i − h+mi)Vm1−1,...,mi−1,...,mn ] +

�
m1 +

∆1

2
−

n�

i=2

�
mi +

∆i

2

��
Vm1−1,m2,...,mn

where we assume that m1 > 0. Of course we also get similar equations from each of the n legs,
for a total of n recursion relations. I have checked in mathematica that this recursion relation
is satisfied by the Lauricella-function vertices from Miguel’s paper, so we have a rigorous
derivation/proof of his formulas.

2 Flat Space Limit

Penedones has conjectured [] that the S-Matrix of the bulk theory dual to a CFT can be
obtained from a simple integral transform of the Mellin amplitude

T (sij) = Γ (∆Σ − h) lim
R→∞

� i∞

−i∞
dα eααh−∆ΣM

�
δij =

R2sij
2α

,∆a = Rma

�
(7) FlatSpaceLimitFormula

where we have introduced the short-hand symbol∆Σ = 1
2

�
i ∆i for half the sum of the external

dimensions, and ∆a are the dimensions of internal fields to which we wish to assign a non-zero
mass in the flat space limit. The integration contour in the α plane runs to the right of all
poles of the Mellin amplitude. Penedones provided many pieces of evidence for equation 7,
showing that it works for tree-level and one-loop 4-pt amplitudes, and that it accords with
earlier observations [] about a certain singularity in CFT correlators connected with flat space
scattering amplitudes. This evidence was further bolstered when it was shown in [] that Mellin
amplitudes can be constructed directly from diagrammatic rules that reduce to the Feynman
rules in the flat space limit. In effect, this proved that equation 7 is correct for all tree
amplitudes in scalar field theories.

In what follows we will prove equation 7 using the constructions of []. The flat space S-
Matrix can be extracted from AdS/CFT correlation functions in a straightforward manner;
here we will only give a brief discussion and refer the readers to [] for a thorough discussion.

Individual particles are created by single-trace CFT Operators in the large N limit. We
would like to prepare and then measure scattering states that correspond to many particles
with definite energy and momentum in the center of AdS. To create a massless particle with
energy ω and velocity v̂ that passes through the center of AdS at time t = 0, we act with the
single-trace operator O(t, x̂) on the vacuum as

|ω, v̂� =
� −πR

2 +τ

−πR
2 −τ

dteiωtO(t,−v̂)|0� (8)

where τ � R, and then we send R → ∞ followed by τ → ∞ to take the flat space limit,
keeping the physical energy ω fixed. To prepare a multi-particle in-state one simply acts on
the vacuum with several different operators. One measures the out-states in an identical way,
except replacing −πR

2 → πR
2 , v̂ → −v̂, and taking the Hermitian conjugate. The overlap

2

Figure 2: Left: The bulk wavefunction �0|φ(x)|ψ� at t = 0, of a non-relativistic particle state |ψ�
with a gaussian wavepacket, near the center of AdS3. Right: The corresponding wavefunction
�0|O(x)|ψ� in the boundary theory, plotted along the surface of the boundary cylinder. Time runs
upward along the cylinder, and the magnitude |�0|O(x)|ψ�| of the wavefunction is its extent outward
from the cylinder surface. Knowledge of the bulk wavefunction φ(x) and φ̇(x) everywhere in AdS
at a given time is enough to determine the state; by contrast, one needs the boundary wavefunction
O(x) at all times in order to extract the same information.

In this section we will briefly examine the extreme example of a heavy non-relativistic particle

state |ψ� with large mass m and small momentum �k, whose wavefunction is well-localized to the

position x(t) near the center of AdS. We will take the bulk wavefunction to be a gaussian with

spatial and momentum spread ∆x and ∆k respectively. We make the approximations

m � k � 1

∆x
� 1

R
and (∆x)2m � R. (2.33)

The first gives us a well-localized, non-relativistic wavefunction in the flat-space limit, while the

latter means that the wavefunction spreading is negligible even after times of order R. The curvature

of AdS has no effect on the particle until it reaches distances of order its small velocity k/m, at

which time it will be deflected back in toward smaller radii. We will restrict our attention to time-

scales shorter than this so that all curvature effects on the particle trajectory are negligible. We

can describe our state as

|ψ� ≈
�

ddpψ(�p)|�p �, ψ(�p) ∝ exp

�
−(�p− �k)2

∆k2
+ ix0 · �p

�
, (2.34)

Its bulk wavefunction is then simply

ψφ(x) = �0|φ(x)|ψ� ∝ exp

�
−(�x− �vt− x0)2

∆x2
− i�k · �x+ iωkt

�
, (2.35)

15

Point-source at the boundary = plane wave 
in the center of AdS, energy set by frequency:

(an example of a wave packet state)
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Deriving 
the Flat Space Limit

between the in-states and the out-states extracts the S-Matrix for plane waves from a CFT

correlation function.

Now we will apply this procedure to the Mellin representation of the CFT correlator and

derive equation 7. AdS in global coordinates translates into a Lorentzian radial quantization

of the CFT, so the operator corresponding to the ith particle will be located at xi = eiti p̂i
in the d-dimensional spacetime where the CFT lives. This means that up to a normalization

factor, the S-Matrix is given by the integral and limit

T (sij) = lim
R
τ ,τ→∞

�
[dδ]

� τ±πR
2

−τ±πR
2

dtie
i(ωi−∆i)tiM(δij)

�

i<j

�
cos

�
ti − tj
R

�
− p̂i · p̂j

�−δij

Γ(δij) (9)

where the particles have energies ωi. Our task is to simplify and evaluate this integral.

First note that either |ti − tj| � R, if both particles i and j are initial or final, or else

|ti− tj−πR| � R, if the ith particle is in the final state and the jth is in the initial state. This

means that we can approximate the cosine by its Taylor expansion. But now the only difference
between initial and final states is the sign of their momenta, so we can drop the distinction

between initial and final states in the time integrals. This just reproduces the familiar fact that

we can assign all of the particles in a scattering amplitude to the in-state. Furthermore, we

must anticipate that the flat-space S-matrix will contain a momentum-conserving δ-function,
so we do not a priori demand that the total momentum vanish. For convenience, then, let

�q ≡ 1
n

�
i �pi, and introduce shifted momenta �p�i ≡ �pi − �q that do conserve momentum. Since �q

will eventually be constrained to vanish in the flat-space limit, we will consider it to be order

1 as opposed to the pi’s, which grow like ∼ R.

Moving the the (ti − tj) dependent factors into the exponent and expanding simplifies the

integrand, giving

�
�

i

ω−1
i

��
[dδ]

� ωiτ

−ωiτ

dtie
iti+AijtitjM(δij)

�

i<j

Γ(δij)

�
sij
ωiωj

�−δij

(10)

where we have changed variables ti → ti
ωi
, dropped

∆i
ωi

∼ O(R−1), and introduced the matrix

Aij:

Aij =
1

R2

δij
sij

for i �= j

Aii =

�

j �=i

ωj

R2ωi

δij
sij

(11)

Taking into account the constraints on δij and sij, one finds that this matrix has one zero

eigenvalue, corresponding to the sum of the ti; integrating over this direction simply produces

an energy conserving delta function.

Now we will re-parameterize the δij variables in a way that accords with the structure of Aij

and utilizes the fact that
�

j �=i s
�
ij =

�
j �=i p

�
i · p

�
j = 0, since our external particles are massless.

Let us take

δij = R2s�ij

�
1

2α
+ �ij

�
(12)

3

Integrating CFT Correlator against plane waves:

integrals can be evaluated via stationary phase
in the flat space limit of Gamma functions:

between the in-states and the out-states extracts the S-Matrix for plane waves from a CFT

correlation function.

Now we will apply this procedure to the Mellin representation of the CFT correlator and

derive equation 7. AdS in global coordinates translates into a Lorentzian radial quantization

of the CFT, so the operator corresponding to the ith particle will be located at xi = eiti p̂i
in the d-dimensional spacetime where the CFT lives. This means that up to a normalization

factor, the S-Matrix is given by the integral and limit

T (sij) = lim
R
τ ,τ→∞

�
[dδ]

� τ±πR
2

−τ±πR
2

dtie
i(ωi−∆i)tiM(δij)

�

i<j

�
cos

�
ti − tj
R

�
− p̂i · p̂j

�−δij

Γ(δij) (9)

where the particles have energies ωi. Our task is to simplify and evaluate this integral.

First note that either |ti − tj| � R, if both particles i and j are initial or final, or else

|ti− tj−πR| � R, if the ith particle is in the final state and the jth is in the initial state. This

means that we can approximate the cosine by its Taylor expansion. But now the only difference
between initial and final states is the sign of their momenta, so we can drop the distinction

between initial and final states in the time integrals. This just reproduces the familiar fact that

we can assign all of the particles in a scattering amplitude to the in-state. Furthermore, we

must anticipate that the flat-space S-matrix will contain a momentum-conserving δ-function,
so we do not a priori demand that the total momentum vanish. For convenience, then, let

�q ≡ 1
n

�
i �pi, and introduce shifted momenta �p�i ≡ �pi − �q that do conserve momentum. Since �q

will eventually be constrained to vanish in the flat-space limit, we will consider it to be order

1 as opposed to the pi’s, which grow like ∼ R.

Moving the the (ti − tj) dependent factors into the exponent and expanding simplifies the

integrand, giving

�
�

i

ω−1
i

��
[dδ]

� ωiτ

−ωiτ

dtie
iti+AijtitjM(δij)

�

i<j

Γ(δij)

�
sij
ωiωj

�−δij

(10)

where we have changed variables ti → ti
ωi
, dropped

∆i
ωi

∼ O(R−1), and introduced the matrix

Aij:

Aij =
1

R2

δij
sij

for i �= j

Aii =

�

j �=i

ωj

R2ωi

δij
sij

(11)

Taking into account the constraints on δij and sij, one finds that this matrix has one zero

eigenvalue, corresponding to the sum of the ti; integrating over this direction simply produces

an energy conserving delta function.

Now we will re-parameterize the δij variables in a way that accords with the structure of Aij

and utilizes the fact that
�

j �=i s
�
ij =

�
j �=i p

�
i · p

�
j = 0, since our external particles are massless.

Let us take

δij = R2s�ij

�
1

2α
+ �ij

�
(12)

3

leading to approximately Gaussian time integrals.
Time differences small: 

δij

detA = −2n−1(n−2)
αn , and

1

i2
n−1
2

√
n− 2

�
�

i

ω−1
i

�
(R2pi·pj)n(n−3)/2

�
dα[d�]α

n
2−2e

nα
n−2+O(α2�)M(δij)

�

i<j

Γ(δij)

�
pi · pj
ωiωj

�−δij

(18)

Now this is starting to look like the formula we want, but we still need to integrate over the

�ij and show that the Γ functions and the extra power law drop out, to just leave use with the

Mellin amplitude.

The first thing that drops out is the ωiωj part of the power law term. This vanishes because

of the constraints on the δij, which we have treated in this first pass as if ∆i = 0. Now we have

�
�

i

ω−1
i

�
(R2pi · pj)n(n−3)/2

�
dα

�
[d�]α

n
2−2e

nα
n−2+O(α2�)M(δij)

�

i<j

Γ(δij) (sij)
−δij

(19)

This has the correct dimensions because of the constraints. Now

�

i

Γ(ai) = e
�

i ai log ai (20)

if
�

i ai = 0 in the large ai limit. Thus the relevant part of the �ij integral becomes

�
[d�]M(δij) exp

�
�

ij

R2sij

�
1

α
+ �ij

�
log

�
R2

�
1

α
+ �ij

���
(21)

Now it’s well-known and easy to check that a function like

�

i

ai log ai (22)

on a surface where the sum of the ai is constrained is a convex function, and so is maxi-

mized/minimized in a very simple way.

In fact, an explicit computation on the constraints shows that �ij = 0 is the stationary

phase point. Note that once �ij = 0, the entire exponent vanishes, again due to the kinematic

constraints on the sij.
This proves Joao’s formula, except that we have not correctly computed the appropriate

power of α, because we have assumed that ∆i = 0, and we have not computed the determinant

around the stationary phase point �ij = 0.

If we restore ∆i �= 0, then the �ij’s are not minimized at �ij = 0 - this is not consistent with

the constraints. However, since they are multiplied by R2sij in the constraints, we can take

them to be zero everywhere except where they are multiplied by this factor, and (presumably)

1 Some of the signs here are important, so let us review how we obtain them. At �ij = 0, it is trivial

to decompose Aij ≈ 2δij−�1i�1j

α into an eigenbasis. Its eigenvectors are just 1√
n
�1, plus any basis of vectors

orthogonal to this. Clearly, the eigenvalues of these are 2−n
α and 2

α , respectively. Then, the exponent contains

−�1 ·A−1 ·�1 = −�1 ·�1 α
2−n , and the determinant is simply detA = (2−n)2n−1

αn .

5
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Mellin Diagrams to 
Feynman Diagrams

We showed that our factorization formula
for the Mellin amplitude reduces to factorization

of the tree-level scattering amplitudes, and that our
Feynman rules reduce to the flat space rules.

variables align with      , leaving us with:δij sij

This equation can be simplified further to give

Vm1...mn =
�

i≥2

[mi(∆i − h+mi)Vm1−1,...,mi−1,...,mn ] +

�
m1 +

∆1

2
−

n�

i=2

�
mi +

∆i

2

��
Vm1−1,m2,...,mn

where we assume that m1 > 0. Of course we also get similar equations from each of the n legs,
for a total of n recursion relations. I have checked in mathematica that this recursion relation
is satisfied by the Lauricella-function vertices from Miguel’s paper, so we have a rigorous
derivation/proof of his formulas.

2 Flat Space Limit

Penedones has conjectured [] that the S-Matrix of the bulk theory dual to a CFT can be
obtained from a simple integral transform of the Mellin amplitude

T (sij) = Γ (∆Σ − h) lim
R→∞

� i∞

−i∞

dα eααh−∆ΣM

�
δij =

R2sij
2α

,∆a = Rma

�
(7) FlatSpaceLimitFormula

where we have introduced the short-hand symbol∆Σ = 1
2

�
i ∆i for half the sum of the external

dimensions, and ∆a are the dimensions of internal fields to which we wish to assign a non-zero
mass in the flat space limit. The integration contour in the α plane runs to the right of all
poles of the Mellin amplitude. Penedones provided many pieces of evidence for equation 7,
showing that it works for tree-level and one-loop 4-pt amplitudes, and that it accords with
earlier observations [] about a certain singularity in CFT correlators connected with flat space
scattering amplitudes. This evidence was further bolstered when it was shown in [] that Mellin
amplitudes can be constructed directly from diagrammatic rules that reduce to the Feynman
rules in the flat space limit. In effect, this proved that equation 7 is correct for all tree
amplitudes in scalar field theories.

In what follows we will prove equation 7 using the constructions of []. The flat space S-
Matrix can be extracted from AdS/CFT correlation functions in a straightforward manner;
here we will only give a brief discussion and refer the readers to [] for a thorough discussion.

Individual particles are created by single-trace CFT Operators in the large N limit. We
would like to prepare and then measure scattering states that correspond to many particles
with definite energy and momentum in the center of AdS. To create a massless particle with
energy ω and velocity v̂ that passes through the center of AdS at time t = 0, we act with the
single-trace operator O(t, x̂) on the vacuum as

|ω, v̂� =

�
−

πR
2 +τ

−
πR
2 −τ

dteiωtO(t,−v̂)|0� (8)

where τ � R, and then we send R → ∞ followed by τ → ∞ to take the flat space limit,
keeping the physical energy ω fixed. To prepare a multi-particle in-state one simply acts on
the vacuum with several different operators. One measures the out-states in an identical way,
except replacing −

πR
2 →

πR
2 , v̂ → −v̂, and taking the Hermitian conjugate. The overlap

2

prescription comes from CFT prescription.i�
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Analyticity 
and the 

Holographic 
S-Matrix
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Analyticity in the 
Flat Space Limit

This equation can be simplified further to give

Vm1...mn =
�

i≥2

[mi(∆i − h+mi)Vm1−1,...,mi−1,...,mn ] +

�
m1 +

∆1

2
−

n�

i=2

�
mi +

∆i

2

��
Vm1−1,m2,...,mn

where we assume that m1 > 0. Of course we also get similar equations from each of the n legs,
for a total of n recursion relations. I have checked in mathematica that this recursion relation
is satisfied by the Lauricella-function vertices from Miguel’s paper, so we have a rigorous
derivation/proof of his formulas.

2 Flat Space Limit

Penedones has conjectured [] that the S-Matrix of the bulk theory dual to a CFT can be
obtained from a simple integral transform of the Mellin amplitude

T (sij) = Γ (∆Σ − h) lim
R→∞

� i∞

−i∞

dα eααh−∆ΣM

�
δij =

R2sij
2α

,∆a = Rma

�
(7) FlatSpaceLimitFormula

where we have introduced the short-hand symbol∆Σ = 1
2

�
i ∆i for half the sum of the external

dimensions, and ∆a are the dimensions of internal fields to which we wish to assign a non-zero
mass in the flat space limit. The integration contour in the α plane runs to the right of all
poles of the Mellin amplitude. Penedones provided many pieces of evidence for equation 7,
showing that it works for tree-level and one-loop 4-pt amplitudes, and that it accords with
earlier observations [] about a certain singularity in CFT correlators connected with flat space
scattering amplitudes. This evidence was further bolstered when it was shown in [] that Mellin
amplitudes can be constructed directly from diagrammatic rules that reduce to the Feynman
rules in the flat space limit. In effect, this proved that equation 7 is correct for all tree
amplitudes in scalar field theories.

In what follows we will prove equation 7 using the constructions of []. The flat space S-
Matrix can be extracted from AdS/CFT correlation functions in a straightforward manner;
here we will only give a brief discussion and refer the readers to [] for a thorough discussion.

Individual particles are created by single-trace CFT Operators in the large N limit. We
would like to prepare and then measure scattering states that correspond to many particles
with definite energy and momentum in the center of AdS. To create a massless particle with
energy ω and velocity v̂ that passes through the center of AdS at time t = 0, we act with the
single-trace operator O(t, x̂) on the vacuum as

|ω, v̂� =

�
−

πR
2 +τ

−
πR
2 −τ

dteiωtO(t,−v̂)|0� (8)

where τ � R, and then we send R → ∞ followed by τ → ∞ to take the flat space limit,
keeping the physical energy ω fixed. To prepare a multi-particle in-state one simply acts on
the vacuum with several different operators. One measures the out-states in an identical way,
except replacing −

πR
2 →

πR
2 , v̂ → −v̂, and taking the Hermitian conjugate. The overlap

2

For finite R, just contour integral of meromorphic 
function, so obviously analytic.

Flat Space Limit just expands near infinity.
We get branch cuts and imaginary parts

from the coalescence of poles.
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Locality = Analyticity?

The Mellin Amplitude is a meromorphic function
with only simple poles, in any CFT.

The Scattering Amplitudes are given by a simple
integral transform of the Mellin Amp.

Only precise notion of locality (I’m aware of)
is via analyticity and boundedness of S-Matrix.

Is this how we should think of locality
emerging from a CFT!?
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Flat Space Limit 
of a Bulk Exchange

In the flat space limit, a bulk propagator is simply:

1 Introduction

1.1 Review of the Mellin Amplitude

2 CFT Unitarity and the S-Matrix

As was demonstarted recently in [], there exists an elegant connection between the Mellin
representation of CFT correlation functions and the S-Matrix of the dual bulk theory in the
flat space limit. We will now revisit this connection from a different perspective, beginning
with a simple question: what is the most natural way to setup a CFT observable that behaves
like an S-Matrix?

S-Matrices describe the scattering of particles that are asymptotically non-interacting, so
to build the analogy we need a similar notion in the CFT. In any non-trivial CFT, there are no
‘non-interacting’ operators, but at large N we can roughly approximate this notion by studying
single-trace operators. A crucial property of free particles in flat spacetime is that they live in
a Fock space, so that the energy of a multi-particle state is given by the sum of the energies
of the individual particles. Translating via AdS/CFT from energy to dimension, we see that
at large N , single trace operators also have this property. Specifically, given k single-trace

operators Oi(x), there always exists a k-trace operator
��k

i=1 Oi

�
(x) whose dimension is given

by the sum of the dimension of the Oi, up to 1
N corrections. By the standard operator-state

correspondence, this means that we can construct multi-trace states which fill an approximate
Fock space built from the single trace operators.

Now that we have identified multi-trace operators as the analogue of multi-particle states,
we can construct an interesting ‘S-Matrix’ by taking inner products between these states at
different times. Since these multi-trace operators are not eigenstates of the full Dilatation
operator, this matrix will be non-trivial. The time (this ‘time’ is really the logarithm of the
scale factor in the CFT) difference between the in and out states can be arbitrary, but choosing
a time difference of order one could be particularly interesting because the different descendants
of a given operator differ in dimension by 1. It turns out that a time difference of exactly π
leads us to the S-Matrix of the dual bulk theory in the flat space limit.

[Notions of Unitarity – bounds on operator dimensions, positivity of the two-point functions
of local operators]

3 The OPE as the Cutting Rules

The point is that we can write the Mellin amplitude for an s-channel exchange as

M(δ) =
�

n

N(n)
�

m

R(2∆+ 2n,m)

δ − (2∆+ 2n+m)
(1)

Now in the flat space limit we have shown that

�

m

R(∆,m)

δ − (∆+m)
→

1

s+∆2
(2)

1The Mellin amplitude is dominated 
by poles where             ,

when we take the flat space limit. 
m ≈ ∆2

Loops?
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Computing Loop 
Diagrams

We can also compute AdS loop diagrams

λφ4 gφ5µφ2χ

Using an AdS version of Kallen-Lehman,
which makes it possible to write 2-point
functions of local operators as a positive

 integral over free propagators.
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1-Loop Computations
a la Kallen-Lehman

At 1-loop, can write bubble diagram using:

1 Introduction

1.1 Review of the Mellin Amplitude

2 CFT Unitarity and the S-Matrix

As was demonstarted recently in [], there exists an elegant connection between the Mellin
representation of CFT correlation functions and the S-Matrix of the dual bulk theory in the
flat space limit. We will now revisit this connection from a different perspective, beginning
with a simple question: what is the most natural way to setup a CFT observable that behaves
like an S-Matrix?

S-Matrices describe the scattering of particles that are asymptotically non-interacting, so
to build the analogy we need a similar notion in the CFT. In any non-trivial CFT, there are no
‘non-interacting’ operators, but at large N we can roughly approximate this notion by studying
single-trace operators. A crucial property of free particles in flat spacetime is that they live in
a Fock space, so that the energy of a multi-particle state is given by the sum of the energies
of the individual particles. Translating via AdS/CFT from energy to dimension, we see that
at large N , single trace operators also have this property. Specifically, given k single-trace

operators Oi(x), there always exists a k-trace operator
��k

i=1 Oi

�
(x) whose dimension is given

by the sum of the dimension of the Oi, up to 1
N corrections. By the standard operator-state

correspondence, this means that we can construct multi-trace states which fill an approximate
Fock space built from the single trace operators.

Now that we have identified multi-trace operators as the analogue of multi-particle states,
we can construct an interesting ‘S-Matrix’ by taking inner products between these states at
different times. Since these multi-trace operators are not eigenstates of the full Dilatation
operator, this matrix will be non-trivial. The time (this ‘time’ is really the logarithm of the
scale factor in the CFT) difference between the in and out states can be arbitrary, but choosing
a time difference of order one could be particularly interesting because the different descendants
of a given operator differ in dimension by 1. It turns out that a time difference of exactly π
leads us to the S-Matrix of the dual bulk theory in the flat space limit.

[Notions of Unitarity – bounds on operator dimensions, positivity of the two-point functions
of local operators]

3 The OPE as the Cutting Rules

The point is that we can write the Mellin amplitude for an s-channel exchange as

M(δ) =
�

n

N(n)
�

m

R(2∆+ 2n,m)

δ − (2∆+ 2n+m)
(1)

Now in the flat space limit we have shown that

�

m

R(∆,m)

δ − (∆+m)
→

1

s+∆2
(2)

1

4.1 Constructing Loop Amplitudes via Kallen-Lehman

We can express

G∆(X, Y )2 =
∞�

n=0

N∆(n)G2∆+2n(X, Y ) (54)

using the normalization factor

N∆(n) = −
(2π)−2hΓ(∆)2(h− 2(∆+ n))Γ(h+ n)Γ(n+∆)Γ

�
−h+ n+∆+ 1

2

�
Γ(−h+ n+ 2∆)

Γ(h)Γ(n+ 1)Γ(−h+∆+ 1)2Γ
�
n+∆+ 1

2

�
Γ(−h+ n+∆+ 1)Γ(−2h+ n+ 2∆+ 1)

from the ECFT paper, which has also been multiplied by
C2

∆
C2∆+2n

in order to adjust the nor-
malizations in that paper to our current normalizations for the 2-pt functions. In the large n
limit, this becomes

N∆(n) ∝ n2(h−1) (55)

4.2 λφ4 Theory and Branch Cuts

Branch cuts come from the integral

�
dααh− 1

2

�
i ∆ieα

∞�

m=0

α
Res(m)

∆+m

1

α− R2s
∆+m

(56)

The sum produces a line of poles in the α plane from the origin (as m → ∞) to the point
R2s
∆ . When s rotates around in the complex plane, the contour must move and we pick up
the sum over the residues of this line of poles. This happens because the contour is forced to
pass between the pole/cut at α = 0 from the αh− 1

2

�
i ∆i factor and the physical poles from

the integrand (the α pole at the origin can be thought of as the remnant of the Γ functions).
Note that the convergence or divergence of R(m)/m as m → ∞ tells us whether we have a
divergence in our loop amplitude.

4.2.1 Asymptotic Behaviors of Res(m)

For a tree level, s-channel exchange we find that

Res(m) ∝ mh− 1
2

�
i ∆i (57)

The norm that relates the square of a propagator to a propagator goes as

N(n) ∝ n3(h−1) (58)

where the dimension of the propagator is 2∆ + 2n. The loop amplitude is exponentially
dominated by the exchange of primaries, as expected by momentum = 0 being equivalent to
primary-ness in the flat space limit.

11

This gives a Kallen-Lehman-esq Mellin Amplitude:

∆

∆
2∆+ 2n

∞�

n=0

= N∆(n)

or
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Branch Cuts

integral I transforms as

I −→ I +

∫

C

dE!" F (E!", θi) (132)

where C is a small circle around the pole, see figure 7. This means that I is not a singled

valued function and has branch cuts. The particular branch cut under consideration has as

branch point the value of the kinematical invariants that make the pole coincide with the

origin E!" = 0. The discontinuity across the branch cut is given by this contour integral.

E E

Figure 7: On the left, complex E!" plane with the contour integral along the positive real axis and
a pole moving in a circle around the origin. On the right, the result after moving the pole back into
its original position. The contour is dragged by the pole which indicates the presence of a branch
cut. At the end, there is an additional contour integral around the pole which is the discontinuity
across the branch cut.

Once again, the contour integral that computes the residue can be computed by cutting

the corresponding propagator in the original integral if the pole is infinitesimally close to the

real positive axis. In other words, a second propagator has been cut. This means that this

discontinuity has the usual meaning of two physical tree-level amplitudes; one emitting two

on-shell particles with positive energy that become the in-states of the other. The leftover

integrations make up the Lorentz invariant phase space integral of two on-shell particles

satisfying a momentum conservation condition. If, on the other hand, the pole is not located

close to the real positive axis the discontinuity of the integral, which is still computed by the

residue on the pole, does not have such a physical meaning.

Consider for example the simple bubble integral in four dimensions

I(P 2) =

∫

d4"
1

("2 + iε)(("− P )2 + iε)
. (133)

43

Circling in the complex plane gives a branch cut.

In the flat space limit, we find the integral:
So our decomposition of the Mellin amplitude directly turns into the Kallen-Lehman represen-
tation of the propagator, and therefore of the scattering amplitude as

M(δ) →

� ∞

0

dn
N(n)

s+ (2∆+ 2n)2
(3)

In the case of a bubble diagram, N(n) ∝ n2(h−1), where the exact formula is

N∆(n) = −
(2π)−2hΓ(∆)2(h− 2(∆+ n))Γ(h+ n)Γ(n+∆)Γ

�
−h+ n+∆+ 1

2

�
Γ(−h+ n+ 2∆)

Γ(h)Γ(n+ 1)Γ(−h+∆+ 1)2Γ
�
n+∆+ 1

2

�
Γ(−h+ n+∆+ 1)Γ(−2h+ n+ 2∆+ 1)

(4)
Anyway, we see that the discontinuity across the branch cut in the flat space limit follows
trivially from the contour integral, giving

disc[M] =
N(

√
s)

√
s

(5)

for
√
s > ∆ = 2m, twice the mass of the field. But this just means that we must find from

conglomeration that C3(
√
s)2 is N(

√
s).

3.1 Conformal Blocks vs Witten Diagrams

We saw in [[analyticity paper]] [] how to compute the flat space limit of the Mellin amplitude.
However, our construction from the OPE requires that the discontinuity across the branch cut
be related to the coefficient of a conformal block, not the Mellin amplitude for an exchange in
AdS. So now let us compute the flat space limit of a conformal block.

This is given by

�
dαeααh−Σeπi

R2s
α

Γ
�

R2s
α −∆12,5

�
Γ
�

R2s
α −∆34,5̃

�

Γ
�
R2s
α

�
Γ
�
R2s
α −∆12,34

� (6)

The poles of the conformal block are identical and have the same residues as the poles of the
Mellin amplitude corresponding to the exchange of a field in AdS. However, the conformal
block behaves differently at infinity, and so it’s flat space limit is not the same as the flat space
limit of the Mellin amplitude corresponding to exchange.

In fact, as we saw in [], there are two contributions to this integral – one from the poles,
and one from an integral along the branch cut of the fractional power αh−Σ. Both contribute
to the flat space limit of an AdS exchange, but only the poles contribute to the flat space
limit of the conformal block. This follows because near the branch cut, the integral can be
approximated as

�
dαeααh−Σeπi

R2s
α

�
R2s
α −∆12,5

�R2s
α −∆12,5

�
R2s
α −∆34,5̃

�R2s
α −∆34,5̃

�
R2s
α

�2R2s
α −∆12,34

(7)

2
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Branch Cuts from 
Mellin AmplitudesSo our decomposition of the Mellin amplitude directly turns into the Kallen-Lehman represen-

tation of the propagator, and therefore of the scattering amplitude as

M(δ) →

� ∞

0

dn
N(n)

s+ (2∆+ 2n)2
(3)

In the case of a bubble diagram, N(n) ∝ n2(h−1), where the exact formula is

N∆(n) = −
(2π)−2hΓ(∆)2(h− 2(∆+ n))Γ(h+ n)Γ(n+∆)Γ

�
−h+ n+∆+ 1

2

�
Γ(−h+ n+ 2∆)

Γ(h)Γ(n+ 1)Γ(−h+∆+ 1)2Γ
�
n+∆+ 1

2

�
Γ(−h+ n+∆+ 1)Γ(−2h+ n+ 2∆+ 1)

(4)
Anyway, we see that the discontinuity across the branch cut in the flat space limit follows
trivially from the contour integral, giving

disc[M] =
N(

√
s)

√
s

(5)

for
√
s > ∆ = 2m, twice the mass of the field. But this just means that we must find from

conglomeration that C3(
√
s)2 is N(

√
s).

3.1 Conformal Blocks vs Witten Diagrams

We saw in [[analyticity paper]] [] how to compute the flat space limit of the Mellin amplitude.
However, our construction from the OPE requires that the discontinuity across the branch cut
be related to the coefficient of a conformal block, not the Mellin amplitude for an exchange in
AdS. So now let us compute the flat space limit of a conformal block.

This is given by

�
dαeααh−Σeπi

R2s
α

Γ
�

R2s
α −∆12,5

�
Γ
�

R2s
α −∆34,5̃

�

Γ
�
R2s
α

�
Γ
�
R2s
α −∆12,34

� (6)

The poles of the conformal block are identical and have the same residues as the poles of the
Mellin amplitude corresponding to the exchange of a field in AdS. However, the conformal
block behaves differently at infinity, and so it’s flat space limit is not the same as the flat space
limit of the Mellin amplitude corresponding to exchange.

In fact, as we saw in [], there are two contributions to this integral – one from the poles,
and one from an integral along the branch cut of the fractional power αh−Σ. Both contribute
to the flat space limit of an AdS exchange, but only the poles contribute to the flat space
limit of the conformal block. This follows because near the branch cut, the integral can be
approximated as

�
dαeααh−Σeπi

R2s
α

�
R2s
α −∆12,5

�R2s
α −∆12,5

�
R2s
α −∆34,5̃

�R2s
α −∆34,5̃

�
R2s
α

�2R2s
α −∆12,34

(7)

2

N(n) ∝ nd−2with

for        theory.  Gives branch cut!  Discontinuity:λφ4

N(
√
s)√
s

∝
√
s
d−3

This comes from the exchange of 
double-trace primary states of dimension      !

√
s

This is controlled by the OPE, as we will see...
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Holographic 
S-Matrix

Monday, November 14, 2011



S-Matrix Unitarity
from the OPE

The cutting rules for the discontinuity of a loop amp

Im[ ]=
�

states
|2| out

look reminiscent of the Conformal Block decomp:

especially since operators = states in the CFT.

−i(T − T †) = T †T

or more generally the unitarity relation

=
�

α

Oα
�O1O2

�
�

α

|α��α|

�
O3O4�from
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Let’s Check It at 1-Loop

Im[ ]=
�

states
|2| out

We need to compute both sides from the CFT.

First let’s compute the left side, using the
1-loop result we discussed.

The goal is to see that both are determined by 
a specific conformal block coefficient.
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Branch Cut 
Discontinuity

Recall that at 1-loop, branch cuts came from:

M(δ) →
� ∞

0
dn

NW (n)

s+ (2∆+ 2n)2
=⇒ disc =

NW (
√
s)√

s

where we had defined (a la Kellan-Lehman)

G∆(X,Y )2 =
∞�

n=0

NW (n)G2∆+2n(X,Y )

But the contribution of bulk exchange implies
the exchange of a primary operator in the 

conformal block decomposition.
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Bulk Exchange Leads to 
Operator Exchange

G∆(X,Y )2 =
∞�

n=0

NW (n)G2∆+2n(X,Y )

implies that we must have terms 
in the conformal block decomposition:

NB(2∆+ 2n) = NW (n)

where the decomposition is defined by

M4(δij) =
�

α

NB(∆α)B∆α(δij)
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Conformal Blocks and 
the Imaginary Piece

In other words, we see that the conformal
block decomposition determines the left side of

Im[ ]=
�

states
|2| out

Now we will compute the right side. 
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Unitarity Relation 
Determined by Blocks

M4(δij) = B∆α(δij)

As with dispersion relations, one order in 
perturbation theory gives info about the next.

O2

O1 O1

O2

�

α
( ))([OaOb]n,�

[OaOb]n,�

M4(δij) =
�

α

NB(∆α)B∆α(δij)

Gives a distinct way to compute coefficients
in the conformal block expansion.
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Conformal Blocks
from 3-pt Correlators

Coefficients of each block come from 3-pt correlators

�O1O2Oα� =
C3(1, 2,α)

x
∆12,α

12 x
∆2α,1

2α x
∆α1,2

α1

Where the coefficients multiply universal functions

M4(δij) =
�

α

NB(∆α)B∆α(δij)

NB(∆α) =
C3(1, 2,α)C3(α, 3, 4)

C2(α,α)
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Conglomerating 
Operators

To compute need to conglomerate single trace
operators into one multi-trace:

By operator-state correspondence, this picks a state 
in the CFT (the state appearing in cutting rules!).

OaO1

O2
O2

O1

Ob

[OaOb]n,�

Easy in Mellin space, convolve with wavefunction.
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Unitarity Relation 
Determined by Blocks

M4(δij) = B∆α(δij)

Coeff of Block at a given Dimension/Energy 
is the square of 2 --> X amp, summed over states!

Im[ ]=
�

states
|2| out

Both sides compute the same Conformal Block Coeff!

O2

O1 O1

O2

�

α
( ))([OaOb]n,�

[OaOb]n,�

Sum on CFT states = phase space integral in Flat Limit.
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Bootstrap Programme 
=> S-Matrix Programme

What is the flat space limit of a conformal block??
B∆α → δ

�
s−∆2

α

�

“Obvious”, since blocks have definite angular 
momentum and definite dimension = energy.

becomes (when we take the flat space limit)

M4(δij) =
�

α

NB(∆α)B∆α(δij)

M(s, t) = NB(s, t)
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A Peak at Black Holes

But on very general grounds, expect that

M(s) ∼ e−SBH ≈ e−Gd+1s
d−1
2

This gives a concrete prediction for the OPE
and the conformal block decomposition 

of any CFT with a gravity dual 
where effective field theory applies!

M(s, t) = NB(s, t)
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Some Future Directions 

• Mellin diagrammatic rules for loops, higher spin 
particles, twistors/spinor-helicity, SUSY, 
compactifications, dS/CFT, beloved theories...

• bolster recent progress on CFT Bootstrap?

• broken conformal invariance (eg QCD), flows 
between CFTs??

• sharpen criterion for analyticity = bulk locality?

• do all Gravitational S-Matrices come from CFTs??

• Find a CFT description of Hawking Evaporation, or 
at least see its simple and robust features!?
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Conclusion

• Mellin Space = ``Momentum Space for 
CFTs”, conceptually and computationally

• Mellin Amplitude -> Holographic S-Matrix
• Analyticity follows from Meromorphy
• the OPE implies Unitarity, Cutting Rules
• Expect scattering through BHs is a robust 

ingredient in CFT dynamics, so we should 
attempt to understand it!
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