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N = 4 super-Yang-Mills theory has a number of remarkable properties:

* super-conformal invariance
* dual super-conformal invariance at planar level
* integrable planar dilatation operator

* remarkable planar amplitudes / Wilson loops relation
Alday, Maldacena

* remarkable planar amplitudes / correlation function relation
Eden, Korchemsky, Sokatchev

m Planar amplitudes have a very constrained structure

Unregularized d=4 integrand determined be symmetries and a small number
of unitarity properties Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka

m» Far fewer constraints for non-planar amplitudes
Yet...



... hon-planar amplitudes are simpler than what they could have been

U(1) decoupling: e 1-loop sub-leading color i.t.o. leading color
— combination of box integrals Bern, Kosower

e parts of 2-loop 2-trace related to leading color

Bern, Rozowsky, Yan; Bern, de Freitas, Dixon
2 3 2

— combination of and z>3

1 4 1

e Inversion of higher loop U(1) decouplings  Naculich

Higher loops: ® 3 & 4 loops: 2-trace better in UV than rest

8 Bern, Carrasco, Dixon, Johansson, RR
VS D.=4+ —

D.=4+ 7

~ o

Exhibits color-kinematic duality; ¢ +¢; + ¢ =0 < n;+n; +n, =0
Bern, Carrasco, Johansson

— (potential) all-order relation between I. and sub-I. color
— Ssimple and structured expressions



... hon-planar amplitudes are simpler than what they could have been

U(1) decoupling: e 1-loop sub-leading color i.t.o. leading color
Bern, Kosower

e parts of 2-loop 2-trace related to leading color
Bern, Rozowsky, Yan; Bern, de Freitas, Dixon

* Inversion of higher loop relations Naculich

Higher loops: ® 3 & 4 loops: 2-trace better in UV than rest

Bern, Carrasco, Dixon, Johansson, RR

Exhibits color-kinematic duality; ¢ +c¢j+c. =0 < n;+n; +npg =0
Bern, Carrasco, Johansson

— (potential) all-order relations between I. and sub-I. color
— simple and structured expressions

Question: How much of this structure relies on supersymmetry?
Can there be more structure that is hidden?



Analyze QFT-s which share most of the properties of N/ = 4 sYM
— Deform it in a controlled way

1. orbifolds Inheritance principle: Bershadsky, Johansen
I . I Bershadsky, Kakushadze, Vafa
ol =R';g7'w/g RecSUM4) geSUM4) C SUN)

2. the h deformation Leigh, Strassler
W = Tr[® [Py, Ds]] — f(h, N)(Tr[®1[D2, P3]] + h(Tr[®7] + Tr[®3] + Tr[®3]))

3. the (3 deformation Leigh, Strassler
W =Tr[®1[@y, B3]] — f(B,N)Tr[@1(e”Py®3 — e W D3Dy)]

super-conf. dual super-conf. planar integrable Amp/W.L.
1. yes; N=2,1,0 yes; inherited yes quite likely
2. yes; N=1 not known sometimes not clear

3. yes; N=1,0 yes yes yes




The supersymmetric 3 -deformed N = 4 super-Yang-Mills theory

* the same field contentas N/ = 4 sYM
* real #: almost the same properties except for supersymmetry

* 3 pattern for the deformation: Lunin, Maldacena

: i iBiiqtq’
noncommutative deformation: Y1¥J H— €T rp g

Bz’j:_ﬁji§if81223232331:5l—>8usy \/\/:4

R-charge vectors

¢14 ¢24 ¢34 AM wl ¢2 ¢3 ¢4 Ql Q2 Q3 Q4
Jio || 1 0 o [[ o[ 12 -1/2-1/2]1/2]-1/2] 1/2 [ 1/2 || -1/2
Jaa || O 1 o [[ o [[-1/2] 1/2 | -1/2|1/20 1/2 ||-1/2 | 1/2 | -1/2
Js || O 0 1 0 || -1/2]-1/2] 1/2 [1/2 | 172 | 1/2 | -1/2 [ -1/2

Some consequences:

* most non-commutative results survive; planar amplitudes are inherited
Filk (space-time noncommutativity); Khoze; ...

 vector U(1) factors decouple; chiral superfield U(1) factors are coupled
U(N) vs SU(N)?
* both fupe and dgpe couplings



General deformation:  @rpy — €900 B £ By £ By
Frolov
- Supersymmetry is completely broken;

deformation of the N’ = 4 component Lagrangian

- Renormalizability requires some 2-trace terms Dymarsky, Klebanov, RR
(unpublished)

)\2 A2 . _
0Seff = — 62 In Ve [8 (cos43;,;—cos 481 )? Tr[qb%ﬂTr[gé%ﬂ
+ 8 (cos4f;; — cos 2(Bix + ﬁjk))Q Tr[¢' ¢? | Tr[¢" @]
l + 8 (cos483;j—cos 2(Bix—Bjk))” Tr[¢' ¢’ Tr[p' ¢/ } i

6Siree = f1i;Tr[@" @' | Tr[@ @' |+ fai; Tr[e" &7 | Tr[@" 7]+ f3i; Tr[¢' ¢ | Tr[¢’ ¢

1#j 7k
- Unstable RG evolution of 2-trace couplings (Landau pole)
- N =1 limit: unique 2-trace coupling with RG fixed point

f27;j — 3 |h|2 Sin2 25 Value required to project out the U(1)
N auxiliary fields in chiral multiplets

Expectedly, supersymmetry cures instability; does it do anything else?



What is the coefficient of the superpotential and
what is the UV behavior of the theory?

* Leigh/Strassler: not constructive but guarantees that there exists a
coefficient h = f(3, N., g,,,) that leads to a finite theory

Freedman, Gursoy

- 1-and 2'|00p expressions are known Penati, Santambrogio, Zanon

- when/how are they corrected?

* 4-point amplitudes: Manifest susy — formally diverge in

2N 2
D.=4 » De =4+ —
i L JrL

Is this really true?

» Try to answer by evaluating 4-point amplitudes



e Single-trace amplitudes:

A = N T T ]AD (kL k)
pESn/Zn 1

AO By . k) > @O0 AO (k) O, )= Y g fg
1<i<g<n
- A simple example -- 3-point amplitudes: ¢y pI* i £ £k =1,2,34

AP (197, 207, 397 = —(23)e" Trizs + —(32)e™ Tram



e Single-trace amplitudes:
A(O) = Z TI‘[Tap(l) ce Tap(”)]A(0)<kp(1) ce kp(n))
PESH/Zn 1

AO (ky o k) = PG AO (k) O(L,.n) = Y ¢ B

1<i<g<n
- Account for the O(1/N?)deformation of the coefficient of the superpotential

Here: focus on double-trace terms; ignore O(1/N?) corrections

* non-vanishing tree-level double-trace amplitudes

1 | | L
Loty = 2N|f(ﬁ,N)2|€v:jk€2lmT1“H¢J, o" 51 Tr[ (@1, drmls]
2
. . . . 2 gYM
— crucial for finiteness; also |f(8,N)|* = 1_%Singﬁ

With same planar properties, differences appear at subleading color in dim. Reg.
e supersymmetry =» more double-trace amplitudes

e structure constant color factors combine 1- and 2-trace terms



. . \
e BCJ-like numerator relations >—< /é I

B,(0 12 a n23 a n13 a
AL ( )(1g+,2¢23,3f134,4f124) _ Efm fad4a + —f 23a £14 + f31 fata

ni2 a n23 a nis3 a
5 (0)(1¢23 2(/514 3¢13 4¢24> o f12 f34a, 4 £f23 fl4a _|_ f 31 f 24

f'abc Tr[Ta, [Tb,TC]B] _ ei@(a,b,c)Tr[TaTch] . ei@(a,c,b)Tr[TaTch]

Numerator factors -- same as in A/'=4 sYM:
ni2 + no3 +n13 =0

Color factors — different; generically no Jacobi identity
involving only d-structure constants:
f[12af3]4a — 0 f[12ad3]4a — 0



On corrections to the coefficient of the superpotential

Fairly accurate picture from color structure of supergraphs with only scalar vertices

f53a351

-1 loop: J/
1 1
w21 = L, go12) s 2(1_ _—12) pajagas
7<>\‘O(( wala—a ') o< P (1= ola a7 1

f‘b1a1b2 fbgagbl
B i

Finiteness as ¢ — 1 requires they are cancelled by vector multiplet interactions

2
_ 9y m
F(B, N)I* = |h]* =
- 1 — §zla — a7
- 2 loops: All 2-point and 3-point graphs contain a triangle x faas

—> color structure reduces to 1-loop analysis
—> finiteness at ¢ — 1: same condition as at 1 loop

- 3 loops: Argument no longer works; there exist graphs with only box subintegrals
B8 (Ne— =) g — g (@+4+07%) + g —q I
N, NZ
Correction to f (3, N.) expected at this loop order; precise expression
of the 2-loop divergence is important.



Some all-order results

e cusp anomaly is independent of the deformation

- consequence of integrability; testable at weak and strong coupling
—> same leading IR divergences as in the un-deformed theory

* 2-trace (3-dependence: iff nontrivial R-charge flow between traces

q1 q3 .
Generically:
g1 +q+q+q=0
q2 4

If g1 +q¢2= 0 =q3+ q4 all B8-dependence drops out

To see this: follow charge flow in generalized
unitarity cuts

Charge conservation:

O(1,2,a,...,b,3,4,b,...,a) = O(1,2) + O(3,4)
+20(1 4+ 2,a,...,b)




Some all-order results

e cusp anomaly is independent of the deformation

- consequence of integrability; testable at weak and strong coupling
—> same leading IR divergences as in the un-deformed theory

* 2-trace 3-dependence: iff nontrivial R-charge flow between traces

di1 q3 :
Generically:
Q1 +3q2+q3+qs=0
p) 44

If g1 +g¢2= 0 =q3+ g4 all B-dependence drops out

-- 4-gluon double-trace terms: same properties asin N =4 sYM
- divergein D, =4+ 8/L
- same for Tr[¢;¢"| Tr[*x]

-- Generalization to higher-point multi-trace terms



Some explicit examples 4-point loop amplitudes: 1 loop

» Construct using generalized unitarity
- use color-dressed cuts
- supersums: use pictorial rules
dressed with the extra phase factors

g —— /¢23

— 2L
P — 7

AP (197 297 367 4614

\_/

2L
) W3 . ()
=ue P w97

Phr—s = A2BC — (2AB + 2AC) + (4 + = + —

Bern, Carrasco, Ita, Johansson, RR

9" iﬁ&z

\ \”

¢23

%
A%
@/\\

2 1

cte Ut esc

Jin, RR



Some explicit examples 4-point loop amplitudes: 1 Ioop Jin, RR
Supersum in terms of charge-flow diagrams: /¢25
_ {la2) (153) (1y4) \) <
A_<z2 B_za?, ¢= (1,4) 9‘ —
/ gt EB > <¢14 g\_</¢23
) oA \
:;:@4 > <\>\/<
B,(1) 23 14 | g 23
Aj (1g .29, 307", 4¢ g :/ &\ i N) <¢
- Planar cut topology: same p?\/:4 | g o / 2\t
|
- Non-planar cut topology: g ' gty 2L . .
1
ps = A’BC — (2AB + 2cos(2B8) AC) + (4cos(28) + g + %) — % — 26?2(025) + 5o

o— o (222 (14)(13)(lad)(la3)
7 12) (20 (Lalo) I1) (Bla) (L) (Aly) (13)



Some explicit examples 4-point loop amplitudes: 1 loop Jin, RR

e Construct using generalized unitarity
- use color-dressed cuts

- supersums: use pictorial rules Bern, Carrasco, Ita, Johansson, RR
dressed with the extra phase factors
- focus on 3 terms: Tr[T“T% | Te[T%T™] i+ j+k=23,4

* Classify following the number of vector multiplets

* 4 vector multiplets: same asin N = 4 sYM
* 3 vector multiplets + 1 chiral multiplet: vanish identically
* 2 vector multiplets + 2 chiral multiplets: A(1,+,2,-,3,31,4,12)



Some explicit examples 4-point loop amplitudes: 1 loop

* Classify following the number of vector multiplets

* 4 vector multiplets: same asin N = 4 sYM
e 3 vector multiplets + 1 chiral multiplet: vanish identically
* 2 vector multiplets + 2 chiral multiplets: A(1,+,2,-,3;31,4412)

A(1234)77 = A(1234) "V =* — 85in? B (Tr13Traq + TriaTras) A(1234) "

<23>2 3 3 2 2.3 2 3
1)extra 2
A(1234)4(1;§ = (13)2 [ — 812823 +812(1><[ + j><j)+823( A + 1><4 )}
4 4 1 1 4 '
3

1 4
- IR finite
- UV divergent in 6 dimensions; standard expectation for a conformal A/ = 1 theory



Some explicit examples 4-point loop amplitudes: 1 loop

* Classify following the number of vector multiplets

* 4 vector multiplets: same asin N = 4 sYM
e 3 vector multiplets + 1 chiral multiplet: vanish identically
* 2 vector multiplets + 2 chiral multiplets: A(1,+,2,-,3;31,4412)

A(1234) 98 = A(1234) VN1 4 4 (1234) 0

2 3

(13)? GJI,1,2,3]
(23)2 $12823 l

AT (1934) = —8K2 sin? B

4

2

2 1 ‘
X [(1 — m) (Tr13Trog + Tri4Tros) — N(TI'1324 + Tri432) — WTHZTI'?A

- IR finite
- UV divergent in 6 dimensions; standard expectation for a conformal A/ = 1 theory



Some explicit examples 4-point loop amplitudes: 1 loop

* Classify following the number of vector multiplets

4 vector multiplets: same asin N = 4 sYM

3 vector multiplets + 1 chiral multiplet: vanish identically

2 vector multiplets + 2 chiral multiplets: A(1,+,2,-,3,31,4412)

1 vector multiplet + 3 chiral multiplets: A(1,-, 254,31, 4,:2)

AWM (1234) = cos 8 ALY (1234) (TryoTray + TrygTrog + TryaTros)

2 3 4 2 3 4

( + +

1 4 1 3 1 2

23][34]

(1)2tr .
Ay [12][13]

= —2512523




Some explicit examples 4-point loop amplitudes: 1 loop

* Classify following the number of vector multiplets

* 4 vector multiplets: same asin N = 4 sYM

3 vector multiplets + 1 chiral multiplet: vanish identically

2 vector multiplets + 2 chiral multiplets: A(1,+,2,-,3,31,4412)

1 vector multiplet + 3 chiral multiplets: A(1,-, 254,31, 4,:2)
4 chiral multiplets: A<1¢1 : 2¢1 S S ) , A(]_wl : 2¢2, 3oy ; 4¢2)

ALy, 201, By, Ayasa )P = ALy, 201, 3y2sa, 4y2aa) {7V =1 =8 sin? B Tryo Tray A(1234) (Hextra

4

A(1234)(Mextra (34) 2 C DO
3 2
o2 = 1) $13514 —513(1)<[ + ]><4 ) — s14( A + Y )]
. 41 1 4 !
1 )

1

(34) G[I,1,4,2]
<12> 513514 l




Some explicit examples 4-point loop amplitudes: 1 loop

* Classify following the number of vector multiplets

* 4 vector multiplets: same asin N = 4 sYM

3 vector multiplets + 1 chiral multiplet: vanish identically

2 vector multiplets + 2 chiral multiplets: A(1,+,2,-,3,31,4412)

1 vector multiplet + 3 chiral multiplets: A(1,-, 254,31, 4,:2)
4 chiral multiplets: A<1¢1 : 2¢1 S S ) , A(]_wl : 2¢2, 3oy ; 4¢2)

ALy, 202, 3y, 49,) 17 = AN =1 85in? B Tr12Tras A(1234) 1553 ~8sin? 5 Tr14 Trog A(1234) oy ™

2 4 3 9
1)extra <34> 1
A(1234)§2);34 = cos” 5@ (5812813 — s12( j><[4 — 1j><j )
1 3

2 4 2 3 2 4
1)extra <34> G[l, 1, 2, 4]
A(1234)§4);23 - (12) [COS2 b 2519513 ]| T S12814 — 512513
3




Some 1-loop comments:

* results consistent with expected structure of IR divergences
-- most corrections are in fact IR-finite; consistent with structure of IR div’s

-- only small changes in the soft anomalous dimension matrix

* no real improvement over a finite “garden variety” N = 1 theory
-- except perhaps absence of incomplete cancellations (of bubbles)

« some details are as if there were more than A/ = 1susy
-- some supersums are perfect squares

-- yet, no noticeable effect

* no immediate manifestation of tree-level numerator relations



More explicit examples 4-point loop amplitudes: 2 loops Jin, RR

Same classification:
* 2 vector multiplets + 2 chiral multiplets: A(1,+,2,-,3,34,4412)

A(1234) 000 = A(1234) 750" — 8sin? f Tri3Traa AR5, — 8sin? B Tr1a Tras A 53

I : . N C U Symmetries of 2 i g?ggtm
(a) I (b) I | (c) I; C . (1 < 27 3 VAN 4)

Ee: ><> LU U:(14,263)
: 2)extra
<> <> U Myt =)ol

(8) Ja (b) J
1\ 5 3 1 —|_ C) /B’l
D o < e TS
2
9/ 6 4 3 4
Q) K (i) Ko (k) K3 W) Ks 1+ U) Z i

| R : +(1+U)(12+ C)Z(SiLz’



(a) Ih (b) I (c) I
2 2 2 2
Q] = T1 4 (71,8 +Tos +Tir+ 7136+ T12(T18 + o5+ Tur + 736 — 27T14) — T18T25 — T47T3.6)

2 2 2 2
Qg = T1 4 (71,8 T Ty tTa7 T T35 T T1,2(T1.8 +To6 + Ta7+T35) + T1.8T26 + 74,773,5)

a3z = —471 3714

AN
2
/31 o 27’1’4 (7-12,8 —I— 72’7 + 7-1,3(7-1,8 —I_ 7-4,7)> E ><> ’
- 2 0.2
B2 = _271,4 B3 = 27’1,4 d) () J2 NORE
Ba =211 2 Bs = (T1,4 — 271 2)
g) J4 (h) Js

B
. ECE<$s
M =T12(Tis +To6 + T12(T15 + 7o) i
2
V2 =21 Y =2m2 4= (T T o <> e <>2

(k) K3 1) K4

1

2
01 =Ty 4 0g = —T1.4T25 + 57'12(37'1,3 + To5 — 2735 + 272.7) 2




FIX FORMULAE AND GRAPHS ON THIS SLIDE!

* The other trace structure Ai?;‘;ij“a: similar structure with Aﬁ);’gm with a few twists
- planar double-boxes are absent (2)extra  (23)7 2 (Dextra
* % 10\ * |k

- additional symmetries: C :(1 <> 2,3 > 4) - (13)2

U (145 3,2 ¢ 4)
E :(1+3)

M = (1+O)Y B+ A+ U) Y 7K+ (1+U)(1+C) oL
+ 1 4+UHYA+O) A+ E)éM{+(1+C)1+E)pi X1+ 1 +UHYA1+ E)n Y

Lo <P < < T

/
Ji J3

L0 5 <> <>




MEST = (1+0)Y B+ 1+ U)Y 4K+ (1+U)(1+C)di L,

+1+U)Y1+C)YA+E)egM;{+(1+C)Y1+E)pi X1+ (1 +UHY1+ E)ny Y,

/
| = —271,3(T2,5T2,6 + T4,5T4,6) .. :
- B RO dpe
/ 3 B 4 9 4
= 27 ‘ s
3 1,3 Ji J J

2

_ 2 2 2 3
= nalds st ntn ) TS
4 3 3
;2 : :
Yo = T1,2 176
K| K;

/ 1 ;
01 = —3T1,372,6 4} T
i 3
1 2
+ 5(T1,a — T12)(T25 — T2 + 2745 — 2747) N7

2 1 4

/
€1 = 27‘1,37'2,5 L M;

3
A I
pl _ 47-173 :@4 1 2
/
N = —47’1,3 2 3 4
X! 4




The UV behavior of this color structures

Slightly problematic to phrase it in terms of a critical dimension: higher-dimensional
theory has a different field content from the four dimensional one

Nevertheless, analytically continuing the result to d>4 is a measure of the
degree of divergence of the amplitude; reduces to standard critical dimension

as 8 — 0
Startegy: same as for ' = 4 sYM and for V' = 8 supergravity:

- expand at small external momenta
- use Lorentz-invariance to reorganize tensor integrals

7-prop. integrals: at most 2 loop mom. num. factors
Types of integrals:  6-prop. integrals: at most 1 loop mom. num. factors
5-prop. integrals: no loop mom. num. factors == |eading UV

3




The UV behavior of this color structures

7-prop. integrals: at most 2 loop mom. num. factors
Types of integrals:  6-prop. integrals: at most 1 loop mom. num. factors
5-prop. integrals: no loop mom. num. factors == |eading UV

<= D= <P

M) 260+ 285 + 273 + 2 =0 M{353) < 285 + 285 + 4} + 4nfy = 0

- Double-trace part of 3-deformed 2-loop amplitude is finite in d=5;
diverges only in d=6 — better than manifest N/ = 1 supersymmetry suggests:

2N 4
* L +L

- Superficially similar behavior to 2-trace termsat L, > 3 in N = 4sYM

) 8
DC:4—|—Z VS. Dgtrace:4+z



Summary and some questions

* Despite extensive planar similarity with A/ = 4 sYM, the
(3 -deformed theory is not “simple” at the non-planar level

e certain all-loop O(1/N)structures inherited from the N/ = 4 theory
* at 1-loop: expected properties of an finite N/ = 1 theory

e at 2-loops: N/ = 1susy seems more powerful than it should
-- Better UV convergence properties
-- Is this an accident or a sign of further structure?
-- Is “this” present in the NV = 4 theory but obscured by
maximal supersymmetry?

* Do the BCJ-like numerator relations play any role? Is there a
generalization of color/kinematic duality to symmetric couplings?
s it possible to break susy with the N/ = 4 sYM field content while
preserving conformal and dual conformal inv. and w/o d-str constants?
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