## Cool Cores, Conduction, and Virial Shocks: Sculpting Cosmic Gas into Clusters

Mike McCourt, Prateek Sharma, Eliot Quataert, & Ian Parrish

August 30, 2012

## Outline

## "Sculpting Cosmic Gas into Clusters"

## **Central Density**

- \* Thermal Instability
- \* Implications for Cool Cores
- \* Non-Self-Similarity

(McCourt, Sharma, et al. 2012) (Sharma, McCourt, et al. 2012) (Sharma, McCourt, et al., submitted)

Outer Temperature *McCourt, Quataert, & Parrish, in prep.* 

- \* Accretion History  $\rightarrow T(r)$
- \* Conduction + MTI

# What determines the **density** of the gas in the **centers** of clusters?

## Motivation: Non-Self-Similarity

Assume that the gas properties scale with the dark matter:

\*  $\rho \sim M^0$ 

- \*  $T \sim M/r \sim M^{2/3}$
- \*  $L \sim \rho^2 T^{1/2} r^3 \sim T^2$



Gas in the centers of clusters has *lower density* and *higher entropy* than gravitational self-similar models predict.

## Background: Thermal Instability in Clusters



## Is the ICM Thermally Unstable?

- \* Thermal instability suppressed in cooling-flows (Balbus & Soker 1989)
- \* Even some equilibria may be thermally stable (Kunz et al. 2010)
- \* Many heating mechanisms are thermally unstable (Gaspari et al. 2012)
- \* Multi-phase gas seen in many clusters (McDonald et al. 2010, 2011)

#### Assume local thermal instability

# Background: The Face of Thermal Instability (Assuming it exists...)



Thermal Instability does not necessarily imply Multi-phase gas.

# Background: The Face of Thermal Instability (Assuming it exists...)



Thermal Instability does **not necessarily** imply Multi-phase gas. See cold gas when  $t_{cool}/t_{ff} \lesssim 10$ 

## Background: Physics of the Saturation



- \* Perturbations initially grow exponentially...
- \* ....Saturate when  $t_{sink} \sim t_{cool}$
- \* Final amplitude  $\propto (t_{\rm cool}/t_{\rm ff})^{-2}$

\* This is a non-linear effect

## **Background: Feedback Regulation**

Feedback and cooling self-regulate to the critical threshold for non-linear thermal stability:  $\min(t_{cool}/t_{ff}) \sim 10$ 

## Background: Feedback Regulation



## **Background: Feedback Regulation**

Feedback and cooling self-regulate to the critical threshold for non-linear thermal stability:  $\min(t_{cool}/t_{ff}) \sim 10$ 



・ロン・個とくほどくほど ほうろくの



・ロン・個とくほどくほど ほうろくの



・ロン・御ン・ヨン・ヨン ヨー うへで



・ロン・御ン・中ン・中、 中、 シック



cf. Voit et al. (2001)

## Results: Core Size w/ Mass



#### **High-Mass Halos**

- \* High Temperature
- \* Long Cooling Time
- $* \Rightarrow$  small core

#### Low-Mass Halos

- \* Lower Temperature
- \* Shorter Cooling Time
- $* \Rightarrow$  large core

#### (Minimum) Core size determined by Thermal Instability

## Applications



#### Also:

- \* gas fraction
- \* core size & entropy
- stellar mass
- \* baryon fraction

Assuming global thermal balance, these properties are ~independent of the feedback mechanism

## What determines the temperature of the gas at large radii in clusters?

## Motivation



\* 
$$\nabla T < 0 \Rightarrow MTI$$
  
\*  $t_{cond} \sim r_{vir}^2 / \chi \sim 1 \text{ Gyr} \lesssim t_{age}$ 

## Motivation



In simulations of **isolated** clusters, the ICM becomes isothermal after ~Gyr.

・ロ・・母・・ヨ・・ヨ・ ヨー のへで

## Model: Entropy Generation at the Shock



$$\frac{1}{2}v_i^2 = \frac{GM_{\rm sh}}{r_{\rm sh}} - \frac{GM_{\rm sh}}{r_{\rm ta}}$$
$$\rho v = \frac{1}{4\pi r_{\rm sh}^2} \frac{dM}{dt}$$

+ Jump Conditions  $\rightarrow K(r_{sh})$ 

(e.g. Voit et al. 2003)

## **Results: Adiabatic Evolution**



In the case of **Adiabatic Evolution**, this is a simple problem.

\* 
$$T(0) = T_{vir}$$
  
\*  $T(out) = T_s$ 

Temperature Gradient set by Accretion Rate

 $(t_{\rm dyn} \times d \ln M/dt)$ 

## **Results: Adiabatic Evolution**



In the case of **Adiabatic Evolution**, this is a simple problem.

\* 
$$T(0) = T_{vir}$$
  
\*  $T(out) = T_s$ 

Temperature Gradient set by Accretion Rate

 $(t_{\rm dyn} \times d \ln M/dt)$ 

・ロト・日本・モート モー シスペ

## **Dispersion in Accretion Histories**



Accretion histories from McBride et al. 2009

・ロ・・西・・ヨ・・ヨ・ カタの

## Effect of Conduction



#### Accretion histories from McBride et al. 2009

・ロン・日本・日本・日本・日本・今日・

## Application: MTI & Non-Thermal Pressure Support



ロン・日本・ロン・日本 日 うくぐ

## Conclusions

### **Density Cores**

- \* Assuming that the ICM is thermally unstable, multiphase gas forms only when  $t_{\rm cool}/t_{\rm ff} \lesssim 10$ .
- \* Cooling and feedback selfregulate to the critical threshold for stability.
- \* This sets a density ceiling (or entropy floor) for the gas
  ⇒ non-self-similarity.

## **Temperature Gradients**

- \* A cluster's accretion rate determines its temperature gradient
- \* This temperature gradient persists even with thermal conduction
- \* Importance of the MTI may be non-monotonic with halo mass.  $(3 \times 10^{14} M_{\odot})$  is the sweet spot).