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Era of Precision Cluster Cosmology

Local (z<0.1) sample of 49 clusters + 37 high-z clusters
from the 400d X-ray selected cluster sample
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Systematics, Systematics, Systematics!!
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Recent Advances and Future Challenges

for Cluster Cosmology
Dark Energy Task Force (2006)

The CL technique has the statistical potential to exceed the BAO and SN
techniques but at present has the largest systematic errors. Its eventual accuracy
is currently very difficult to predict and its ultimate utility as a dark energy
technique can only be determined through the development of techniques that
control systematics due to non-linear astrophysical processes.
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Simulations of Galaxy Cluster Formation

N-body+Gasdynamics with Adaptive Refinement Tree (ART) code
Region shown ~2/h Mpc; Spatial resolution ~ a few kpc
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z=0.98 dark matter stars gas

Modern cosmological hydro simulations include the effects of baryons (i.e., gas cooling, star formation, heating by
SNe/AGN, metal enrichment and transport). But, also remember the limitations - e.g., a single fluid approximation!
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Radial profiles of X-ray emitting ICM
Simulations vs. Chandra X-ray Observations
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Cluster outskirts are
modelled remarkably well
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Modern hydrodynamical cluster simulations reproduce
observed ICM profiles outside cluster cores (0.15<r/rgy,<1).




Suzaku X-ray measurements of cluster outskirts

PKS 0745-191

SUZAKU X-ray Obs.
George et al. 2009
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Entropy Profiles in Cluster Outskirts

Sample of 11 relaxed clusters at z<0.25
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The observed entropy profiles are inconsistent with
the prediction of hydrodynamical cluster simulations.




Suzaku Observations of Perseus
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Observed gas density is overestimated by a factor of ~2.5-3 at r~R2oo.
The mean X-ray surface brightness is enhanced by a factor of 5-9
(the square of the density overestimation).




Missing Cluster Astrophysics #1
Cluster outskirts are very clumpy

Mock Chandra X-ray simulation
of a ACDM cluster
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Hydrodynamical cluster simulations also predict that most of the X-ray emissions
from cluster outskirts (r>rsoo) arise from small groups accreting along filaments

D. Nagai & E. Lau 201 | (astro-ph/1 103.0280)




Missing Cluster Astrophysics #1
Cluster outskirts are very clumpy
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Hydrodynamical cluster simulations predict that most of the X-ray emissions
from cluster outskirts (r>rseo0) arise from infalling groups from the filaments

D. Nagai & E. Lau 201 | (astro-ph/1103.0280)




Effect of Feedback on Gas Clumping

AMR+SPH simulation comparison
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Feedback suppresses gas clumping somewhat,
but does not erase gas clumps entirely.




ROSAT Measurements of Cluster Outskirts

X-ray stacking analysis of 31 massive galaxy clusters
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Simulations under-predict the observed gas density in cluster outskirts.
Gas clumping can help explain the observed gas distribution.




Evidence for Gas Clumping in Cluster OutsKirts

Chandra observation of A133
Awarded 2.5Msec Chandra XVP proposal

R500 = 1Mpc
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Vikhlinin et al. in prep.

A transition of the smooth state in the virialized region to a
clumpy intergalactic medium in the infall region outside of r = Rsog




Missing Cluster Astrophysics #2
Gas Motions in Clusters
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'Major Merger
= M-~1-3 (transonic)

B Gas (bulk+turbulent) motions are
predicted to be ubiquitous in the ICM
m Drivers of gas motions
» Accretion/Mergers (on large scales)

» Energy injection from SNe/AGN (in
cluster cores)

» Plasma Instabilities

B Implications
» Hydrostatic mass modeling
» X-ray/SZE observable-mass relations
» ICM temperature and entropy profiles
» SZ power spectrum
» Metal distribution (e.g., by mixing)
» Particle acceleration

Observationally, we know very little about
the nature of gas motions in clusters!!




Missing Cluster Astrophysics #2
Gas Motions in Clusters
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Turbulent Gas Flow is a dominant source of
systematic bias in X-ray cluster mass estimates
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Non-thermal pressure due to turbulent gas flows introduces bias in the
hydrostatic cluster mass estimate at a level of 10% at Rsoo




Evolution of the Hydrostatic Mass Bias
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The HSE mass bias is larger in cluster outskirts. Major mergers are
catastrophic events, but minor mergers are also important.

Nelson, Rudd, Shaw, & Nagai, 2012,ApJ, 751, 121




Evolution of the Hydrostatic Mass Bias
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Hydrostatic mass bias is correctable in principles..
Care needed for systems undergoing major mergers.

Nelson, Rudd, Shaw, & Nagai, 2012,ApJ, 751, 121




Suzaku Observations of PKS 0745-191
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Azimuthally averaged gas density is over-estimated by a factor of ~2 at Raoo
OR non-thermal pressure causes the underestimate of HSE mass by ~15%.
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Missing Cluster Astrophysics #3
Non-equ:llbnum Electrons
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Rudd & Nagai, 2009

Spitzer 1962, Chuzhoy & Loeb 2004,

Akahori & Yoshikawa 2010




Cosmology with Sunyaev-Zel’dovich Effect

Ongoing SZE cluster surveys will produce large statistical samples,
including AMI, AMiBA, APEX, SZA to ACT, Planck, and SPT

SZE is an excellent probe South Pole Telescope
of cluster outskirts!!

The Bullet Cluster observed by
Atacama Cosmology Telescope




SZ+X-ray observations of Cluster OutskKirts
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SZ observations provide complementary views of cluster outskirts;
l.e., SZ signal is less sensitive to gas clumping, but affected by non-thermal pressure.




Measurements of the SZ power spectrum
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The SZ power spectrum is sensitive to the outskirts of low-mass groups at high-z.
But, the measured SZ power was only half of what’s predicted..




Cluster Abundance SZ power spectrum
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Astrophysical Uncertainty in SZ power spectrum
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Evolution of Gas Motions
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Non-thermal pressure due to gas motions is the dominant uncertainty for

interpreting the recent SZ power spectrum measurements by ACT, Planck, and SPT.
Shaw et al. 2010; also Battaglia+10,Tract+ 1 |, Bode+ 12
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Cosmic Gas Flows alleviate the tension in
cosmological constraints
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cosmic gas flows gas flows
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New SZ model with cosmic gas flows yields results consistent
with the cluster abundance measurements: G,=0.8




Observational Probes of Cosmic Gas Flows

B Pressure fluctuations (Chandra/XMM X-ray space observatories)
B Doppler broadening of Fe line (Astro-H X-ray space observatory)

B High-resolution SZE imaging (ALMA/CARMA/CCAT/MUSTANG
ground-based radio telescopes)
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Observational Probes of Cosmic Gas Flows

B Pressure fluctuations (Chandra/XMM X-ray space observatories)
B Doppler broadening of Fe line (Astro-H X-ray space observatory)

B High-resolution SZE imaging (ALMA/CARMA/CCAT/MUSTANG
ground-based radio telescopes)

__ _ _ +_No Doppl
, “strq,—H (2014) - Photons/(cm?s eV) f Bsoaé)eplﬁne;

Inogamov & Sunyaev 2003

With Doppler
Broadening with
Vgas~3 OOkm/S

Doppler Broadening of Iron line => Motions of Gas in Clusters
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Work 1n progress
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Mock Astro-H Simulations of ACDM Clusters

Photon map in 6-7keV at z=0.018

Merging (7x = 10 keV)
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Astro-H spectrum can reveal merging substructures in velocity space




Observational Probes of Cosmic Gas Flows

B Pressure fluctuations (Chandra/XMM X-ray space observatories)
B Doppler broadening of Fe line (Astro-H X-ray space observatory)

B High-resolution SZE imaging (ALMA/CARMA/CCAT/MUSTANG
ground-based radio telescopes)

Thermal SZE

probes of hot electrons

Nagai, Kravtsov & Kosowsky 2003



New Frontier: Exploration of the
Virialization Regions of Galaxy Clusters

eROSITA (2014) m Cluster outskirt is a new territory for studying
physics of cluster formation

» Important for understanding thermodynamic
and chemical evolution of clusters

% Cluster outskirts are turbulent and clumpy
filled with non-equilibrium electrons

» Critical for cluster-based cosmological tests
% Calibration of observable-mass relations

% Interpretation of SZ surveys

' : ‘ Chandra observation of gas
’Motlons in Clu clumps in the outskirt of A133

R500 = 1Mpc




