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ICM Dynamics: A 3-Scale Problem
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Fundamental Parameter
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What does H > A5 > 7, ; mean?
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When conduction 1s rapid:
AT ~ 2§||V||T

i.e. compressions/rarefactions in VT -oriented field lines lead to heating/cooling
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When conduction 1s rapid:
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When conduction 1s rapid:
AT ~ 2§||V||T

i.e. compressions/rarefactions in VT -oriented field lines lead to heating/cooling
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not the whole story...

(something was missing)



What else does H > A5, > r,; mean?

2. p—P=p]l modifies magnetic tension

2
muv,

2B

First adiabatic invariant p = conserved if 2;/v; > 1

holds already for B> 1018 G

— Z = L _ const, (angular momentum conservation
B of a gyrating particle)

particles

Changes 1n field strength < pressure anisotropy
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anisotropy by collisions



What does H > A\, mean?

pL—p 1dnB _ bb:Vv

p vy dt Vi
Linearly, this implies:
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_____________________________________ 5 BII — 0 Alfvén mode

1s undamped

5B|| £ 0 slow mode

1s damped

acts as an anisotropic viscosity (“Braginskii viscosity”)
targets motions that change the field strength



How does this affect the ICM?

Weond > Wdyn — AT f” 0.¢ 5B||
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HBI is suppressed. MTI 1s strengthened.
HBI modes confined to wavelengths satisfying
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NOTE: W 4 ~ 6. . for hydrogenic plasma
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put a weakly collisional fluid in a gravitating,
thermally stratified atmosphere
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Dispersion Relation &unz 2011
d x exp (ot + ik-r)

To leading order in wWqyy, /Weond <K 1,
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Dispersion Relation &unz 2011
d x exp (ot + ik-r)

To leading order in wWqyy, /Weond <K 1,
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Braginskii cause of coupling of
mode damping ~ MTI/HBI Alfvén and
of slow slow modes
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HBI without Braginskii

HBI with Braginskii
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Maximum growth rate reduced by a factor ~1.7;

occurs at Wyige ~ 0.0 Wayy » 1-e. ﬂ ~ 10 Amfp
H H

These modes are only “local” within ~10s kpc of clusters.



This has been shown rigorously
via a global HBI linear calculation
(Latter & Kunz 2012)
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This has been shown rigorously o . .
via a global HBI linear calculation > 5 Gyr for significant field-line
(Latter & Kunz 2012) ~J deformation beyond ~50 kpc

_[\\;/;;— -

ET T T T T T T T T T T T T T T T T T T ™3

¢

z
|
— OO =
o o O O

Lol el

|
© ~O
o oW

|
1

€z
00000

Sp/p
|
= R NONNE AN ON A OO
T T
[ <§::>_ _<::i7 11
L 1 4 F I 4 F
| |
or/T op/p
O P OOO+ |—~|OOOr—-
— OuUIouU1o [NV e NV Ne)

o b b iy

ST/T
|

i e m

)

28 28

vE N TE N

g= 5

g% 8] %g R

=S B2 0.0
0 0.25 0.5 . 1 0 0.25 0.5 0.75 1

z/Z z/Z



10*

Let’s try a local simulation:
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LLocal HBI Simulation:

same as McCourt, Parrish, Sharma & Quataert (2011) buz with Braginskii viscosity

t =0 Gyr

0.08

0.06 = —

Z/Ho

0.04 = —

0.02




LLocal HBI Simulation:

same as McCourt, Parrish, Sharma & Quataert (2011) buz with Braginskii viscosity
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Quasi-global (Hx2H) simulations of HBI
in weakly collisional, radiative ICM
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t =0 Gyr
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Quasi-global (HxHx2H) simulations

(but without cooling, for now)
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What happens out here?



MTI without Braginskii MTI with Braginskii
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Fastest-growing MTI modes
evade suppression since d B = 0.
But the available wavenumber space is
substantially altered.



Braginskii viscosity

Inviscid (i.e. isotropic pressure)

Quasi-global 2D simulations of MTI
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global 2D simulations of MTI
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Quasi-global 2D simulations of MTI

t=175 t=20.0 {=22.5 {=25.0 t=27.5 {=230.0

onlC.Dressiite)

Inviscid (i.e. isotr

Braoinskii viscosity

1. Because small-scale features along field lines are viscously damped, there is less
reconnection and the magnetic field remains coherent over longer distances.

2. Magnetic folds emerge with £ | << £, ~/

visc *

3. Tield strength and field-line curvature are anti-correlated.
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Dispersion Relation &unz 2011
d x exp (ot + ik-r)

To leading order in wWqyy, /Weond <K 1,
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Just a little bit of k, will make these maximally unstable!
“Alfvénic MTT”



Dispersion Relation &unz 2011
d x exp (ot + ik-r)

HBI, MTI, Alfvénic MTI:
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MRI, Alfvénic MRI (i.e. MVI):
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MTI

without Braginskii viscosity
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rapid Braginskii viscous damping allows
slow-mode perturbations (dn, 6T # 0)
to masquerade as Alfvénic fluctuations

(with 6 B, v predominantly oriented L to 13)
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Quasi-global 3D simulations of MTI
Plotted: Magnetic-Field Strength

Inviscid (i.e. isotropic pressure) Braginskii viscosity

128 x 128 x 256



Braginskii viscosity only mildly
affects HBI in dense, cold

center — may still operate there.
<

HBI sluggish due to relatively low

| collisionality and resulting non-local

character of unstable modes.
.»

However, radio-mode feedback Thermal conduction might

<«~>

and magnetic tension may remain important.

limit 1ts relevance.
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Major Caveat

Once
0By > vi 1
B Pougr P Kn

rapidly growing microscale instabilities are triggered
and Braginskii-MHD is 1ll-posed.

Cluster cores: Kn_1 ~ 103—102 :

Cluster outskirts: Kn_l ~ 102—101.

We chose

B ~ 10*-10°



What to do, what to do...

Option #1: Limit pressure anisotropy by increasing

collisionality so that no microscale instabilities occur.
(Sharma et al 2006; Schekochihin & Cowley 2006)
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Option #2: Work at very high resolution so that firehose is efficient
at naturally limiting the (negative) pressure anisotropies

by modifying the total parallel rate-of-strain of the plasma.
(Schekochihin et al 2008; Rosin et al 2011)



What to do, what to do...

Option #1: Limit pressure anisotropy by increasing

collisionality so that no microscale instabilities occur.
(Sharma et al 2006; Schekochihin & Cowley 2006)

Option #2: Work at very high resolution so that firehose is efficient
at naturally limiting the (negative) pressure anisotropies

by modifying the total parallel rate-of-strain of the plasma.
(Schekochihin et al 2008; Rosin et al 2011)

Option #3: Alex 1s working on it...




Conclusions

. Anisotropic viscosity affects how ICM interacts with temperature gradient.
One cannot self-consistently take the limit of fast thermal conduction along B-field
lines while simultaneously neglecting differences in P | and ol (singular limit).

. Anisotropic viscosity (aka pressure anisotropy) significantly impairs the HBI, except
in innermost few tens of kpc where collisionality 1s relatively high. Radio-mode
teedback appears necessary there. Elsewhere, HBI becomes global and slow-growing.

. MTT: anisotropic viscosity maintains coherence of field lines over larger distances
than in the inviscid case, providing a natural lower limit for the scale on which the
field can fluctuate freely.

Choices must be made by a simulator regarding how to limit pressure anisotropy,
especially at large plasma beta. Dynamo theories beware.



