Gas and Stellar Dynamical Black Hole Mass Measurements:

Revisiting M84 and a Consistency Test with NGC 3998

Jonelle Walsh (UC Irvine/UT Austin)
Aaron Barth (UC Irvine)
Remco van den Bosch (MPIA)
Marc Sarzi (Univ. of Hertfordshire)

- Our interpretation of the M_{BH}-σ and M_{BH}-L relationships rests on reliable M_{BH} measurements.
- About 70 M_{BH} measurements have been made to date, often through the dynamical modeling of gas disks or stars.

* Conceptually simple, BUT...

- Assumption of circular rotation must be verified.
- Often the observed velocity dispersion is larger than that expected from rotational broadening. The physical origin of this intrinsic velocity dispersion is unknown.

GAS DYNAMICAL MODELING

- * Our interpretation of the $M_{BH}-\sigma$ and $M_{BH}-L$ relationships rests on reliable M_{BH} measurements.
- About 70 MBH measurements have been made to date, often through the dynamical modeling of gas disks or stars.

STELLAR DYNAMICAL MODELING

- * Widely applicable, BUT...
- Orbit-based models are complex.
- Models can be biased due to M_{BH}-M/L-dark matter degeneracies, the use of incomplete orbital libraries, and inaccurate assumptions about galaxy shape.

* Recent work has shown that some previous stellar dynamical MBH measurements have been underestimated:

- Including dark matter: Gebhardt & Thomas 2009 (M87), Schulze & Gebhardt 2011
- * More complete orbital libraries: Shen & Gebhardt 2010 (M60), Schulze & Gebhardt 2011
- * Triaxial models: van den Bosch & de Zeeuw 2010 (NGC 3379)
- * These studies suggest that some previous measurements may need to be reevaluated, and there is a renewed motivation to pursue gas dynamical measurements.
- First part of talk: re-examining the black hole in M84 with gas dynamical modeling (Walsh, Barth, & Sarzi 2010, ApJ, 721, 762).

* Carrying out consistency tests between gas and stellar dynamical modeling within the object is crucial, but such checks have only been attempted on a few galaxies with limited results.

- * IC 1459 (Verdoes Kleijn et al. 2000; Cappellari, 2002)
- * NGC 3379 (Shapiro et al. 2006)
 - Gas kinematics turned out to be disturbed.
- * M87 (e.g., Macchetto et al. 1997; Gebhardt & Thomas 2009)
 - Stellar dynamical M_{BH} about a factor of 2 larger than gas measurement.
- * Cen A (e.g., Neumayer et al. 2007; Cappellari et al. 2009)
 - Gas and stellar dynamical MBH measurements in excellent agreement.

Second part of talk: testing the consistency of gas and stellar dynamical MBH measurements with NGC 3998.

The Supermassive Black Hole in M84 Revisited

- * M84 is an elliptical galaxy containing a type 2 AGN.
- * With σ = 296 km s⁻¹, M84 sits at the upper-end of the M_{BH} σ galaxy relations.
- * Bower et al. (1998) measured $M_{BH} = (1.5^{+1.1}_{-0.6}) \times 10^9 \, M_{\odot}$ from HST/STIS observations.
- * From same STIS data, Maciejewski & Binney (2001) estimated $M_{BH} = 4.0 \times 10^8 \, M_{\odot}$.
- * We aim to resolve the uncertainty in the M84 black hole mass.

SDSS image of M84

Observations & Measurements

- * M84 observed under G0-7124 (Bower et al. 1998).
 - * STIS 52x0.2 aperture at 3 positions.
 - * Spatial scale: 0.05"/pix.
 - * Coverage of Ha region.

- * Extracted spectra from individual rows of 2D STIS image.
- * Simultaneously fit 5 Gaussians to all emission lines.
- * Could not adequately fit central 3 rows not using these measurements in the gas dynamical model.

Observed Velocity Fields

* From the Gaussian fit to the [N II] $\lambda 6583$ Å line, we measured the velocity, velocity dispersion, and flux as a function of location along the slit.

Gas Dynamical Models

- * Assume a thin disk of gas in circular rotation.
- * Determine v_c relative to v_{sys} based on enclosed mass, which depends on M_{BH} , the stellar mass profile, and Υ .
- * Project onto the plane of the sky given i.
- * Intrinsic LOS velocity profiles assumed Gaussian before passing through telescope optics.
- * Model velocity field "observed" in a manner that matches the STIS observations.
- * Left with model 2D spectrum similar to STIS data. Extract spectrum from each row of model 2D image and fit a Gaussian to the emission line.
- * Determine best-fit parameters (M_{BH} , Υ , θ , i, v_{sys} , x_{offset} , y_{offset}) that produce a model velocity field that most closely matches the observed velocity field.

Modeling Results

- * $M_{BH} = (8.5^{+0.9}_{-0.8}) \times 10^8 M_{\odot}$
- * Y = 4 (V-band solar)
- $* i = 72^{\circ}$
- * $v_{sys} = 1060 \text{ km/s}$
- $* \theta = 28^{\circ}$
- * Xoffset = 0.01''
- * Yoffset = -0.05"

Conclusions

- * Re-analyzed multi-slit archival STIS observations of the M84 nucleus.
- * Modeled the velocity fields as a cold, thin disk in circular rotation, but found that an intrinsic velocity dispersion was needed to match the observed line widths.
- * Calculated a second disk model in which the intrinsic velocity dispersion is dynamically significant. We favor this model, giving $M_{BH} = (8.5^{+0.9}_{-0.8}) \times 10^{8} M_{\odot}$.
- * Our new M_{BH} is ~2x smaller than the Bower et al. measurement.
- * M_{BH} now lies closer to the expected mass from the $M_{BH}-\sigma$ and $M_{BH}-L$ relationships.

Stars vs. Gas: Testing the Consistency of MBH Measurements with NGC 3998

SDSS image of NGC 3998

- + NGC 3998 is a nearby, SO galaxy with a LINER nucleus.
- * NGC 3998 has a large stellar velocity dispersion of $\sigma = 305$ km s⁻¹.
- * Gas kinematics has been shown to be well fit with a circularly rotating thin disk model by de Francesco et al. (2006).
- ★ r_{sphere} can be resolved with AO-assisted IFUs on large ground-based telescopes, and nucleus can be used as a TT reference.
- Our goal is to measure M_{BH} using orbit-based stellar dynamical models and to compare to the existing gas dynamical measurement.

Observations

- + Obtained LGS AO OSIRIS observations.
 - + Kbb filter
 - + 0.05" spatial scale
 - + used nucleus as TT star
 - + 3.8 hours on source

- * Acquired LRIS observations.
 - + red-side grating: 831/8200 Å
 - + placed 1"-wide slit along 4 PAs

- ◆ Used images to measure the surface brightness distribution.
 - + HST WFPC2/PC F791W image
 - ◆ CFHT WIRCam K-band image

Kinematics

* Measured stellar kinematics (V, σ, h₃, h₄) in each bin with pPXF (Cappellari & Emsellem 2004).

OSIRIS

Kinematics

+ Measured stellar kinematics (V, σ , h_3 , h_4) in each bin with pPXF (Cappellari & Emsellem 2004).

LRIS

Stellar Dynamical Models

- + Constructed triaxial Schwarzschild models (van den Bosch et al. 2008).
- * Potential consists of contributions from the stars, black hole, and dark matter.
- → A representative orbital library is generated and the orbits are integrated in the potential.
- * Weights for each orbit are found such that the superposition reproduces the observed kinematics and surface brightness.
- \bullet Process is repeated for different combinations of parameters until the lowest χ^2 is found.

Preliminary Results

◆ Initially fixed M_{BH}, and explored the shape of NGC 3998.

$$p = b/a; q = c/a$$

 $T = (1 - p^2)/(1 - q^2)$

◆ Varied M_{BH} and M/L while sampling 8 shapes, which ranged from oblate to triaxial.

$$M_{BH} = (9.2^{+3.3}_{-2.4}) \times 10^{8} M_{\odot}$$

M/L (I-band, solar) = $5.0^{+0.2}_{-0.4}$

Preliminary Results

Initial Conclusions/Further Work

- \star We have measured the stellar kinematics on scales within r_{sphere} and on large scales out to ~ 1 R_e .
- ♦ We have constructed three-integral, orbit-based, triaxial stellar dynamical models, finding a (preliminary) M_{BH} of $(9.2^{+3.3}_{-2.4}) \times 10^8 M_{\odot}$.
- ♦ Our preliminary stellar dynamical M_{BH} is about a factor of about 4 larger than the de Francesco et al. gas measurement [$(2.1^{+1.9}_{-1.6}) \times 10^8 M_{\odot}$]
- \star With σ = 305 km s⁻¹, M_{BH} - σ predicts: M_{BH} = 7.9 x 10⁸ M_{\odot} With L_{v} = 7.2 x 10⁹ L_{\odot} , M_{BH} -L predicts: M_{BH} = 4.8 x 10⁷ M_{\odot}
- ♦ Further work will include running additional model grids to assess the robustness of our M_{BH} measurement.

Open Questions

- How much of the scatter in the $M_{BH}-\sigma$ and $M_{BH}-L$ relationships is the result of inconsistencies between the main mass measurement techniques?
- ▶ Is there a systematic difference between the masses derived from gas and stellar dynamical methods? If so, how does this affect the slope of the MBH-host galaxy relations?
- What causes the intrinsic velocity dispersion that is observed in some nuclear gas disks?
- ▶ By how much have previous stellar dynamical M_{BH} measurements been biased by assumptions of the galaxy shape, neglecting the contribution of dark matter, and using incomplete orbital libraries?