First Passage Quasars: Constraining When Quasars Turn on

Robert da Silva IMPS@UCSC

Collaborators:

J. Xavier Prochaska David Rosario Jason Tumlinson

SINGLE AND DOUBLE BLACK HOLES IN GALAXIES, August 24, 2011

Todd Tripp

How/When QSOs Turn on

Galaxy Mergers (e.g., Mihos & Hernquist 1996)
Can occur during two phases
a) After First Passage

Tidal torques \rightarrow Bar Formation \rightarrow Gaseous Inflow

How/When QSOs Turn on

Galaxy Mergers (e.g., Mihos & Hernquist 1996)
Can occur during two phases
a) After First Passage

b) During Final Coalescence

Secular Process: i.e. "Non-Merging"

- a) Recycled gas(Ciotti & Ostriker2007)
- b) Wild Disk Instabilities (Bournaud+2011)

How/When QSOs Turn on

Single Galaxy

First Passage Quasar

- A quasar that has been triggered during the first passage of a merger event
- Expect a companion galaxy at ~50 kpc with comparable mass to quasar host
- Companion galaxy does not necessarily have to be a quasar as well

$$z = 0.3693$$

$$\Delta v = 159 \pm 20 \text{ km/s}$$
 $b = 38 \text{ kpc}$

- QSO photoionizing a bridge of material connecting the two galaxies
- Separation & kinematics consistent with a first passage merger
- Inferred companion galaxy SFH is consistent with a burst triggered during first passage of interaction

Ingredients

- Need a catalog of quasars where we have large numbers at distances where we can expect to see companions
 - z<0.2 quasars from Schneider+2010 catalog
- Want photometric redshifts and stellar masses of companion galaxies
 - obtainable from SDSS photometry
- Want mass of quasar host galaxy
 - use SMBH mass estimated by Shen+2010 combined with Magorrian Relation

Interlopers

• Generous cut in photometric redshift $(\Delta z < 3\sigma_z)$ results in a large number of interlopers meeting our criteria

 So we need to compare with a set of control fields to subtract the background Perform the same experiment on two sets of control fields:

- 1.) Empty Sky
- 2.) Mass-matched Control Sample
 - Magorrian Mass is (M_{magor}) not an ideal proxy for stellar mass
 - compare luminosity functions at distance between 1–1.2 Mpc
 - Find a factor of 2 correction

Detected Excess

Quasar Triggering Toy Model

Completeness Correction

Constraining Triggering Parameters

• Assume a fraction of quasars triggered during first passage \rightarrow infer triggering properties

Future Work

- Study interacting pairs where one galaxy is in a quasar phase
 - -Awaiting HST data from successful proposal to study morphologies of galaxies in same merger stage
 - -Try to answer the question of why one quasar is on and the other is not
 - -Comparison of SMBH and galaxy masses at this intermediate stage will provide insights on evolution along the Magorrian relation
- Search for more pairs with quasar photoionized extended tidal features
 - -study quasar lifetime, isotropy, and triggering

Summary

- Statistical study performed studying companions near z<0.2 SDSS QSOs to determine which fraction of quasars are triggered during the first passage stage of a merger
- Determined a significant excess (>8±2 %)
 companions with mass ratio > 1:8 near quasars (30-80 kpc) interpreted as galaxies interacting with quasar hosts
- Used simulations to estimate a completion correction which increases fraction to ~ 20%

Open Questions

- What is the dominant triggering mechanism of quasars?
- What does this teach us about SMBHs and their effect on galaxy evolution?
- What are the key parameters that determine why in these pairs one galaxy is in a quasar phase and the other is not?

Thank You