
Matthew Kunz 
NASA Einstein Fellow – Princeton University 



Matthew Kunz 
NASA Einstein Fellow – Princeton University 

Multiscale Plasma Dynamics  
& Anisotropic Transport in 
the Intracluster Medium 



Cool-Core Clusters 
from the ACCEPT archive 



ICM Dynamics: A 3-Scale Problem 

1 npc ~ 1 trip around the Earth ~ 20,000 miles 

thermal-pressure scale height 

ion gyroradius (for B = 1 uG) 

collisional mean free path ~30 – 3000  

~1011 – 1013  
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not the whole story… 
(something was missing) 



2. p→ P = p⊥I− p⊥ − p||( ) b̂b̂

What else does                        mean? 

Changes in field strength ⇔ pressure anisotropy 

holds already for B > 10–18 G 
First adiabatic invariant                 conserved if 

(angular momentum conservation  
of a gyrating particle) 

modifies magnetic tension 

anisotropy  
relaxed 

by collisions 

change in B 
drives 

anisotropy 



What does               mean? 

Linearly, this implies: 

Alfvén mode 
is undamped 

slow mode 
is damped 

acts as an anisotropic viscosity (“Braginskii viscosity”) 
targets motions that change the field strength 



How does this affect the ICM? 

Slow modes damped 
at rate           . 

HBI is suppressed. MTI is strengthened. 
HBI modes confined to wavelengths satisfying 

 
 
 

NOTE:                            for hydrogenic plasma 

Dynamical stability of the ICM 609

The HBI’s preference for perpendicular wavenumbers is also
reflected in the corresponding eigenvectors. Using equations (28)
and (36) we find that the density perturbation associated with the
HBI,

δρ

ρ
! −ξz

d ln T

dz

k2

k2
x

(
b2

z −
k2

||

k2

)
, (44)

is greatest when k2
|| # k2 so that, e.g., upwardly displaced fluid

elements have the largest possible decrease in their density. More-
over, perpendicular wavenumbers are necessary to generate linear
perturbations in magnetic field strength,
δB||

B
! ik||ξz

k⊥

kx

, (45)

which lead to local convergence/divergence of the background heat
flux and consequent heating/cooling of the plasma (equation 34).

The problem is that it is precisely such perturbations that are
damped by Braginskii viscosity (see the bottom panel of Fig. 3). By
equation (34), upward displacements along magnetic field lines go
hand-in-hand with local heating ($T > 0) and a local increase in
the magnetic field strength (δB|| > 0).8 This causes a negative vis-
cous stress that damps motions along field lines, thereby rarefying
the magnetic field and reducing the strength of the perturbed heat
flux. This can be seen quantitatively by explicitly writing down the
buoyancy and viscous forces in the z-component of the momentum
equation (16) for the simple case bz = 1:

d2ξz

dt2
= · · · + g

d ln T

dz
ξz − ωvisc

dξz

dt
. (46)

For wavenumbers satisfying the ordering ωvisc % ωdyn, or k2
||λmfpH

% 1, it is straightforward to show from equation (38) that the growth
rate is

σ ! g

ωvisc

d ln T

dz
∼

ω2
dyn

ωvisc
(47)

to leading order in ωdyn/ωvisc. In other words, the buoyancy and
viscous forces become nearly equal and opposite as the plasma
becomes more and more collisionless. The growth rate decreases
accordingly.

Despite all these, there are modes that remain unstable to the
HBI and retain non-negligible growth rates. However, it turns out
that they are confined to a thin band of wavenumber space in which
conduction is fast but viscous damping is small:

ωcond ! ωdyn ! ωvisc, (48a)

or, using the definitions (22) and (23),

3 k||(λmfpH )1/2 ! 1 ! k||(λmfpH )1/2. (48b)

Using the fact that k⊥ ! k for the fastest growing Braginskii-HBI
modes, it is possible to obtain analytic solutions for the maxi-
mum growth rate and fastest growing wavenumber. Defining ε ≡
ωvisc/ωcond ∼ 0.1, the maximum growth rate

σmax = σHBI,max

(1 − ε)

[
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(
2 + 2
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(49)
occurs at a parallel wavenumber satisfying

8 While Alfvénically polarized modes suffer no viscous damping, they are
HBI stable because δB|| = 0.

k2
||λmfpH =

σ 2
HBI,max − σ 2

max(1 + ε)
3 σmax ωdyn

(50)

≈ ε1/2 2bz
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+ O(ε). (51)

Since k|| = kxbx + kzbz, equation (51) implies that the maximum
growth rate is attained along two straight lines in the (kx, kz) plane
given by

kz(λmfpH )1/2 ≈ −bx

bz

kx(λmfpH )1/2

± ε1/4

(
2

3bz

)1/2 (
2
5

+ 2
∣∣∣∣
d ln T

d ln p
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)1/4

+ O(ε3/4).
(52)

This behaviour can be seen in Fig. 4, which exhibits HBI growth
rates in the (kx, kz) plane with (upper row) and without (lower
row) Braginskii viscosity for ky = 0 and various magnetic field
orientations. The solid lines trace the maximum growth rate through
wavenumber space; they quickly asymptote to equation (43) without
Braginskii viscosity and equation (52) with Braginskii viscosity.

For a fiducial cool-core temperature profile dln T/dln p = −1,
equations (49) and (50) give σ max = 0.57bz ωdyn and k||(λmfpH)1/2 =
0.60 b1/2

z , respectively. With typical values of H/λmfp ∼ 102–103

in the inner ∼200kpc of cool-core clusters where the temperature
increases with height, this implies k||H ∼ 6b1/2

z –19b1/2
z (increasing

inwards). These modes are quite extended along the magnetic field
direction and cannot be considered local. This is likely to have
important implications for the non-linear evolution of the HBI, par-
ticularly as the HBI reorients the mean magnetic field to be more
and more perpendicular to the temperature gradient. For example,
taking dln T/dln p = −1 and H/λmfp = 200, the parallel wavelength
of maximum growth λ||,max is equal to the thermal pressure scale-
height H when the magnetic field makes an angle of θ ! 33◦ with
respect to the x-axis. Thus, the field-line insulation found by many
numerical simulations to be a consequence of the standard HBI (e.g.
Bogdanović et al. 2009; Parrish et al. 2009) may not be as complete
as is currently believed.

Note further that equation (51) in the limit ε → 0 does not reduce
to the no-Braginskii case (equation 43). Moreover, the relationship
between k|| and k⊥ for the fastest growing modes discontinuously
changes from k|| ∝ k1/2

⊥ without Braginskii viscosity (equation 43)
to k|| ∼ constant with Braginskii viscosity (equation 51) for per-
pendicular wavenumbers satisfying

k⊥(λmfpH )1/2 ! 0.5
∣∣∣∣
d ln T

d ln p
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1/4 1

b
1/2
z

. (53)

This reflects the fact that including fast anisotropic heat conduc-
tion while neglecting Braginskii viscosity is a singular limit of the
equations.

4.1.2 Case of bxky -= 0: Alfvénic HBI

If bxky -= 0, the situation is actually worse:

σ ! i
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g
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(54)
to leading order in ωdyn/ωvisc # 1. The HBI becomes a slowly
growing overstability for wavevectors satisfying

k2
y >
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bx

bz

k||(k × b̂)y

∣∣∣∣ − (k × b̂)2
y, (55)
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put a weakly collisional fluid in a gravitating,  
thermally stratified atmosphere 

z 

x 

g 



0   if ky bx = 0 

entropy mode 

Dispersion Relation (Kunz 2011) 

To leading order in                             , 



0   if ky bx = 0 

Alfvén 
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MTI/HBI 
coupling of 
Alfvén and 
slow modes 

slow 
mode 

Braginskii 
damping 
of slow 
mode 

Dispersion Relation (Kunz 2011) 

To leading order in                             , 



Maximum growth rate reduced by a factor ~1.7; 
 

occurs at                                  , i.e.                                 . 
 

 
These modes are only “local” within ~10s kpc of clusters. 



This has been shown rigorously 
via a global HBI linear calculation 

(Latter & Kunz 2012) 



This has been shown rigorously 
via a global HBI linear calculation 

(Latter & Kunz 2012) 
for significant field-line  

deformation beyond ~50 kpc 

without cooling with cooling 



Let’s try a local simulation: 

0.1H0 x 0.1H0 



t = 0 Gyr 

Local HBI Simulation: 
same as McCourt, Parrish, Sharma & Quataert (2011) but with Braginskii viscosity 
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Local HBI Simulation: 
same as McCourt, Parrish, Sharma & Quataert (2011) but with Braginskii viscosity 

t = 18 Gyr 

Nonlinear Saturation of Buoyancy Instabilities 7
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Figure 2. Evolution of the HBI with an initially vertical magnetic field in a local, 2D simulation (simulation h1 in Table 1). Color shows
temperature and black lines show magnetic field lines. A small velocity perturbation to the initial state seeds exponentially growing modes
which dramatically reorient the magnetic field to be predominantly horizontal. The induced velocities are always highly subsonic and, after
t ⇠ 20 tbuoy, are also almost entirely horizontal. Once the plasma reaches its saturated state, it is buoyantly stable to vertical displacements.
The plasma does not resist horizontal displacements, but the saturated state is nearly symmetric to these displacements and they do not
change its character.

is buoyantly stable, but that there is a family modes with
k̂
z

= 1 which feel no restoring force. This simply reflects the
fact that the plasma is stably stratified and resists vertical
displacements. Displacements orthogonal to gravity are un-
a↵ected by buoyancy, however, and appear as zero-frequency
modes in the dispersion relation.

Figure 3 demonstrates this asymmetry between vertical
and horizontal displacements in the late time evolution of the
plasma. This figure shows the kinetic energy in horizontal and
vertical motions as a function of time. During the initial, lin-
ear growth of the instability (t . 10 tbuoy), buoyantly unstable
fluid elements accelerate toward the stable equilibrium, and
the kinetic energy is approximately evenly split among verti-
cal and horizontal motions. As the instability saturates, how-
ever, the plasma becomes buoyantly stable and traps the ver-
tical motions in decaying oscillations (internal gravity waves).
The horizontal motions keep going, however, and retain their
kinetic energy for the duration of the simulation. This di↵er-
ence in the response of the plasma to vertical and horizontal
motions accounts for the anisotropy of the velocity field in
the saturated state of the HBI.

Figure 4 shows the evolution of the rms magnetic field
angle (left panel) and magnetic energy (right panel) in 3D
HBI simulations for three di↵erent values of the size of the
computational domain L relative to the scale height H. The
zero frequency modes discussed above also dominate the evo-
lution of the magnetic field at late times, after the motions be-
come nonlinear (t & 10 tbuoy). The horizontal displacements
stretch out the field lines, amplifying and reorienting them.
Quantitatively, we expect that b̂

z

⇠ �/⇠ / t�1, where � is
a characteristic scale for the modes in the saturated state,
⇠ is the magnitude of the horizontal displacements, and we
have assumed that the velocity is constant with time. The
left panel of Figure 4 shows that the dependence in the sim-

field is exactly horizontal. More generally, there will still be unstable
modes with growth rate given by equation 11; this growth rate is
very slow in the saturated state of the HBI, however, and these
modes don’t change the dynamics of the plasma.

ulations is quite close to this, with b̂
z

/ t�0.85.4 Stretching
the field lines in this manner amplifies the field strength by
an amount �B / ⇠; if the velocity is constant with time, we
expect B2

/ t2. The right panel of Figure 4 shows that this
time dependence is approximately true for our two larger HBI
simulations; the amplification is slightly slower in the very lo-
cal calculation with L/H = 0.05. There is no indication that
the magnetic field amplification has saturated at late times
in the HBI simulations. We suspect that the amplification
would continue until the magnetic and kinetic energy densi-
ties reach approximate equipartition, but we would have to
run the simulation for a very long time to verify this.

One of the important results in Figure 4 is that the sat-
urated state of the HBI is nearly independent of the size of
the computational domain L/H. Since the late time evolution
of the plasma is driven only by horizontal displacements, the
key dynamics all occur at approximately the same height in
the atmosphere. The saturation of the HBI is thus essentially
local in nature and should not be sensitive to the global ther-
mal state of the plasma or the details of the computational
setup.

The dramatic reorienting of the magnetic field caused by
the HBI severely suppresses the conductive heat flux through
the plasma. The conductive flux is proportional to hb̂2

z

i, which
decreases in time / (t/tbuoy)

�1.7. The saturated state of the
HBI is also buoyantly stable and resists any vertical mixing
of the plasma. As a result, the convective energy fluxes in our
HBI simulations are very small, ⇠ 10�6 ⇢c3

s

. The e↵ect of the
HBI therefore is to strongly insulate the plasma against both
conductive and convective energy transport. This can dra-
matically a↵ect the thermal evolution of the plasma (Parrish
et al. 2009; Bogdanović et al. 2009).

The fact that the growth rate of the HBI depends on the
local orientation of the magnetic field, as well as the thermal
structure of the plasma, makes it very di↵erent from adiabatic

4 The slight di↵erence relative to the simple predictions of flux
freezing given the velocity field in Figure 3 may be due to the finite
resolution of our simulations, which prevents us from resolving the
field line direction when b̂

z

. 10⇥ dz/L.
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Quasi-global (Hx2H) simulations of  HBI  
in weakly collisional, radiative ICM 

initially vertical field 
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Quasi-global (HxHx2H) simulations 
(but without cooling, for now) 

β ~102

β ~104

~10 Gyr ~6 Gyr 

128 x 128 x 256 



Cluster Outskirts 
from Vikhlinin+ 2005  

temperature (and density, etc.) profiles should be similar when
radii are scaled to the cluster virial radius, which can be esti-
mated from the average temperature, r180 /hTi1=2 (for a detailed
discussion, see, e.g., Bryan & Norman 1998). This prediction is
strongly confirmed by our measurements.

The scaled temperature profiles for all clusters are shown in
Figure 18 (right). The temperatures were scaled to the inte-
grated emission–weighted temperature, excluding the central
70 kpc region usually affected by radiative cooling. The same
average temperature was used to estimate the cluster virial ra-
dius, r180, using a relation from Evrard et al. (1996), r180 ¼
1:95 h"1 Mpc(hTi/10 keV)1

=2. The scaled profiles are almost
identical for rk 0:15r180 and the trend can be represented by the
following functional form:

T=hTi ¼
1:07; 0:035 < r=r180 < 0:125;

1:22" 1:2r=r180; 0:125 < r=r180 < 0:6;

!
ð2Þ

with a 15%–20% scatter. The only significant outlier is A2390
(Fig. 18, magenta). However, this cluster is unusual in that its
central cool region extends to r % 400 kpc, probably because
the cold gas is pushed out from the center by the radio lobes.

The strongest scatter of the temperature profiles is observed
in the central cooling regions. This is not unexpected, because
in these regions nongravitational processes such as radiative
cooling and energy output from the central AGNs are impor-
tant, thus breaking self-similarity. The largest outliers in the
central region are MKW 4 and RX J1159+5531, whose cooling
regions are very compact, and the temperature profiles peak
near r ’ 50 kpc (thus, our fixed exclusion radius of 70 kpc is
too big).

Some of the previous studies of large cluster samples with
ASCA and BeppoSAX have already uncovered the similarity of
the cluster temperature profiles at large radii (Markevitch et al.
1998; De Grandi & Molendi 2002). Our measurements are

consistent with these earlier results both qualitatively and
quantitatively. The red band in Figure 19 represents the typical
scatter of individual profiles in the M98 sample. Our radial
trend for r > 0:1r180 is in good agreement with their profile,
even though our sample has only two clusters in common with
M98 (A478 and A1795). A difference in the qualitative trend
around 0.1r180 is fully expected, if we consider that the ASCA

Fig. 19.—Comparison of the Chandra temperature profiles and the average
profiles from ASCA (M98) and BeppoSAX (De Grandi &Molendi 2002). ASCA
results are shown as the red band with the width equal to the scatter of the best-fit
values in a sample of 30 clusters. BeppoSAX results (blue line) represent the
average temperature profile in a sample of 11 cooling flow clusters.

Fig. 18.—Temperature profiles for all clusters plotted as a function of angular distance from the center and in units of the cluster virial radius. The temperatures were scaled
to the cluster emission-weighted temperature, excluding the central 70 kpc regions affected by cooling. The virial radii were estimated from these average temperatures using a
relation from Evrard et al. (1996), r180 ¼ 2:74 Mpc(hTi/10 keV)1

=2. Our best measurements, for A1991 (T ¼ 2:6 keV), A133 (T ¼ 4:2 keV), A1413 (T ¼ 7:3 keV), and
A2029 (T ¼ 8:5 keV), are shown by open circles, filled circles, open squares, and filled squares, respectively. The strongest outliers in the right panel areMKW4 (brown) and
RX J1159+5531 (red ), whose temperature profiles peak at r < 70 kpc, and A2390 (magenta), whose central cool region extends to r % 400 kpc.

VIKHLININ ET AL.670 Vol. 628

dT
dr

< 0

This region is even  
less collisional, with 

                       . 
What happens out here? 

H λmfp ~10



Balbus 2000 Kunz 2011 

Fastest-growing MTI modes  
evade suppression since               . 

But the available wavenumber space is 
substantially altered. 
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Quasi-global 2D simulations of  MTI 
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Quasi-global 2D simulations of  MTI 
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Quasi-global 2D simulations of  MTI 

1.  Because small-scale features along field lines are viscously damped, there is less 
reconnection and the magnetic field remains coherent over longer distances. 

 
2.  Magnetic folds emerge with                              . 

 
3.  Field strength and field-line curvature are anti-correlated. 

 

⊥ <<  || ~ visc



0 	

 	

if ky bx = 0	



When                                 ,                                        > 0 
 
 

Just a little bit of ky will make these maximally unstable! 
“Alfvénic MTI” 

Dispersion Relation (Kunz 2011) 

To leading order in                             , 



HBI, MTI, Alfvénic MTI: 

MRI, Alfvénic MRI (i.e. MVI): 

Balbus  
(2004) 

Dispersion Relation (Kunz 2011) 
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β ~102

β ~104

Quasi-global 3D simulations of  MTI 
Plotted: Magnetic-Field Strength 

Braginskii viscosity Inviscid (i.e. isotropic pressure) 

128 x 128 x 256 



HBI sluggish due to relatively low 
collisionality and resulting non-local  

character of  unstable modes. 
 

Thermal conduction might  
remain important. 

Braginskii viscosity only mildly 
affects HBI in dense, cold 

center – may still operate there. 
 

However, radio-mode feedback 
and magnetic tension may 

limit its relevance. 

MTI leads to  
radially biased  
B-field with  

Alfvénic  
turbulence  
(M ~< 10) 

 
Parrish+ 



Major Caveat 

Once 
 
 

                                                               , 
 

rapidly growing microscale instabilities are triggered  
and Braginskii-MHD is ill-posed. 

 
 

Cluster cores:                                        . 
 

Cluster outskirts:                                      . 
 

We chose 



What to do, what to do… 

Option #1: Limit pressure anisotropy by increasing 
collisionality so that no microscale instabilities occur. 

(Sharma et al 2006; Schekochihin & Cowley 2006) 



What to do, what to do… 

Option #1: Limit pressure anisotropy by increasing 
collisionality so that no microscale instabilities occur. 

(Sharma et al 2006; Schekochihin & Cowley 2006) 

 
Option #2: Work at very high resolution so that firehose is efficient  

at naturally limiting the (negative) pressure anisotropies 
by modifying the total parallel rate-of-strain of the plasma. 

(Schekochihin et al 2008; Rosin et al 2011) 



What to do, what to do… 

Option #1: Limit pressure anisotropy by increasing 
collisionality so that no microscale instabilities occur. 

(Sharma et al 2006; Schekochihin & Cowley 2006) 

 
Option #2: Work at very high resolution so that firehose is efficient  

at naturally limiting the (negative) pressure anisotropies 
by modifying the total parallel rate-of-strain of the plasma. 

(Schekochihin et al 2008; Rosin et al 2011) 
 
 
 

Option #3: Alex is working on it…                       . 
 



Conclusions 

1.  Anisotropic viscosity affects how ICM interacts with temperature gradient. 
One cannot self-consistently take the limit of  fast thermal conduction along B-field 
lines while simultaneously neglecting differences in        and       (singular limit). 

2.  Anisotropic viscosity (aka pressure anisotropy) significantly impairs the HBI, except 
in innermost few tens of  kpc where collisionality is relatively high. Radio-mode 
feedback appears necessary there. Elsewhere, HBI becomes global and slow-growing. 
 

3.  MTI: anisotropic viscosity maintains coherence of  field lines over larger distances 
than in the inviscid case, providing a natural lower limit for the scale on which the 
field can fluctuate freely. 

4.  Choices must be made by a simulator regarding how to limit pressure anisotropy, 
especially at large plasma beta. Dynamo theories beware. 


