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Non-thermal Dark Matter

Energy density of Universe when moduli decay is
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The number density of DM particles is thus

i Brg_.xpd -10 3 100GeV 6
My~ e~ 1077GeVEBre s ( )(to01ev )

e

me

We can compare this with to evaluate if n’ is lar h




Miracles can be Non-thermal!

» Reheat temperature

50TeV

3/2
T ~ (Tgmp)'/? ~ :f/z ~ 10MeV (= )3/2

pl




Miracles can be Non-thermal!

» Reheat temperature

% .
Trh ~ (F¢Wlp[)1/2 =~ mf/z ~ 10Mev(5$ﬁv)3/2
pl

» So BBN can occur after the moduli have decayed!




Miracles can be Non-thermal!

» Reheat temperature
3/2
1/2 ( me )3/2

Trn ~ (Lgmyp) 50TeV

» So BBN can occur after the moduli have decayed!
m9/2

» Entropy at decay time Sgecay ~ Srh ~ g« —573 3/2
pl




Miracles can be Non-thermal!

» Reheat temperature
3/2
1/2 ( me )3/2

Trn ~ (Lgmyp) 50TeV

» So BBN can occur after the moduli have decayed!
m9/2

» Entropy at decay time Sgecay ~ Srh ~ g« —573 3/2
pl




Miracles can be Non-thermal!

» Reheat temperature
3/2
1/2 ( me )3/2

Trn ~ (Lgmyp) 50TeV

» So BBN can occur after the moduli have decayed!
m9/2

» Entropy at decay time Sgecay ~ Srh ~ g« —573 3/2
pl




Miracles can be Non-thermal!

» Reheat temperature

. m3/2 .
Trp ~ (F¢’mpl)1/ 2~ mf/z ~ 10Mev(5$ﬁv)3/2
pl

» So BBN can occur after the moduli have decayed!
md/2




Miracles can be Non-thermal!

» Reheat temperature

. m3/2 .
Trp ~ (F¢’mpl)1/ 2~ - (f/z ~ 101\'16\/(587%2\/)3/2

pl

» So BBN can occur after the moduli have decayed!
md/2




Miracles can be Non-thermal!

» Reheat temperature

. m3/2 .
Trp ~ (F¢’mpl)1/ 2~ - (f/z ~ 101\'16\/(587%2\/)3/2

pl

» So BBN can occur after the moduli have decayed!
md/2




Non-anthropic Axion Physics

» Coherent Axion oscillations produced during non-thermal
moduli domination have (cf Fox, Pierce, Thomas '04).

N 2
Qa, h? = 0(10) _Ju i (67,)
Ok 2 x 1016GeV 1MeV |




Non-anthropic Axion Physics

» Coherent Axion oscillations produced during non-thermal
moduli domination have (cf Fox, Pierce, Thomas '04).

N 2
Qq, h? = 0(10) _Ju i (67,)
Ok 2 x 1016GeV 1MeV ) VI




Non-anthropic Axion Physics

» Coherent Axion oscillations produced during non-thermal
moduli domination have (cf Fox, Pierce, Thomas '04).

N 2
Qq, h? = 0(10) _Ju i (67,)
Ok 2 x 1016GeV 1MeV ) VI




Non-anthropic Axion Physics

» Coherent Axion oscillations produced during non-thermal
moduli domination have (cf Fox, Pierce, Thomas '04).

N 2
Qq, h? = 0(10) _Ju i (67,)
Ok 2 x 1016GeV 1MeV ) VI




Log;y[610]
Log,,l6/]



Log;y[610]
Log,,l6/]



Log;y[610]
Log,,l6/]



Caveats

> A late period of pre-BBN inflation with H < mg3/, can inflate
away the energy density of the moduli and their decay
products.




Caveats

> A late period of pre-BBN inflation with H < mg3/, can inflate
away the energy density of the moduli and their decay
products.

Is this possible in string/M theory?




Caveats

> A late period of pre-BBN inflation with H < mg3/, can inflate
away the energy density of the moduli and their decay
products.

» Is this possible in string/M theory?

" in the same sense that a non-thermal histo



Caveats

> A late period of pre-BBN inflation with H < mg3/, can inflate
away the energy density of the moduli and their decay
products.

» Is this possible in string/M theory?

» Is it "generic" in the same sense that a non-thermal history is



Caveats

> A late period of pre-BBN inflation with H < mg3/, can inflate
away the energy density of the moduli and their decay
products.

» Is this possible in string/M theory?

» Is it "generic" in the same sense that a non-thermal history is



Lots of testable predictions!

» LHC: events with up to four top quarks plus missing energy




Lots of testable predictions!

» LHC: events with up to four top quarks plus missing energy
» LHC: short track stubs from the SU(2) partners of the Wino




Lots of testable predictions!

» LHC: events with up to four top quarks plus missing energy
» LHC: short track stubs from the SU(2) partners of the Wino

» Isocurvature perturbations but no tensor modes




Lots of testable predictions!

LHC: events with up to four top quarks plus missing energy
LHC: short track stubs from the SU(2) partners of the Wino
Isocurvature perturbations but no tensor modes

PAMELA /Fermi already consistent




Lots of testable predictions!

LHC: events with up to four top quarks plus missing energy
LHC: short track stubs from the SU(2) partners of the Wino
Isocurvature perturbations but no tensor modes

PAMELA /Fermi already consistent




Lots of testable predictions!

LHC: events with up to four top quarks plus missing energy
LHC: short track stubs from the SU(2) partners of the Wino
Isocurvature perturbations but no tensor modes

PAMELA /Fermi already consistent




Direct Detection of DM
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Conclusions

If our Universe is in a string/M theory vacuum ...
» Moduli must be stabilized

» A Non-thermal history seems to be a "generic” outcome

» Moduli decays will wash out any previous thermal relics
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» Scales in M theory. Generalisation to other limits
straightforward.

> M2 ~ M{yVx. My ~ 10'7GeV.

> Vy ~ L /3, Ranges from 500 to 3000.

aGguT

» If V}. ranges from about 15 to 35.




Explicit Toy Model

¢1¢1 N
Vx = s{s3,
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Toy Model

The geometric moduli s1, so and the meson (b(l) form three mass
eigenstates with masses

my =~ 284.9m3/2, mo ~ 2.0m3/2,m3 ~ 1.1 mg/2- (2)

Diagonalize axion kinetic terms with:
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Scanning the Axion Decay Constants

We scanned 200 randomly generated Gy Kahler potentials:
Peaks at M,
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Constraints in High Scale Inflation case







