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[cf. K.Nakayama’s talk on Monday]
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mx - 100 TeV — Tx = O(MeV
x 2 x JOWeV) But this is not sufficient !

Moduli-Induced Gravitino Problerg

Endo, KH, Takahashi, 0602061 10
Nakamura, Yamaguchi, 060208l 10*
Asaka, Nakamura, Yamaguchi, 0604132

Dine, Kitano, Morisse, Shirman, 0604140
Endo, KH, Takahashi, 0605091

unstable
gravitino
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main [GeV]
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P(XR:I = 2w3/ 2) = 2 8 87~r g _ m2 ? 100 /Bl?fﬁggggﬁggwggfflwﬂ Stable
xR/ ¥ gravitino
10 ¢ WDM
Generically, 1Gx| > m3/2/ mx 10'210.4 P 1
e — 4 ~ 1" .
> Br(X 2 gravitinos) = O(1) !! Bs2 Endo, KH, Takahashi,’06

===> Serious problems, - _
mnLsp = 100 GeV. We have chosen myxy = 10° TeV and

even if Tx > 1 MeV. ¢ = 1 as representative values. The bounds become severer
for larger mx.
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Moduli-Induced Gravitino Problen;n

Endo, KH, Takahashi, 0602061 | . _
Nakamura, Yamaguchi, 0602081 solutions:
Asaka, Nakamura, Yamaguchi, 0604132 * 2 m3/2 > mx

Dine, Kitano, Morisse, Shirman, 0604140
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Y enhanced moduli total decay rate
(e.g., low cut-off) --—-> Br << |
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(by tuning Kahler potential)
v no moduli domination

Generically, |Gx| > ms/2/mx
---> Br(X — 2 gravitinos) = O(1) !!!

===> Serious problems,
even if Tx > 1 MeV. c =




Main messages of this talk:

In SUSY models with gravitino LSP + stau NLSP,

€ Tr > a few 108 GeV
- tested at 7 TeV 1fb™ (= within 1.5 vyears !)

€ Stau lifetime can be measured at the LHC.
(= Tr may be determined,

assuming Q2™ p? ~ Qpyh? If not, - upper bound on TR. )

* with entropy production A, replace Tr = Tr x A
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.1 ) Introduction
~ In SUSY models with gravitino LSP + stau NLSP,
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We assume: SUSY + gravitino LSP + stau NLSP
why SUSY?

® naturalness, coupling unification, DM, .....

® many non-SUSY scenarios for BSM — low E cut-off
— difficult to discuss T > cut-off (inflation/reheating/baryogenesis...)

why gravitino LSP ?
LSP = sfable (assumlng R-parity)

oor neutralino are allowed.

— NLSP becomes long-lived. We assume stau NLSP.
(e.g., for maLsp = 200 GeV, lifetime = O(10sec - day) for mgravitino = O(0.1 - 10 GeV)

..... realized in many attractive models .....

® GMSB (in particular, with messenger # > 1)

® Sweet Spot SUSY [Ibe, Kitano ‘07] (cf. R.Kitanos talk)

® F-theory GUT [Marsano, Saulina, Schafer-Nameki ‘08 / Heckman, Shao, Vafa '10]
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comments

(2) “no entropy production” is assumed.
— with entropy production A,

QO~h? ~ 0.1 3 GeV (mglumo)z ()
G meg 1 TeV 108 GeV

— replace TR =@ Tr X Al in the following discussion.
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(3) other contributions to DM.

Q%lermath + ngn thermath + Qother DMsh2 _ QDMhz ~ 0.1
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® stau NLSP decay: small for Mstau < 1 TeV.

® inflaton d€C0Y3 small for large TR [cf. Endo, Kawasaki, Takahashi, Yanagida ‘06-'07]
® decay of SUSY field [cf R.Kitanos talk]: can be large depending on SUSY sector
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mg 1 TeV 108 GeV
comments
(3) other contributions to DM.
Q%lermal h2 4+ léon thermath 4+ Qother DMsh2 _ QDM h2 ~ 0.1

v\ 2
i \ o

® stau NLSP decay: small for Mstau < 1 TeV.

® inflaton d€C0Y3 small for large TR [cf. Endo, Kawasaki, Takahashi, Yanagida ‘06-'07]
® decay of SUSY field [cf R.Kitanos talk]: can be large depending on SUSY sector

— in the simplest case, Q™alp? = Qpyha? ~ 0.1

..... if not, Q2™ h® < Qpmh® (- upper bound on Tg)
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{ 2 Juse upper bound from BBN

{ 3 }stau lifetime — gravitino mass
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Probing high Tr scenario
at the LHC with long lived stau.
M.Endo, KH, K.Nakaji, arXiv:1008.2307

thermal leptogenesis: Tr > O(10%) GeV
non-thermal leptogenesis: Tr > O(10°) GeV
some typical inflation models: Tr = O(10%-10"°) GeV

---> any signal at the LHC 27?7



Probing high Tr scenario

at the LHC with long lived stau.

Logic

[Fujii, Ibe, Yanagida, 04]

M.Endo, KH, K.Nakaji,
arXiv:1008.2307
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at the LHC with long lived stau.

LogiC [Fujii, Ibe, Yanagida, 04]

(1) For a given stau mass
— upper bound on gravitino mass

max

mg < mg (mz)

BBN : constraint on (Y7, 75)

Y=Yz (m;)

T = T5 (M5, mg)

—> constraint on (mz, m
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thermal relic abundance of stau
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LogiC [Fujii, Ibe, Yanagida, 04]
(1) For a given stau mass

— upper bound on gravitino mass

max
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T,=3x10 GeV|
— stau non NLSP

] ] |

stau mass (GeV)

upper bound on the gluino mass for given TR

Note: taken m(bino)=m(wino)=1.1m(stau) to have conservative bound on TR.
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$or | # of produced staus
§ 2000/ : | & at 14 TeV 10fb-!

§1500* |

) | # of produced staus
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upper bound on the gluino mass for given TR



. : Xiv:1008.2307
at the LHC with long lived stau.| "
Result
7 # of produced staus
| &7 at 14 TeV 10fb"!

# of produced staus

Probing hlgh TR scenario M.Endo, KH, K.Nakaji,

—#.. £ 4 Checked: after triggers and cuts, 20-50% events remain.
§ 4§ | trigger assumption:

' /|>=1 isolated e (pT>20GeV), or

’ >=1 isolated mu (pT>40GeV), or

>=1 isolated tau (pT>100GeV), or

>=1 isolated stau (pT>40 GeV and >0.7, eta<1.0 or B>0.8, eta<2.8), or

>=2 staus (pT>40 GeV and B>0.7, eta<l.0 or B>0.8, eta<2.8)

stau cuts assumptions:

querh

\pT >20 GeV & eta<2.5 & 05<PB <09 ->almost background free!

J




Probing hlgh TR scenario M.Endo, KH, K.Nakaji,
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Probing high TR scenario
at the LHC with long lived stau.

M.Endo, KH, K.Nakaji,
arXiv:1008.2307

COMMENT ¢ 50 far we've assumed that the stau annihilation is
dominated by EW process (which is usually the case)
® but if the stau-higgs coupling is extremely enhanced,

stau abundance can be reduced (BBN bound is relaxed).
Pradler, Steffen, 08]

[Ratz, Schmidt-Hoberg, Winkler,' 08,
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— | | | | | R
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stau lifetime measurement (and TR )

S.Asai, KH, S.Shirai, [arXiv:0902.3754] PRL,103,141803
+ M.Endo, KH, K.Nakaji, in progress

see also earlier work on “stopping gluinos” [hep-ph/0506242]
Arvanitaki, Dimopoulos, Pierce, Rajendran, Wacker

Many independent motivations fo measure
the lifetime of long-lived charged massive particles.....

® Planck scale measurement, if mG is determined by kinematics
[Buchmuller, KH, Ratz, Yanagida, 08]

® Test of FIMP mechanism [cf. talks by T.Moroi and L.Hall]

® Li problem/solution [cf. talk by K.Olive]

® etc efc
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stau lifetime measurement (and TR )

S.Asai, KH, S.Shirai, [arXiv:0902.3754] PRL,103,141803
+ M.Endo, KH, K.Nakaji, in progress

see also earlier work on “stopping gluinos” [hep-ph/0506242]
Arvanitaki, Dimopoulos, Pierce, Rajendran, Wacker

quemaip2 ~ g1 (3G (mglum)?()

max

So far we've used only the upper bound: Mg < Mg (m#)
... Can we determine gravitino mass more directly??
---> stau lifetime measurement!!
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mg 1 TeV 108 GeV
= Qpuh® =0.11

R assumption
(if not, Tr - TRM** )



qemap2 o 1 29V 2()

me 1 TeV 108 GeV
= Qpyh® =0.11
R assumption

(if not, Tr - TrMax )

| by invariant mass method |
§[cf. Ito, Kitano, Moroi,'09] ‘
¥ Fitting = M____ 42/ ndf 11.887/10

A 228.52 + 16.102
M 11721+ 1.2183

O 16.637 + 1.3431
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Gluino mass is more difficult but
should be possible at high luminosity



Qthermalp2 (1 3GeV (mglumo)z ( )
G ' 1 TeV 108 GeV
= Qpuh®=0.11

R assumption
(if not, Tr - Tr™MX )



Qtj}ermal h2 ~ 0.1 (mgluino)2 ()
G - 1 TeV 103 GeV
= Qpuh®=0.11
A assumption 487rMplmzé

(if not, Tr -~ TrMaX ) ]
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Figure 18: B resolution and reconstructed mass for sleptons from the GMSBS sample.

ATLAS, 0901.0512
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stau lifetime measurement [Asai, KH, Shirai,’ 09]

e at the LHC,.....

RDNR— A tvon Detectors Electromagnetic Calorimeters

Forward Calonimeters

End Cap Torokd

X1
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stau lifetime measurement [Asai, KH, Shirai,’ 09]

e typically most of staus have large
velocity and escape from detector.




stau lifetime measurement [Asai, KH, Shirai,’ 09]
e typically most of staus have large

velocity and escape from detector.

but we cant see
ITs decay in these
events.....

JRCD’\“— ‘/”\gﬁi fluon Detectors Electromagnetic Calonmeters

cf. proposals
to stop them
outside detector:

KH, Kuno, Nakaya, Nojiri, 04
Feng, Smith,'04
de Roeck, KH, Nojiri, ‘06

But not realistic now....
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* typically most of staus have large
velocity and escape from detector.

* but some of them have sufficiently small
velocity and stop at calorimeters.
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stau lifetime measurement [Asai, KH, Shirai,’ 09]

e typically most of staus have large
velocity and escape from detector.

* but some of them have sufficiently small
velocity and stop at calorimeters.
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Figure 1-i Overzll layout of the ATLAS detector.

* but their late-time decay has wrong timing
and wrong direction;

e difficult to reject backgrounds

e difficult to trigger:

..... during pp collision.




stau lifetime measurement [Asai, KH, Shirai, 09]

Idea:

use periods of no pp collision !

possible strategies:

e for short lifetime: wuse beam-dump signal.
(or use empty bunch [cMs study, '09])

e for long lifetime: wuse shutdown time.



e for short lifetime: use beam-dump signal.

(I) select the stopping event by online Event Filter.

SUSY stopped!!
events

J \‘\‘\A time
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e for short lifetime: use beam-dump signal.

(I) select the stopping event by online Event Filter.

(1) missing ET > 100 GeV
(2) 1 jet PT > 100 GeV + 2 jets PT > 50 GeV

(3) isolated track with PT > 0.1 m(stau).

(4) extrapolate the track to calorimeter and energy deposit < 0.2 p(stau).
(5) extrapolate the track to muon system and no muon track.

SUSY stopped!!
events

J \\‘\A time

N\~
ZAV >




e for short lifetime: use beam-dump signal.

(I) select the stopping event by online Event Filter.

SUSY stopped!!
events

J \‘\‘\A time

N\~
ZAV >




e for short lifetime: use beam-dump signal.

(I) select the stopping event by online Event Filter.

r
| AR . ) trigger

(II) send a beam-dump signal, which immediately

stops the pp collision.

beam-dump

SUSY stopped!!

time




e for short lifetime: use beam-dump signal.

(I) select the stopping event by online Event Filter.

r
trigger
(II) send a beam-dump signal, which immediately A) 99
stops the pp collision.

(III) change the trigger menu to the one optimized
for stau decay.

beam-dump

< >
change

trigger menu

SUSY stopped!!

time




e for short lifetime: use beam-dump signal.

(I) select the stopping event by online Event Filter.

r
frigger
(II) send a beam-dump signal, which immediately A) 99
stops the pp collision.

(III) change the trigger menu to the one optimized
for stau decay.

(IV) wait for stau decay.

beam-dump

< >
change

trigger menu

SUSY stopped!!

time




e for short lifetime: use beam-dump signal.

(I) select the stopping event by online Event Filter.

r
frigger
(II) send a beam-dump signal, which immediately A) 99
stops the pp collision.

(III) change the trigger menu to the one optimized
for stau decay.

(IV) wait for stau decay.

beam-dump

< >
change

trigger menu

SUSY stopped!!

decay!! time
........................ ﬁ >




e for short lifetime: use beam-dump signal.

(I) select the stopping event by online Event Filter.

r
trigger
(II) send a beam-dump signal, which immediately A) 99
stops the pp collision.

(III) change the trigger menu to the one optimized
for stau decay.

(IV) wait for stau decay.

beam-dump restart pp collision
< >
SUSY stopped!! . Epeuge SUSY
events tfrigger menu events
/ M decay!! St \ time
74 sAz <
........................ >SS 2,




e for long lifetime: use shutdown time

running (pp collision) winter shutdown

stopped

time




e for long lifetime: use shutdown time

running (pp collision) winter shutdown

< >

sfopped change
trigger menu

time




e for long lifetime: use shutdown time

running (pp collision)

stopped

winter shutdown

< >
change

trigger menu

decay!! | time
ek 5 She—3'% -
2,8 2,8 AR -




olifetime measurement: Result

TABLE I: Expected statistical errors for each lifetime. (Np)
is the expected number of staus’ decays in the corresponding
period. For 100 fb~! and 7x ~ O(1) sec, the empty-bunch
method will be useful. (See discussion below.) [SPS7 point, | year data]

10 fb~* 100 fb~!

lifetime |(Np) o (Np) o

0.1 sec |0.008| £0.1 sec | - i short

0.2sec | 1.2 |x=0.15sec| - - .

0.bsec | 23 | x£0.1sec| - - t assump'l'lOn

1 sec 64 | £0.1sec | - -

10 sec | 156 | £0.9 sec | - . dead time: 1 sec

100 sec | 171 | *9sec | - : waiting time: 30 min.
1000 sec| 144 | 7230 sec | - -

10 day | 26 |£2.2 day| 262 |+0.7 day .
100 day | 143 | 722 day |1430 | 720 day running: 200 days
10 year | 14 | 7 year | 138 |71’ year shutdown: 100 days
50 year | 2.8 | 731" year| 28 |72 year
300 year| 0.5 — 5 |T22% year

v
long

O(0.1 sec ... 100 years) can be probed!!



= Qpuh® =0.11

R assumption
(if not, Tr - Tr™MX )

T

can be determined
at the LHC !l!



SUMMARY

Main message of this talk:
In SUSY models with gravitino LSP + stau NLSP,

¢ Tr > a few 108 GeV
- tested at 7 TeV 1fb™! (= within 1.5 years !)

¢ Stau lifetime can be measured at the LHC.
(= Tr may be determined,

assuming Q22 ~ Qpyh? If not, = upper bound on Tr. )

* with entropy production A, replace Tr = Tr x A



DISCUSSION

gravitational wave may probe TR (and dilution).

Nakayama, Saito, Suwa, Yokoyama, [arXiv:0804.1827] JcAP0806(2008)020

[cf. talk on Monday]

Q)

Figure 3. Primordial gravitational wave spectrum for T =

1072
104 L
1016 |
.
102 |

1 0-22 -

\rzO. ]

r=0.001

— T,=10"GeV
—— T,=10"GeV

| T |

Qo)

-24
10 '
10720

10 10° 10°
f [Hz]

'
10°1°

10°

10712
104 |
107'® |
1078 -
100

1022

- — F=10°
- — F=10"

| -

-24 ]
10
10"

10" 10"° 10°

f [Hz]

10°

we have fixed r = 0.1, T = 10” GeV and T, =1 GeV.

10° GeV and Tg

10° GeV are shown by thin and thick lines for » = 0.1 and 0.001. Also shown are
expected sensitivity of DECIGO (green dashed), correlated analysis of DECIGO (blue
dot-dashed), ultimate-DECIGO (purple dashed) and correlated analysis of ultimate-
DECIGO (red dotted), from upper to lower.

10°

Figure 6. Gravitational wave spectrum for the dilution factor F = 10¢ and 10°. Here



additional slides



* typically most of staus have large
velocity and escape from detector.

e but some of them have sufficiently small
velocity and stop at calorimeters.

-

TABLE II: The number of stopping staus for 10 fb™'.

with cuts|without cuts’

example of SUSY
model point SPS7 400 | 805 |

( Osusy = 3.5 pb ) 8y |
0af | BT
0.3 [_ '..:...:’::;‘;.3.?.: ’; :0(. o p
from Asai, KH, : S L
H : 0.2 .“ * ..- o'l:o.. .
Shirai ‘09 : e RN
0.1F |
(See related work bt 7

. , o 3 2 -1 0 1 2 3
stopping gluino™,

assume (ATLAS):
Fe 1440mm (barrel)
Cu 1400mm (end-cap)

stopped events
e about 1% of
total SUSY events
e a few per day
(for 1033/cm”2 s)

ArvanitakKi €'|'.C1|.) FIG. 1: n — (7 distribution of the staus. The red line shows

the limit for the stau to stop in the detector.




lifetime measurement: "empty bunch” method
(cf. CMS study, CMS PAS EXO-09-001)

compared to "beam-dump” method,.....

advantages:
® pp collision can continue
® sensitive to (much) shorter lifetime

disadvantages:

® difficult to correspond the stop and decay, if
lifetime is longer than the empty bunch period.
® # of decay observed is reduced.



