

Matthew Kunz NASA Einstein Fellow – Princeton University

Matthew Kunz NASA Einstein Fellow – Princeton University

Multiscale Plasma Dynamics & Anisotropic Transport in the Intracluster Medium

Cool-Core Clusters from the ACCEPT archive A85 A1835 A1795 A2029 A2199 A478

ICM Dynamics: A 3-Scale Problem

1 npc ~ 1 trip around the Earth ~ 20,000 miles

Fundamental Parameter

What does $H \gg \lambda_{\rm mfp} \gg r_{\rm g,i}$ mean? 1. $\boldsymbol{Q} = -\chi \, \hat{\boldsymbol{b}} \hat{\boldsymbol{b}} \cdot \boldsymbol{\nabla} T$ magnetic field line cold hot $\delta \boldsymbol{Q} = -\chi \boldsymbol{\nabla} \delta T \quad \text{vs.} \quad \delta \boldsymbol{Q} = -\chi \, \hat{\boldsymbol{b}} \hat{\boldsymbol{b}} \cdot \boldsymbol{\nabla} \delta T - \chi \, \hat{\boldsymbol{b}} \, \delta \hat{\boldsymbol{b}} \cdot \boldsymbol{\nabla} T - \chi \, \delta \hat{\boldsymbol{b}} \, \hat{\boldsymbol{b}} \cdot \boldsymbol{\nabla} T$ $\delta \hat{oldsymbol{b}} = abla_{||} oldsymbol{\xi}_{\perp}$

i.e. compressions/rarefactions in ∇T -oriented field lines lead to heating/cooling

i.e. compressions/rarefactions in ∇T -oriented field lines lead to heating/cooling

gravity

Heat-flux Buoyancy-driven Instability Quataert (2008)

Saturation: $\nabla_{||}T \to 0$

i.e. compressions/rarefactions in ∇T -oriented field lines lead to heating/cooling

i.e. compressions/rarefactions in ∇T -oriented field lines lead to heating/cooling

hot

not the whole story... (something was missing)

What else does $H \gg \lambda_{\rm mfp} \gg r_{\rm g,i}$ mean?

2.
$$p \rightarrow \mathbf{P} = p_{\perp} \mathbf{I} - (p_{\perp} - p_{\parallel}) \hat{b} \hat{b}$$
 modifies magnetic tension

First adiabatic invariant $\mu = \frac{mv_{\perp}^2}{2B}$ conserved if $\Omega_i / v_{ii} \gg 1$ holds already for $B > 10^{-18}$ G

$$\longrightarrow \sum_{\text{particles}} \mu = \frac{p_{\perp}}{B} = \text{const}$$

(angular momentum conservation of a gyrating particle)

Changes in field strength \Leftrightarrow pressure anisotropy

$$\frac{1}{p_{\perp}} \frac{dp_{\perp}}{dt} \sim \frac{1}{B} \frac{dB}{dt} - \nu_{ii} \frac{p_{\perp} - p_{\parallel}}{p_{\perp}}$$
change in B anisotropy
drives relaxed
anisotropy by collisions

What does $H \gg \lambda_{\rm mfp}$ mean? $\frac{p_{\perp} - p_{||}}{p} \sim \frac{1}{\nu_{\rm ii}} \frac{d \ln B}{dt} = \frac{\hat{b}\hat{b}: \nabla v}{\nu_{\rm ii}}$

Linearly, this implies:

acts as an anisotropic viscosity ("Braginskii viscosity") targets motions that change the field strength

How does this affect the ICM?

HBI is suppressed. MTI is strengthened. HBI modes confined to wavelengths satisfying $\omega_{\rm cond} \gtrsim \omega_{\rm dyn} \gtrsim \omega_{\rm visc}$ NOTE: $\omega_{\rm cond} \sim 6\omega_{\rm visc}$ for hydrogenic plasma put a weakly collisional fluid in a gravitating, thermally stratified atmosphere

 $oldsymbol{v} = \delta oldsymbol{v} \qquad oldsymbol{B} = B_{0,x} \hat{oldsymbol{x}} + B_{0,z} \hat{oldsymbol{z}} + \delta oldsymbol{B} \qquad p = p_0(z) + \delta p \qquad T = T_0(z) + \delta T$

Dispersion Relation (Kunz 2011) $\delta \propto \exp(\sigma t + i \mathbf{k} \cdot \mathbf{r})$

To leading order in $\omega_{\rm dyn}/\omega_{\rm cond}\ll 1$,

$$\begin{split} \widetilde{\sigma}^2 \left(\widetilde{\sigma}^2 + \sigma \, \omega_{\text{visc}} \frac{k_{\perp}^2}{k^2} + g \frac{\mathrm{d} \ln T}{\mathrm{d} z} \frac{\mathcal{K}}{k^2} \right) \simeq -\sigma \, \omega_{\text{visc}} \, g \frac{\mathrm{d} \ln T}{\mathrm{d} z} \frac{b_x^2 k_y^2}{k^2} \\ \sigma \simeq -\omega_{\text{cond}} \\ \uparrow \\ \text{entropy mode} \end{split}$$

Dispersion Relation (Kunz 2011) $\delta \propto \exp(\sigma t + i \mathbf{k} \cdot \mathbf{r})$

To leading order in $\omega_{
m dyn}/\omega_{
m cond}\ll 1$,

 $\widetilde{\sigma}^2 \equiv \sigma^2 + (\boldsymbol{k} \boldsymbol{\cdot} \boldsymbol{v}_{\mathbf{A}})^2$

These modes are only "local" within ~10s kpc of clusters.

This has been shown rigorously via a global HBI linear calculation (Latter & Kunz 2012)

Local HBI Simulation:

same as McCourt, Parrish, Sharma & Quataert (2011) but with Braginskii viscosity

Local HBI Simulation:

same as McCourt, Parrish, Sharma & Quataert (2011) but with Braginskii viscosity

Quasi-global (*Hx2H*) simulations of HBI in weakly collisional, radiative ICM

 $H_0 \times 2H_0$ 512 × 1024

Braginskii viscosity

t = 3.2 Gyr t = 4 Gyr t = 4.8 Gyr t = 5.6 Gyr t = 6.4 Gyr t = 8 Gyr

Quasi-global (*HxHx2H*) simulations (but without cooling, for now)

Fastest-growing MTI modes evade suppression since $\delta B_{||} = 0$. But the available wavenumber space is substantially altered.

Quasi-global 2D simulations of MTI

Dispersion Relation (Kunz 2011) $\delta \propto \exp(\sigma t + i \mathbf{k} \cdot \mathbf{r})$

To leading order in $\omega_{\rm dyn}/\omega_{\rm cond}\ll 1$,

$$\widetilde{\sigma}^2 \left(\widetilde{\sigma}^2 + \sigma \,\omega_{\text{visc}} \frac{k_{\perp}^2}{k^2} + g \frac{\mathrm{d}\ln T}{\mathrm{d}z} \frac{\mathcal{K}}{k^2} \right) \simeq -\sigma \,\omega_{\text{visc}} \, g \frac{\mathrm{d}\ln T}{\mathrm{d}z} \frac{b_x^2 k_y^2}{k^2}$$

When
$$\omega_{\rm visc} \gg \omega_{\rm dyn} \sim \sigma$$
, $\tilde{\sigma}^2 \simeq -g \frac{\mathrm{d} \ln T}{\mathrm{d} z} \frac{b_x^2 k_y^2}{k_\perp^2} > 0$

Just a little bit of k_y will make these maximally unstable! "Alfvénic MTI"

Dispersion Relation (Kunz 2011) $\delta \propto \exp(\sigma t + i \mathbf{k} \cdot \mathbf{r})$

HBI, MTI, Alfvénic MTI:

$$\widetilde{\sigma}^2 \left(\widetilde{\sigma}^2 + \sigma \,\omega_{\text{visc}} \frac{k_{\perp}^2}{k^2} + g \frac{\mathrm{d}\ln T}{\mathrm{d}z} \frac{\mathcal{K}}{k^2} \right) \simeq -\sigma \,\omega_{\text{visc}} \, g \frac{\mathrm{d}\ln T}{\mathrm{d}z} \frac{b_x^2 k_y^2}{k^2}$$

MRI, Alfvénic MRI (i.e. MVI):

$$\widetilde{\sigma}^{2} \left(\widetilde{\sigma}^{2} + \sigma \omega_{\text{visc}} \frac{k_{\perp}^{2}}{k^{2}} + g \frac{\mathrm{d} \ln \Omega^{2}}{\mathrm{d} R} \frac{k_{Z}^{2}}{k^{2}} \right) = -\sigma \omega_{\text{visc}} g \frac{\mathrm{d} \ln \Omega^{2}}{\mathrm{d} R} \frac{b_{\phi}^{2} k_{Z}^{2}}{k^{2}} - 4\Omega^{2} \frac{k_{Z}^{2}}{k^{2}} \sigma^{2} \qquad \text{Balbus}$$
(2004)

Quasi-global 3D simulations of MTI Plotted: Magnetic-Field Strength

Inviscid (i.e. isotropic pressure)

Braginskii viscosity

Major Caveat

rapidly growing microscale instabilities are triggered and Braginskii-MHD is ill-posed.

Cluster cores:
$${\rm Kn}^{-1} \sim 10^3 - 10^2$$
.
Cluster outskirts: ${\rm Kn}^{-1} \sim 10^2 - 10^1$.

We chose

$$\beta \sim 10^4 - 10^5$$

What to do, what to do...

Option #1: Limit pressure anisotropy by increasing collisionality so that no microscale instabilities occur. (Sharma et al 2006; Schekochihin & Cowley 2006)

What to do, what to do...

Option #1: Limit pressure anisotropy by increasing collisionality so that no microscale instabilities occur. (Sharma et al 2006; Schekochihin & Cowley 2006)

Option #2: Work at very high resolution so that firehose is efficient at naturally limiting the (negative) pressure anisotropies by modifying the total parallel rate-of-strain of the plasma. (Schekochihin et al 2008; Rosin et al 2011)

What to do, what to do...

Option #1: Limit pressure anisotropy by increasing collisionality so that no microscale instabilities occur. (Sharma et al 2006; Schekochihin & Cowley 2006)

Option #2: Work at very high resolution so that firehose is efficient at naturally limiting the (negative) pressure anisotropies by modifying the total parallel rate-of-strain of the plasma. (Schekochihin et al 2008; Rosin et al 2011)

Option #3: Alex is working on it...

Conclusions

- 1. Anisotropic viscosity affects how ICM interacts with temperature gradient. One cannot self-consistently take the limit of fast thermal conduction along *B*-field lines while simultaneously neglecting differences in p_{\perp} and p_{\parallel} (singular limit).
- 2. Anisotropic viscosity (aka pressure anisotropy) significantly impairs the HBI, except in innermost few tens of kpc where collisionality is relatively high. Radio-mode feedback appears necessary there. Elsewhere, HBI becomes global and slow-growing.
- 3. MTI: anisotropic viscosity maintains coherence of field lines over larger distances than in the inviscid case, providing a natural lower limit for the scale on which the field can fluctuate freely.
- 4. Choices must be made by a simulator regarding how to limit pressure anisotropy, especially at large plasma beta. Dynamo theories beware.