A Supermassive Black Hole in the Dwarf Starburst Galaxy Henize 2-10

Amy Reines
Einstein Fellow
National Radio Astronomy Observatory

• Supermassive black holes reside in the nuclei of essentially all massive galaxies with a bulge (e.g. Kormendy & Richstone 1995; Magorrian et al. 1998; Kormendy 2004)

M87

 $M_{BH} \sim 6.6 \times 10^9 M_{sun}$ (Gebhardt et al. 2011)

- Supermassive black holes reside in the nuclei of essentially all massive galaxies with a bulge (e.g. Kormendy & Richstone 1995; Magorrian et al. 1998; Kormendy 2004)
- A link appears to exist between the evolution of galaxies and their central black holes (e.g. Gebhardt et al. 2000; Ferrarese & Merritt 2000; Gültekin et al. 2009; Heckman 2010)

- Supermassive black holes reside in the nuclei of essentially all massive galaxies with a bulge (e.g. Kormendy & Richstone 1995; Magorrian et al. 1998; Kormendy 2004)
- A link appears to exist between the evolution of galaxies and their central black holes (e.g. Gebhardt et al. 2000; Ferrarese & Merritt 2000; Gültekin et al. 2009; Heckman 2010)

Some questions:

• Did galaxies and nuclear black holes grow synchronously? If not, which developed first?

- Supermassive black holes reside in the nuclei of essentially all massive galaxies with a bulge (e.g. Kormendy & Richstone 1995; Magorrian et al. 1998; Kormendy 2004)
- A link appears to exist between the evolution of galaxies and their central black holes (e.g. Gebhardt et al. 2000; Ferrarese & Merritt 2000; Gültekin et al. 2009; Heckman 2010)

Some questions:

- Did galaxies and nuclear black holes grow synchronously? If not, which developed first?
- How did the "seeds" of supermassive black holes form in the earlier universe?

- Supermassive black holes reside in the nuclei of essentially all massive galaxies with a bulge (e.g. Kormendy & Richstone 1995; Magorrian et al. 1998; Kormendy 2004)
- A link appears to exist between the evolution of galaxies and their central black holes (e.g. Gebhardt et al. 2000; Ferrarese & Merritt 2000; Gültekin et al. 2009; Heckman 2010)

Some questions:

- Did galaxies and nuclear black holes grow synchronously? If not, which developed first?
- How did the "seeds" of supermassive black holes form in the earlier universe?
- What are the early stages of black hole growth and galaxy evolution?

- Supermassive black holes reside in the nuclei of essentially all massive galaxies with a bulge (e.g. Kormendy & Richstone 1995; Magorrian et al. 1998; Kormendy 2004)
- A link appears to exist between the evolution of galaxies and their central black holes (e.g. Gebhardt et al. 2000; Ferrarese & Merritt 2000; Gültekin et al. 2009; Heckman 2010)

Some questions:

- Did galaxies and nuclear black holes grow synchronously? If not, which developed first?
- How did the "seeds" of supermassive black holes form in the earlier universe?
- What are the early stages of black hole growth and galaxy evolution?
- What is the nature of the supermassive black hole - globular cluster connection?

"An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10"

Reines, Sivakoff, Johnson & Brogan 2011, Nature, 470, 66

"Astrophysics: Big black hole found in tiny galaxy" Greene 2011, Nature, 470, 45

Henize 2-10

- Nearby (D~9 Mpc) dwarf starburst galaxy (Allen et al. 1976)
- Compact (~ I kpc), irregular morphology
- Young super star clusters (proto-globular clusters) (e.g. Johnson et al. 2000)

Henize 2-10

- Nearby (D~9 Mpc) dwarf starburst galaxy (Allen et al. 1976)
- Compact (~ I kpc), irregular morphology
- Young super star clusters (proto-globular clusters) (e.g. Johnson et al. 2000)
- Main optical body is about half the size of the SMC
- SFR ~ 10 times the LMC but similar stellar and HI masses

Observations Infant super star clusters: Youngest have ages ≤ few Myr and masses ~ $10^5 \, \mathrm{M}_{\mathrm{sun}}$ HST 3-color optical image (archival data): F330W (0.3 microns) F814W (0.8 microns) F658N (H alpha)

Narrow-band imaging (ionized gas)

Paschen alpha line emission (1.87 microns)

Narrow-band imaging (ionized gas)

Broad-band imaging (stars)

• Compact (< 24 pc x 9 pc) non-thermal (synchrotron) radio emission (Johnson & Kobulnicky 2003)

Radio image of the Galactic Center

Radio image of the Galactic Center

24 pc x 9 pc beam

Narrow-band imaging (ionized gas)

- Compact (< 24 pc x 9 pc) non-thermal (synchrotron) radio emission (Johnson & Kobulnicky 2003)
- Radio source is not associated with a star cluster even in deep near-IR imaging

Narrow-band imaging (ionized gas)

- Compact (< 24 pc x 9 pc) non-thermal (synchrotron) radio emission (Johnson & Kobulnicky 2003)
- Radio source is not associated with a star cluster even in deep near-IR imaging
- Hard X-ray Chandra point source coincident with radio source (Ott et al. 2005, Kobulnicky & Martin 2010)

Images from http://chandra.harvard.edu/press

Narrow-band imaging (ionized gas)

- Compact (< 24 pc x 9 pc) non-thermal (synchrotron) radio emission (Johnson & Kobulnicky 2003)
- Radio source is not associated with a star cluster even in deep near-IR imaging
- Hard X-ray Chandra point source coincident with radio source (Ott et al. 2005, Kobulnicky & Martin 2010)
- Local peak in Paschen alpha and H alpha emission

Narrow-band imaging (ionized gas) Broad-band imaging (stars)

- Compact (< 24 pc x 9 pc) non-thermal (synchrotron) radio emission (Johnson & Kobulnicky 2003)
- Radio source is not associated with a star cluster even in deep near-IR imaging
- Hard X-ray Chandra point source coincident with radio source (Ott et al. 2005, Kobulnicky & Martin 2010)
- Local peak in Paschen alpha and H alpha emission
- Appears connected to a thin quasi-linear feature between two bright blobs

Narrow-band imaging (ionized gas)

- Compact (< 24 pc x 9 pc) non-thermal (synchrotron) radio emission (Johnson & Kobulnicky 2003)
- Radio source is not associated with a star cluster even in deep near-IR imaging
- Hard X-ray Chandra point source coincident with radio source (Ott et al. 2005, Kobulnicky & Martin 2010)
- Local peak in Paschen alpha and H alpha emission
- Appears connected to a thin quasi-linear feature between two bright blobs
- At center of ionized gas structure with a coherent velocity gradient (Henry et al. 2007)

Narrow-band imaging (ionized gas)

- Compact (< 24 pc x 9 pc) non-thermal (synchrotron) radio emission (Johnson & Kobulnicky 2003)
- Radio source is not associated with a star cluster even in deep near-IR imaging
- Hard X-ray Chandra point source coincident with radio source (Ott et al. 2005, Kobulnicky & Martin 2010)
- Local peak in Paschen alpha and H alpha emission
- Appears connected to a thin quasi-linear feature between two bright blobs
- At center of ionized gas structure with a coherent velocity gradient (Henry et al. 2007)
- Position consistent with dynamical center (from HI solid-body rotation (Kobulnicky et al. 1995))

Narrow-band imaging (ionized gas)

Broad-band imaging (stars)

- Compact (< 24 pc x 9 pc) non-thermal (synchrotron) radio emission (Johnson & Kobulnicky 2003)
- Radio source is not associated with a star cluster even in deep near-IR imaging
- Hard X-ray Cha • Local peak in Pa
 • Appears connected to a time quasi mean reactive Section Nucleus

obulnicky & Martin 2010)

- At center of ionized gas structure with a coherent velocity gradient (Henry et al. 2007)
- Position consistent with dynamical center (from HI solid-body rotation (Kobulnicky et al. 1995))

Radio luminosity

 $L_{R (5 \text{ GHz})} \sim 7.4 \times 10^{35} \text{ erg s}^{-1}$

Hard X-ray luminosity

 $L_{\rm X~(2-10~keV)} \sim 2.7 \times 10^{39} \,\rm erg \, s^{-1}$

Chandra X-ray Observatory

Radio luminosity

Hard X-ray luminosity

$$L_{R (5 \text{ GHz})} \sim 7.4 \times 10^{35} \text{ erg s}^{-1}$$

$$L_{\rm X~(2-10~keV)} \sim 2.7 \times 10^{39} \, \rm erg \, s^{-1}$$

Ratio of radio to X-ray luminosity:

$$R_X =
u L_
u (5
m ~GHz)/L_X (2-10
m ~keV)$$
 (Terashima & Wilson 2003)

The central source in Henize 2-10:

$$\log R_{\rm X} \sim -3.6$$

Radio luminosity

Hard X-ray luminosity

$$L_{R (5 \text{ GHz})} \sim 7.4 \times 10^{35} \text{ erg s}^{-1}$$

$$L_{\rm X~(2-10~keV)} \sim 2.7 \times 10^{39} \, \rm erg \, s^{-1}$$

Ratio of radio to X-ray luminosity:

$$R_X =
u L_
u (5
m ~GHz)/L_X (2-10
m ~keV)$$
 (Terashima & Wilson 2003)

The central source in Henize 2-10:

$$\log R_{\rm X} \sim -3.6$$

Typical low-luminosity AGN:

$$\log R_{\rm X} \sim -2.8 \text{ to } -3.8 \text{ (Ho 2008)}$$

Radio luminosity

Hard X-ray luminosity

$$L_{R (5 \text{ GHz})} \sim 7.4 \times 10^{35} \text{ erg s}^{-1}$$

$$L_{\rm X~(2-10~keV)} \sim 2.7 \times 10^{39} \,\rm erg \, s^{-1}$$

Ratio of radio to X-ray luminosity:

$$R_X =
u L_
u (5
m ~GHz)/L_X (2-10
m ~keV)$$
 (Terashima & Wilson 2003)

The central source in Henize 2-10:

X-ray binaries: too weak in the radio

 $\log R_{\rm X} \sim -3.6$

 $\log R_{\rm X} < -5.3$

Typical low-luminosity AGN:

 $\log R_{\rm X} \sim -2.8 \text{ to } -3.8 \text{ (Ho 2008)}$

Radio luminosity

Hard X-ray luminosity

$$L_{R (5 \text{ GHz})} \sim 7.4 \times 10^{35} \text{ erg s}^{-1}$$

$$L_{\rm X~(2-10~keV)} \sim 2.7 \times 10^{39} \, \rm erg \, s^{-1}$$

Ratio of radio to X-ray luminosity:

$$R_X =
u L_
u (5
m ~GHz)/L_X (2-10
m ~keV)$$
 (Terashima & Wilson 2003)

The central source in Henize 2-10:

 $\log R_{\rm X} \sim -3.6$

X-ray binaries: too weak in the radio

 $\log R_{\rm X} < -5.3$

Typical low-luminosity AGN:

 $\log R_{\rm X} \sim -2.8 \text{ to } -3.8 \text{ (Ho 2008)}$

Supernova remnants: too weak in hard X-rays

 $\log R_{\rm X} \sim -1.7$ to -2.7

How massive?

How massive?

Merloni et al. 2003

How massive?

Merloni et al. 2003

An actively accreting massive black hole

How massive?

Merloni et al. 2003

An actively accreting massive black hole

How massive?

"fundamental plane of black hole activity" $log L_R = 0.60 log L_X + 0.78 log M + 7.33$

An actively accreting massive black hole

How massive?

"fundamental plane of black hole activity" $log L_R = 0.60 log L_X + 0.78 log M + 7.33$

black hole in Henize 2-10 \longrightarrow log (M_{BH}/M_{sun}) = 6.3 +/- 1.1

Supermassive black holes have typically been found in massive galaxies with bulges

M87

 $M_{BH} \sim 6.6 \times 10^9 M_{sun}$ (Gebhardt et al. 2011)

Supermassive black holes have typically been found in massive galaxies with bulges

But not always...

 $M_{BH} \sim 6.6 \times 10^9 M_{sun}$ (Gebhardt et al. 2011)

Name	Туре
NGC 4395	Sd
Pox 52	dE

Filippenko & Sargent (1989) Filippenko & Ho (2003) Peterson et al. (2005)

Kunth, Sargent & Bothun (1987) Barth et al. (2004) Thornton et al. (2008)

The Low-Mass Regime

Name	Туре
NGC 4395	Sd
Pox 52	dE
Henize 2-10	Blue Compact Dwarf

Filippenko & Sargent (1989) Filippenko & Ho (2003) Peterson et al. (2005)

Kunth, Sargent & Bothun (1987) Barth et al. (2004) Thornton et al. (2008)

Greene & Ho (2004, 2007)

Greene & Ho (2004, 2007)

~ 93% extended disks (with pseudobulges)

Host Galaxies

- Low-luminosity galaxies, ~ I mag below L*
- Well-defined optical nuclei

Greene et al. (2008); Jiang et al. (2011)

Greene & Ho (2004, 2007)

- Type 2 counterparts to Greene & Ho sample
- 12 have stellar velocity dispersions $< 60 \text{ km s}^{-1} \text{ (M}_{BH} < 10^6)$

Henize 2-10 is different

- Dwarf starburst galaxy with newly formed globular clusters
- Irregular morphology without a well-defined nucleus

Henize 2-10 is different

- Dwarf starburst galaxy with newly formed globular clusters
- Irregular morphology without a well-defined nucleus
- Massive black hole but no discernible bulge or nuclear star cluster

Henize 2-10 is different

- Dwarf starburst galaxy with newly formed globular clusters
- Irregular morphology without a well-defined nucleus
- Massive black hole but no discernible bulge or nuclear star cluster

The First Star-Forming Galaxies

- blue, compact galaxies
 600-800 Myr after the Big
 Bang (Bouwens et al. 2010)
- intrinsic sizes ≤ 1 kpc (Oesch et al. 2010)
- masses ~ 10⁹-10¹⁰ M_{sun} (Labbé et al. 2010)
- likely forming globular clusters
- likely host massive black holes (Treister et al. 2011)

The First Star-Forming Galaxies

Main take-away points about Henize 2-10

- First example of a massive black hole in a local star-forming dwarf galaxy
- Nearby galaxy much like those in the earlier universe
- Best available analog of primordial black hole growth opens up a new class of host galaxies to search for more
- No discernible bulge black hole growth can precede the build-up of galaxy spheroids

Follow-up observations of Henize 2-10

Follow-up observations of Henize 2-10

Accepted Proposals

- HST/STIS Kinematics and ionization conditions near AGN
 P.I. Reines (w/ Whittle, Johnson)
- XMM-Newton X-ray follow-up
 P.I. Hickox (w/ Greene, Reines, Sivakoff, Johnson, Alexander)
- VLBI with the Long Baseline Array High-resolution observations at 1.4 GHz
 P.I. Reines (w/ Deller, Johnson)

New (yesterday!) VLBI data

Clean I map. Array: AHMP AMP HE2-10 at 1.400 GHz 2011 Jul 22

New (yesterday!) VLBI data

Clean I map. Array: AHMP AMP HE2-10 at 1.400 GHz 2011 Jul 22

Map center: RA: 08 36 15.117, Dec: -26 24 34.070 (2000.0)

Map peak: 0.000616 Jy/beam

Contours %: 20 40 80

Beam FWHM: 131 x 38 (mas) at 83.1°

Follow-up observations of Henize 2-10

Accepted Proposals

- HST/STIS Kinematics and ionization conditions near AGN
 P.I. Reines (w/ Whittle, Johnson)
- XMM-Newton X-ray follow-up
 P.I. Hickox (w/ Greene, Reines, Sivakoff, Johnson, Alexander)
- VLBI with the Long Baseline Array High-resolution observations at 1.4 GHz
 P.I. Reines (w/ Deller, Johnson)

Submitted Proposals

- EVLA Water maser observations
 P.I. Reines (w/ Darling, Brogan, Johnson)
- ALMA Dense molecular gas
 P.I. Johnson (w/ Reines, Testi, Brogan, Vanzi, Wilner, Chen)

Searching for big black holes in little galaxies

Accepted Proposals

Chandra + EVLA - mini survey of nearby star-forming dwarfs
 P.I. Reines (w/ Sivakoff, Condon)

Searching for big black holes in little galaxies

Accepted Proposals

Chandra + EVLA - mini survey of nearby star-forming dwarfs
 P.I. Reines (w/ Sivakoff, Condon)

Starting to plan large-scale radio survey (w/ Jim Condon)

Discussion topics

I. Using the black hole fundamental plane to obtain masses

This is potentially a very powerful tool for obtaining black hole masses. How reliable is it (at low masses)? Would simultaneous X-ray and radio observations significantly reduce the scatter in the relationship?

2. The impact of metallicity on making "heavy" black hole seeds

Are extremely low metallicities required to make a massive seed? Can massive seeds form from direct collapse of enriched gas in the modern universe (e.g. Begelman & Shlosman 2009)?