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" A
Introduction

« WMAP7 strongly supports the idea of inflation as the theory of early universe and
structure formation.

« Inflation is a paradigm and one can construct many inflationary models compatible
with the current data.

* In its simplest form, inflation is driven by a scalar field minimally coupled to gravity.

» There has been lots of efforts to realize inflation in string theory, mainly using D-Dbar

interactions in a warped throat.
KKLMMT (2003)

« On the other hand, general compactifications with fluxes naturally posses several
branes to satisfy constraints like tadpole cancellation.

* In these theories, more than one scalar field is present.

« In multi-field inflationary models, one can usually perform a rotation in the field space,
where the inflaton field evolves along the trajectory and the other fields are orthogonal

to it.
Gordon, Wands, Bassett & Maartens (2001)



" A
Introduction

* In this talk, we promote the inflaton fields to general N X N hermitian matrices, and
hence the name Matrix Inflation, or M-flation for brevity.

« Working with matrices, we are able to use their commutators in the potential, besides
their simple products.

* [n our class of Matrix inflation models, we consider three N X N matrices, ®,, i=1,2,3
We consider the potential which is quadratic in @, and their commutators |® ., @ ].J.

Therefore, we have three types of terms in the potential: Tr[CIDi,CIDJ.] 2, Tre, @, CI’,-,CI’,J ;
TrCIDZ.2

« As we will see, the model is motivated from string theory and brane dynamics.

 Despite its simple form, Matrix inflation has a rich dynamics:

- It can solve the fine-tuning associated with standard chaotic inflationary models.

- Besides the adiabatic perturbations, we have isocurvature ones.

- The model has an embedded preheating mechanism that uses the isocurvature fields
as preheat fields.
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Matrix Inflation Setup

S :jd4xH(MP R—%ZTr (aﬂcp,.aﬂcp,.)—v(q>i,[c1>i,cpj])}

2

As we will show momentarily, the full potential can be motivated from dynamics of branes
In string theory and takes the form:

v :Tr(—%[q)i’q)j][q)i’cpj]-l_ %(gj,d [¢k,¢l]¢j+m72<b,~2j

The potential is invariant under U (N ) group (acting on the matrices) and SU (2) group
acting on I, J indices.

The EOMs are:

H? = 31‘142 (_%Tr (a#q)ia#q)i)‘l'v(q)i’[q)i’q)j])j
P

&, +3HD, + A0, |@, @ ||+ine, |® @, |+ m®, =0

H=e ~> Tro ,®,0“®,
P i

2M
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Matrix Inflation from String Theory

In the context of string theory, it is known that the world-volume of N coincident
3-branes is described by supersymmetric U(N) gauge theory. In this system the
transverse position of the branes,®,,/=4,...9 are scalars in the adjoint representation
of U(N), and hence N X N matrices. The DBI action for the system in the background
of RR six form flux (sourced by distribution of D5 branes) is given by:

4 %STrl 1—./— 10" | + g x!. x’|c® Myers (1999)
(27[) l4 j ( \/ ‘gab‘\/ QJ 4ﬂ.ls2 [ ] 170123
I,J=45,..,9
_ M N . 9 9 b 2
8 =Gd, X790, X" MN=0]1..9 a,b=0,1,2,3
QIJ — 51.] +

N

We consider the the 10-d |IB supergravity background:
i, j =1,2,3 parameterize 3 out

3 8
ds® =2dx* dx — rhzz (x")(dx*)? +Z dx . dx 6 dim | to the D3-branes and
) 2 - K= x X denotes 3 spatial dim along
K

_ K .
Comy = N €y X and five transverse to D3-branes.
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Matrix Inflation from String Theory
4g &

With 7% = the above background with constant dilaton is solution to the SUGRA

EOM. We compactify the transverse dimensions on a 6d CY manifold with two 3d
cycles, one of which is very long and the other one is quite small. In the

light-cone gauge on the D3-branes, expanding the action up to fourth order in X’yields
! J‘d“xTr[—%aﬂXia"Xi—V(Xi)}

T )i,
1 ig K ik | A
V =- X, X [|X.,X |+ e X XX, |+=—m’X,
4(27'[[3)2[ i ]][ i ]] 32%13 [ j k] 2
Upon the field redefinition @, = ’
P VQ27) g L
A IK m’®
% :Tr(—Z[CI)I.,CI)J.][CI)I.,CI)J.]+?€JH [c1>k,c1>,]c1>j+7c1>$J
A=2rg, K=Kg, 27 g, m=m
From the brane-theory perspective, it is necessary to choose 7 and K such that
4g21?‘Z
A2 s

. However we may also relax this condition and take 1,x and m” as

9
independent parameters.
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Truncation to the SU(2) Sector:

®. are N X N matrices and therefore we have 3N* scalars. It makes the analysis very

1

difficult (3%

However from the specific form of the potential and since we have three @, it is possible

to show that one can consistently restrict the classical dynamics to a sector with single

scalar field: A
D, =9(1)J,, i=1,2,3

J, are Ndim. irreducible representation of the SU(2) algebra:

g =gy, Tr(JiJj)zg(Nz—l)é'ij

Plugging these to the action, we have:

2
S = J‘d4x1/— g{MP R +Tr12(—%8ﬂ¢ aﬂ¢—§¢4 +23—K¢3 —’%Wﬂ Tr(/2)= > Tr (v2)

2
Definings=(Trs?)"*$ to make the kinetic term canonical, the potential takes the form

A 2K m’ 24 84 K 2K
1% _ eff 44 eff .3 + 2 l = — , K, = = R
(9= 9"~ YTt N-) Y g ([N -




Consistency of the Truncation to the SU(2) Sector

» SU(2) sector is a sector in which the computations are tractable. But is it consistent?

D
A

To see that let us defines Gg
! A A 7

1 =09/ = TIDJ) Tr(¥,J,)=0

N(N*—1) §Vl :
V=V, () +V, (§,¥,) V(Z)(é,‘{'izo):o (5&?) =0
L /¥=0
If we start with the initial consitions ¥ :l’g =() and ¢A # 0, ¥ will remain zero.

« What is the special role of SU(2) generators among other N X N matrices? w‘

®,=T,-E, Tr(GE,)=0
V=V,)+V,T,E)

Vo :Tr[('ﬂ[r;’[r; ’Fk]] + Eijk [Fi’rj] )E‘k]+0(r2)

To have I', -sector decoupled = lrver:fngk@ Three I';should form a Lie-Algebra

a) f,=ig, — I, areformingasu(2)algebra q’i:;%’ia’ i=123 N =§Na

No interesting inflationary
dynamics

b) f, =0 = I, arethree Abelian subgroups of UN)=—
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Analysis of the Matrix Inflation around the Single-Block Vacuum

014+
Ayi o 2 _ J2m Hill-top or Symmetry-Breakil
Vig)=—"—9"(0-4) Py = M= (A, inflation, Linde (1992) 012
) Lyth & Boubekeur (2005)

0.10

Note:This is exactly the same condition we had to satisfy to  ix o=
have our 10-d background be a supergravity solution. A

In the stringy picture, we have N D3-branes that are

blown up into a giant D5-brane under the influence of RR 1@ (b)
6_form. —DI.5IIIIUIIIID?5IIIlir""
LB

(@) ¢, > u ¢

¢l’~“4357MP ¢fz2707MP ﬂz26MP

Ay ~491x107™ m=40710°M, K, =9.57x10"° M, )

Ap=~107 M,
(b) w/2<¢<u B
~ ~ =36 M
¢ =235M, 4, ~3503M, 7 » S

Ay =7.18x107 m=682x10°M, K, =9.57x107° M,

(c) O<@<u/2
Due to symmetry ¢——¢+uthis inflationary region has the same properties as #4/2<¢ <u

1
15



K*<2m’A V(p) t

Chaotic Inflationary scenarios with & = O falls into this category:

a) V=§m2¢2
From EFT perspective ?

To fit the WMAP data A@=10 M, super-Planckian excursions are

problematic!

Ap=~N Ap —= |f N>>] == Ap<<M

1
b) V :Zﬂeﬁc¢4

To fit the WMAP data s ~10™ and A¢=10 M, Such value of quartic
coupling and field
: 81 s displacement are
Assuming i =1 &4, = —— one needs N =10 unnatural from EFT
N(N“=1) perspective!

Ap=10"M,



Mass Spectrum of ¥ Modes in Matrix Inflation

The other 3N* —1 even though classically frozen, have quantum fluctuations. To compute

these effects, let us calculate the mass spectrum of these modes. Expanding the action
up to second order, we have:

where
.|

_l 8le

If we have the eigenvectors of the @,
QY = 0¥,

_ ﬂ’eff 2,2 m’
V2— T¢ (C() a))+KeffC()¢+ ) Tr‘I’i‘I’i

It turns out that finding the eigenvectors of €; is mathematically the same as finding the

: : Dasgupta, Sheikh-dabbari &
the vector spherical harmonics: Von Raamsdonk (2002)



Mass Spectrum of ¥ Modes in Matrix Inflation

(@) N2—1 zeromodes with «=-1

| %
= ? A is an arbitrary traceless matrix

(O)(N —1)2 -1 -modes@=—(+D), leZ 1<I<sN-2 Degeneracy of each

M} = %/leff A+2)1+3)¢” - 2K (I +2)+m’ [-modeis 2] +1

(©) (N +1)*>-1 B-modes: w=Il, leZ 1<I<N Degeneracy of each

M} = %ﬂeff 1-2)1-1)¢° +2k (I-1)+m”’ [-mode is 2/ + 1

A
M* :;—ﬁ¢2(w2—w)+2z<eﬁa)¢ +m?’
” V,
=V, (w+1)2—?0(4a)+3)(a)+2)+¢—3



Power Spectra in the Presence of Y,..Modes

1 1 . 1 .
L==20,00"0=—0,% un 0", Vo (9) =M, ¥ ¥, r=0.a,p

If you start from the initial condition ¥, =¥, =0 , they remain zero. Therefore the

inflationary trajectory is a straight line in the field space and there is no cross-correlation

between adiabatic and entropy spectra. Mukhanov-Sasaki
) | L | Y . variable |
Q¢+3HQ¢+a—2Q¢+ VO"”‘”_a3M§(H¢j 2, =0; Q¢55¢+%¢

2

6\-1:‘ +3H é’qu,lm +(k—2+M"yl(¢)2j§lPr,lm =0 m:?Q¢ Sr,lm:?qu,lm
a

r,lm

H k°* —» scalar metric perturbations

R = H_'a_zq) in longitudinal gauge

k> , i3
PQ¢ B 27[2 53 (k_lk )<Q ¢kQ¢!(> PlPr,lm — 272.2 53(k_!( )<\P*r,lm!( \P*r,lm!(>
k* .
Cyioy =573 &' (k -k )<Q ¢kwnlm>= 0

v Qo




Power Spectra in Symmetry-Breaking Inflation? > «

Ay =4.91x10™ m=4.07x10° M,
Ay @7 — 1.162

Zero i

mode | 2K, | X107 0.981 N °
+m’

[l =1

p w2 | FB Toors |,

X107

I =2
2Ky | 8.842 7
+m2 Xlo_lg 1.002

Ky =9.57x107° M, === ng =0.959

N? zero modes can be
removed by gauge
transformations

B (ky,)=4.84x107"° = r=02

n, = —0.025

Planck should be able to verify this model.



Power Spectra in Symmetry-Breaking Inflation #/2<¢<u

Ay =7.187x107" m=6.824x10° M,
A, 0°- 146

Zero &

mode 2Keff¢ x10™" 0.987 N2
+m?

L=112x,0 655

B ef : 1.0545 3
+m? | x107°
64, ¢2—

D=1, [ 409 1007 | 3

a 7 x107"
+m’

K,y =1.940x10™% M, === ny; =0.961

N? zero modes can be
removed by gauge
transformations

P.(k)=~1307x107"" == r=~0.048
n, = —0.006

CMBPOL or QUIET should be able to verify this
scenario.
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Power Spectra in Symmetry-Breaking Inflation 0<¢<u/2

The potential is invariant under symmetry ¢ — —¢ + p

Ay =7.187x107" m=6.824x10° M,
Ay @ — 3.84
Zero
mode |2k, ¢ | x10™ 1006 N°?
+m’
=1 | 0t~
6k, 6 123 10953 | 4
@ T x1o™
+nt’
L=1|2x,9 | 6558|1054 | 3
B | +m® | x107°

K,y =1.940x10™% M, === ny; =0.961

N ? zero modes can b removed by gauge
transformations

P.(k,)=1307x107"" = ,~0.048
n, =~ —0.006

CMBPOL or QUIET should be able to
verify this scenario.
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Particle Creation and Preheat Scenario

Even though one can show that backreaction of ¥, , on the inflaton dynamics is not large,

JAm

It can become important when €, =1

This could be the bonus of our model, as ¥ , modes help to drain the energy of the
inflaton, since their masses are changing very fast.

Ashoorioon & J.T. Giblin

Preheating in the case of symmetry-breaking inflation is in progress!” ™ preperation

We will focus onA¢*/4 theory, as its preheating has already been worked out by
Greene, Kofman, Linde & Starobinsky (1997)

F 1 . 1 5.5 5
1{\H[rjdll|=_l'lﬂl_._3gut’j-k"

The structure of parametric resonance is completely determined by ¢°/A
For 9°/A = n(n + 1)/2we have an enhancement in the parametric resonance leading
to creation of X particles

‘ ) ) ) , | -
ne2Z+1 particle creation is peaked around k =0 Hlie ¢ ML TE~0.15

2
ne2Z particle creation is peaked around ¢ => H.e g_/l [k ~0.5
y 2 " N2




.'.P'_

article Creation and Preheat Scenario

1 1
V [fr') Wy im) = 1 .r_l"_.l"'-':3l + 2};,_,_(;{,} ZE o _i‘-":l I‘rrimprim

rlm
JH'.F':{

! a4 1 2 2
= —TAeffq o Aeffd /Dm
4)'-cff:3‘ +23’k.ff+;’ § |Wom|

m=1
21+1 21+1

+%AEH¢+ [Z Lkl lern iml” + Zm DS s il

=0 =1 m=1

In this case ¢?/A = n(n +1)/2 with » = 1.1.1 — 1 respectively for zero, @ and 7 modes

( For zero mode, odd ! #-mode andeven! S -mode. k=0 [13:~0.15

k Foreven [ @-mode and odd ! # -mode. k*= %Hlflfgw/l(lﬂ) [13~0.5

This means that large I even a-modeand odd ! 5 -mode makes the biggest
contribution to preheating. Also one should note that their preheating will be more
effective here due to their 2/+1 degeneracy

H ~10"5Mp
N2T? ~ 3H2M'§.- >'E T ~ 10 Gev
N ~ 10"
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UV behavior of Matrix Inflation in presence of many species

In a theory with many particles the scale where quantum gravity effects become large is lowered

to .
A2 _ Mp Dvali (2007)

i'1\""T1:'.l -

N : species with mass below the cutoff, A

In matrix inflation: Ny = IN2

Let’'s compare the amount of excursions of the “physical” inflaton is less than A when inflation
happens in region ¢ > u
¢ =43.57TM, ¢, =27.071 M, U=26M,

Ay ~491x107 m=40710°M, K, =9.57x10"° M,

To find the number of species in our case, we assume that )\ — 1.

8A o
o Emzwlxlo ‘== N =54618
- ¢f_¢i

A= =2.58x10° M,<A=1.05x10" M,

JN(N* =1

Also, one should notice that the mass parameter of the inflaton turns out to be about 40% of the
cutoft.
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Analysis of the potential for n-block vacua:

In this case, we have n-field inflationary, ¢, @ =1..n that are only gravitationally coupled

1 n 1 - ) ) o Aa g4 2Kq 3 m? )
[ - -~ I -
L oy ST, . 2
o+ 3Ha + 05, Va =0, TNNESD T T /NS

The classical (inflationary) dynamics around the “multi-giant vacua” decouple from each
other and one may build an inflationary model around either of these.

If we start with a field which is initially in the sector specified by a given set of {N,}, then
N, remains a conserved quantity by the classical trajectory of the system. In general
various fields in the same sector specified by a setof N, can mix with each other.

J

That is, in general the inflationary trajectory in the space of ¢, is curved.
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Analysis of the potential for n-block vacua:
Various scenarios can occur in such a n-field inflationary model. Let us consider one two-block example that

can arise in Matrix Inflation with

30 -

26 -

32+

28 -

Ao =2 x 1071,

Ao

Ay

V= T20%(0 = o) + N0 — )

2
ho = 196.168Mp, 1y = 36Mp, A, = )\é(ﬁf_ca )

b; = 209.439 Mp

4

Hox

\; = 26.678 Mp

Py (kg) = 4.4x107" ng=0987 C =0.228

Pr(ken) = 2.618 x 107 i.e. r ~ 0.107, and np ~ —0.041




Conclusions

« Matrix inflation is an interesting realization of inflation which is strongly supported
from string theory. Matrix inflation can solve the fine-tunings associated with chaotic
inflation and produce super-Planckian effective field excursions during inflation.

» Due to Matrix nature of the fields there would be many scalar fields in the model. This
leads to the production of isocurvature productions at the CMB scales.

« Matrix inflation has a natural built-in mechanism of preheating to end inflation.

* In particular, if there is an isocurvature component (at a level still allowed by present
data) but it is ignored in the CMB analysis, the sound horizon and cosmological
parameters determination is biased, and, as a consequence, future surveys may
incorrectly suggest deviations from a cosmological constant.

' ' | A. Milligen, L. Verde, M. Beltran
Take Isocurvature Perturbations Seriously! 1006 5806 [actromh 00






