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Comparing apple to apple is not enough… 
We need to pay also attention at the 
analysis procedure! 

Same apple BUT the cooked one has 
more concentration of  sugar 
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ρ(x) =
ρs

x(1+ x)2
,x = r /rs

ρs =
ρcrΔ
3

c
ln(1+ c) − c /(1+ c)

cΔ = rΔ /rs

M(< x) = 4πρsrs
3[log(1+ x) − x /(1+ x)]

M* = 3.3e13Msun
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C200=R200/rs 

1996 “The 
Structure of  Cold 
Dark Matter 
Halos” 



500 NAVARRO, FRENK, & WHITE Vol. 490

FIG. 6.ÈSame as but for the concentration parameter cFig. 5,

models, this implies the same scaling thatd
c
P M~(n`3)@2,

links and the mean cosmic density at redshift z.M*(z)
shows the correlations predicted fromFigure 5 equation

for three values of the parameter f : 0.5, 0.1, and 0.01. The(5)
value of the proportionality constant, C( f ), is chosen in
each case in order to match the results of the EinsteinÈde
Sitter simulations for These values are given inM \ M*.

The same values of C( f ) are used to plot the curvesTable 1.
in the panels corresponding to the low-density models.
Some interesting results emerge from an inspection of

and They are as follows :Figure 5 Table 1.

1. The agreement between the mass-density dependence
predicted by and the results of the EinsteinÈdeequation (5)
Sitter simulations improves for smaller values of f. This is
also true for the low-density models. Once C( f ) is Ðxed by
matching the results of the EinsteinÈde Sitter models, the
same value of C( f ) provides a good match to the low-
density models only if Interestingly, for f \ 0.01,f [ 0.01.
approximately the same value of the proportionality con-
stant, C B 3 ] 103, seems to Ðt all our simulations.

2. The characteristic density of halos decreases sys-M*tematically for more negative values of the spectral index n.

At SCDM halos are the least dense in ourM \ M*, )0 \ 1
series, less concentrated still than those corresponding to
n \ [1.5. This is consistent with the general trend because,
according to equations and the characteristic density(4) (5),
of a halo of mass is controlled by the shape of the powerM*spectrum on scales This is about D1011 forDfM*. M

_f B 0.01, and the e†ective slope of the CDM spectrum on
this mass scale is neff D [2.

3. For the power-law models with n \ 0 and [1, the
characteristic density at a given increases asM/M* )0decreases. Such a trend is plausible since we expect the
collapse redshift of halos of a given mass to increase as )0decreases. On the other hand, halos formed in the low-
density CDM" universe are actually less dense than those
formed in the standard biased CDM model because d

cdepends not only on collapse redshift but also on (see)0 eq.
Although reducing increases the collapse redshift,[5]). )0the increase in from the factor can be out-d

c
(1 ] zcoll)3weighed by the change in In the CDM" model, the two)0.

e†ects can combine to give a reduction in as decreases.d
c

)0(We remind the reader that is deÐned relative to thed
ccritical density rather than the mean density.)

 Groups formed 
when the 
universe was 
denser -> higher 
concentration 

NFW 
Navarro, Frenk, White 
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  Duffy et al.08 (D08), Prada et al.12 (P12) 

  Both use DM-only simulations 

  Have a very similar cosmological model 

BUT 

  C-M relation differ in NORMALIZATION 
(Prada et al. 12 is higher) 

  And in shape (Prada et al. 12 presents an 
upturn at high masses) 
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  P12 Method through 
circular velocity 

Vmax=max[(GM/R)1/2] 

V200=(GM200/R200)1/2 

 P12: Bin in Velocity 

  D08: Method 
STANDARD: density 
profiles fitting by NFW 
between [0.05-1] Rvir 

 D08: Bin in Mass 

€ 

Vmax
V200

=
0.216c
f (c)

= F(c)

f (c) = ln(1+ c) − c /(1+ c)
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 Binning in 
Velocity implies 
to favor higher 
concentrations 
per each bin 

 While the mass 
is not so 
dramatically 
influenced 
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P12 

D08 

P12’s method 
D08 binning D08’s method 

D08’s binning 

Half  of  the discrepancy 
explained by the binning 

Half  by the method 
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On the concentration-mass relation 5

Figure 1. The observed relation between the concentration and the mass for groups and clusters of galaxies. Each panel refers to a different catalog of objects,
compiled by the labeled authors. The blue long-dashed line represents the concentration-mass relation predicted by Gao et al (2008) at z = 0, while the solid
magenta line is the best fit to the observed points, with labeled slope. The dotted magenta lines show the uncertainty on the best fitting slope.

Problem 

The relation is stepper 
in observation than in 
theory. 

B07: α=-0.20 
E10: α=-0.48 
SA07: α=-0.36 

Gao et al. 08  
α=-0.10 Fedeli 2012 
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• Pointecouteau et al. 05, 
Vikhlinin et al. 06 agree 
with simulations. 
• Buote et al. 2007, 
Schmidt & Allen 2007, 
Ettori et al. 2010 claimed 
agreement within the 
errors but… 



SIMULATIONS 

 NFW fit to 3D profile 

 Fit done from the really 
central regions to the 
virial radius or beyond 

 Most work based on 
DM-only simulations 

  In cosmological boxes 
selection based on M 

OBSERVATIONS 

  Information is projected 

 Radial range is 
determined by the S/N 
or field of  view 

 The real Universe has 
baryons! 

 Observational selection 
function: cut in LX (in 
the best scenario)  

c-M relation: different approaches 

RADIAL 
RANGE 

BARYONS 

SELECTION 
FUNCTION 
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SAMPLE 
52 simulated clusters 
with 4 different physics 
(Fabjan, Borgani, ER, et 
al. 2011, ER et al. 2012): 

• DM-only 

• NR (no-radiative) 

• CSF (cooling-star 
formation-feedback) 

• AGN 
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Synthetic X-ray catalogue (ER et 
al. 2012, NJP, 14 , 501*): 
 20 CSF clusters processed 
through X-MAS (Gardini, ER et 
al. 2004, ER et al. 2008) to create 
Chandra-like observations   

*(Video Abstract: iopscience.iop.org/1367-2630/14/5/055018) 



STANDARD 

FITTING 

PROCEDURE 

Typical SIM radial 
range: from [0.07-1.4] 
of  R200 (=[0.05-1] Rvir) 

Halos presenting large 
residuals have been 
eliminated 

M0 = 5x1014 Msun/h 
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~ Black line = SIM 
radial range 
[0.07-1.4] R200 
EXTERNAL RADIUS: 
~X-ray has a steeper 
slope 

~the difference is 
caused by the 17 least 
massive systems 

Max slope= -0.2 
+20% 
Min slope =-0.12 
-15% 

RADIAL RANGE 
(DM ONLY) 

€ 

c = c0(
M
M0
)α
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~ Black line = SIM 
radial range [0.07-1.4] 
R200 
INTERNAL RADIUS: 
~ modifying the inner 
radius changes the 
normalization 
~ X-ray (to 50 kpc) and 
strong-lensing results 
might have an higher 
normalization 

Max slope= -0.2 
+20% 
Min slope =-0.12 
-15% 

€ 

c = c0(
M
M0
)α
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RADIAL RANGE 
(DM ONLY) 
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ICM PHYSICS: 
RED: CSF 
GREEN: NR 
MAGENTA:AGN 

RADIAL RANGE: 
___  SIM 
[0.07-1.4] R200 

BOLD: total density 
THIN: dm density 

RESULTS 
considering only 
clusters with a 
good NFW fit 

1)  Normalization 
is higher with 
baryons 

2)  Slope is higher 
for total CSF 

3)  Slopes and 
normalizations  
of  the only DM 
component 
agree better 
within each 
other.  

€ 

c = c0(
M
M0
)α
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  From the R12 synthetic 
catalogue (60 X-ray images), 
we perform the X-ray analysis 
and computed the mass 
profiles the we fit with the 
NFW model 

  The HE alone (intrinsic) does 
not explain the large increase 
of  the scatter and the 
steepening  of  the slope 

  It is the complete X-ray 
analysis that steepen the c-M 
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Xray+HydrostaticEquilibrium 

HE intrinsic 

+ Intrinsic 
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The 60 X-ray images for the 20 clusters 30000 realizations (combinations of  
the 20 clusters observed from random 

directions) 



c−M relation for galaxy clusters 5

Figure 4. The values of c200dm for the complete sample of the ΛCDM
model at z = 0. For each object, we plot M200 and c200dm. Differ-
ent colours indicate different M200m ranges. The black squares indicate
c200dm in each mass bin (see text for details). For each mass bin, we plot
the meanM200 and c200dm with rms deviation.

positive trend with mass. It means that inside each mass bin there
are objects with quite different concentrations, in particular in the
high-mass tail. For the relaxed sample, the scatter reduces to 20%
up to 30%, meaning that part of the scatter in the complete sam-
ple is due to objects in a particular dynamical state. If we move to
the super-relaxed sample, we notice that the scatter stays between
15% and 20%. On the one hand, this means that putting strong con-
straints on both the dynamical state and the shape of the profile of
the halos allows us to halve the intrinsic scatter; on the other hand,
even when considering the most relaxed and smooth objects in our
sample we cannot reduce the intrinsic scatter below 15%.
As a check, for the complete sample of the ΛCDM model at z = 0
we also evaluate c200dm by fitting the NFW profile equation (7)
in the range [0.01 − 1]R200. In Fig 6 we show the results for the
values of c200dm and the relative error in log10c200dm in each mass
bin. We see that, by fitting in the range [0.01 − 1]R200, we obtain
concentrations up to 10% higher than by fitting in the [0.1−1]R200

range. Moreover, by fitting including the inner regions in the fit,
the intrinsic scatter in concentration is lower by about 5%. These
trends are almost independent of mass. Since we want to compare
the dark matter only runs with the hydrodynamical ones, and in the
hydrodynamical runs we do not completely resolve the baryonic
physics on very small scales, we will take a conservative approach
and fit in the range [0.1 − 1]R200. Still, it is important to know
what happens if we consider also the inner regions, in particular if
we want to compare our results with the ones in literature.

With the mean and rms deviation of log10c200dm in each bin at
hand, we fit, for the complete, relaxed and super-relaxed samples,
the binned c−M relation using

log10c200 = log10A+B log10

(

M200

1014 M!

)

, (10)

where log10c200 andM200 are the mean values in each bin. For the
error on the mean of log10c200dm in each bin, σc̄, we use the rms
deviation of log10c200dm divided by the square root of the number
of objects in the bin. For each fit we also define

Table 2. Best-fit parameters, standard errors and reduced chi-squared χ̃2

of the c −M relation equation (10) for dark matter only density profile fit
in the region [0.1 − 1]R200 for the complete, relaxed and super-relaxed
samples of the ΛCDM model at z = 0.

Model σ8 A σA B σB χ̃2

ΛCDM 0.776 dm

all 3.59 0.05 −0.099 0.011 0.48
relaxed 4.09 0.05 −0.092 0.011 0.66

super-relaxed 4.52 0.06 −0.091 0.013 0.76

Table 3. Best-fit parameters and standard errors of the c−M relation equa-
tion (10) for dark matter only density profile fit in the region [0.1−1]R200 ,
considering only objects withM200m > 1014 M! h−1, for the complete,
relaxed and super-relaxed samples of the ΛCDM model at z = 0.

Model σ8 A σA B σB

ΛCDM 0.776 dm

all 3.55 0.09 −0.087 0.038
relaxed 3.99 0.10 −0.055 0.042

super-relaxed 4.35 0.13 −0.010 0.049

χ2 =
Nbins
∑

i=1

(

log10c200i − log10c200fit

σc̄i

)2

(11)

and evaluate the reduced chi-squared χ̃2, i.e. χ2 divided by the
number of degrees of freedom. We list the best fit values A and
B for each sample, along with the corresponding standard errors
and χ̃2, in Table 2. We see that, compared to the complete sample,
the normalization A increases by about 15% for the relaxed sample
and by about 25% for the super-relaxed sample, while the slope B
does not change significantly, even if excluding unrelaxed objects
results in a shallower slope. The values of χ̃2 indicate that equation
(10) is a good parametrization of the c−M relation in logarithmic
scale.
In order to understand the impact of low-mass object on the c−M
relation, we check how the best-fit values of the c − M relation
change if we do not include the less massive objects. We report
the results we obtain by considering only objects with M200m >
1014 M! h−1 in Table 3. For all three samples, we find a flatter
relation than when including also low-mass objects, with larger er-
rors on the slope. The normalizations are lower of few percentage
points, while the relative errors are a factor of two higher compared
to the case where low-mass objects are also considered. Moreover,
we find that in this case the slope is very sensible to the dynamical
state of the objects included in the sample. Thus we can conclude
that the inclusion of low-mass objects is necessary to find a sig-
nificant correlation between the concentration and the mass of the
halos. We do not quote the reduced chi-squared in this case because
just 3 mass bins are considered with 2 parameters to be fitted.

For the dark matter only profiles of the concordance ΛCDM
model we also perform a logarithmic fit of equation (7) without
using Poissonian errors, as usually found in the literature. In this
case we evaluate c200 both from equation (8) and by directly defin-
ing c200 ≡ R200/rs (using R200 from the true mass profile), and
indicate the two values as c200dm,fit and c200dm,rec, respectively.
Moreover, in order to check the robustness of our fit, we perform

6 Y.M. Bahé et al.

Figure 2. Mass-concentration plot obtained from our mock weak
lensing analysis showing five projections of each cluster (grey
points). The black triangles show the median concentrations for
each bin with the black dash-dot line giving the corresponding
best-fit power-law as described in the text. The blue circles and
solid line give the corresponding 3D NFW medians and best-fit
power-law respectively. Filled symbols represent median values
used for constructing the power-law, open ones were discarded.
The errorbars (dotted for WL, solid for 3D) indicate binsize in
x-direction, whereas in y-direction the 25th and 75th percentiles
are shown. The weak-lensing derived concentrations are system-
atically too low compared to those from our reference 3D fit, with
the discrepancy increasing for lower mass systems.

by Gao et al. (2008) that the best-fit concentration in the
NFW profile depends somewhat on the exact choice of the
inner cut-off radius, with lower values generally leading to
higher concentrations, which we have confirmed for our clus-
ter fits. It should therefore be borne in mind that the bias
we derive is strictly applicable only with respect to this par-
ticular fitting range. In the future, it may be advisable to
adopt more accurate fitting functions such as the Einasto
profile (Einasto 1965) as discussed by Navarro et al. (2004)
and Merritt et al. (2006); however, the price to pay for this
improved accuracy is the introduction of an additional de-
gree of freedom and its potential correlations with M200 and
c.

We point out in passing that we have not imposed any
relaxation criteria for selecting our simulated clusters and
select based on mass alone, as it is not trivial to deduce how
relaxed a real cluster is. It is known that the NFW profile
does not describe obviously unrelaxed cluster haloes well
(e.g., Neto et al. 2007) and thus we expect that the accuracy
of the reconstructed mass and concentration of real systems
will depend on the dynamical state of the cluster.

4 DERIVED MASS-CONCENTRATION

RELATION

In Fig. 2 we show the mass-concentration relationship de-
rived from our mock WL analysis of MS clusters. Each of the
grey dots represents a single projection of one cluster. The
solid triangles represent the median WL-derived concentra-
tion in 16 equally-spaced bins of log10(MWL/M!) from 13.6
to 15.2 with bin width ∆ log10(MWL/M!) = 0.1. The solid
circles represent the median true (3D) concentration in the
corresponding true mass bins .

There is considerable scatter in the mass-concentration
relation derived from the mock WL observations, but the
trend towards higher concentrations for lower masses is ev-
ident. A power-law of form

α(MWL/10
14h−1M!)

β (13)

was fit to the WL-derived median mass-concentration distri-
bution, assuming an error in each bin proportional to 1/

√
ni

where ni is the number of cluster projections per mass bin.
Only mass bins with MWL > 14.2 were included in the fit,
since below this mass range the results are affected by our
arbitrary cut-off at MMill = 1014M!. The best-fit parame-
ters obtained from this procedure are αWL = (4.25 ± 0.04)
and βWL = (−0.10±0.01); we show this relation as the solid
black line in Fig. 2. For comparison, we also show the best-fit
powerlaw to the true (3D) mass-concentration relation (solid
blue line in Fig. 2), determined in the same way as for the
WL data, but excluding systems with M3D > 1015M! due
to the very small number of systems in this range. The pa-
rameters of this best-fit 3D powerlaw are α3D = (5.02±0.08)
and β3D = (−0.16±0.02). Both the normalisation and slope
of the WL inferred powerlaw are too low compared to their
3D counterparts.

4.1 Quantifying the spread in the masses and

concentrations

The results in the previous section underline the need to
quantify and account for bias and scatter in observationally
derived cluster masses and concentrations in large surveys.
For detailed studies of individual clusters the bias may be
less relevant, but knowing the expected scatter is still impor-
tant. In this section, we present a quantification of the bias
and scatter in our mock WL derived masses and concentra-
tions. As variation with halo mass and resulting strength
of the lensing signal can be expected, our sample was first
divided into five (true) mass bins, as indicated in Table 1.
For each of these five bins, a histogram of the relative masses
and concentrations, normalised to true mass MMill and best-
fit 3D concentration c3D, was then created. The results are
shown in Fig. 3.

The spread in both MWL and cWL is clearly mass-
dependent and decreases with increasing cluster mass. Over-
concentrations of more than a factor of 2.5 are virtually non-
existent except for the lowest mass bin where there is an,
albeit small, group of cluster projections whose concentra-
tions are overestimated by up to a factor of 3. The masses are
somewhat better constrained, over- and underpredictions by
more than a factor of 2 being rare in all mass bins (apart
from the very lowest).

The error distributions in mass and concentration were

c© 0000 RAS, MNRAS 000, 000–000

Selection Function influences scaling-relation results (Nord et al. 
08, Pratt et al. 2009, Allen et al. 2012), what about the c-M relation? 

De Boni et al. 2012 

Bahe et al. 2012 
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LX>1.4 1045 erg/s 
LX> 7 1044 erg/s 

If  we select our 
sample on the 
basis of  the X-ray 
emission we tend 
to have more 
concentrated halo 
at fixed mass 



  Comparisons NEEDS to be fair!  

  If  approaches are INTRINSICALLY different a bias in the comparison is very 
likely. This is the case for the c-M relation. 

  D08 and P12 differences in normalization and shape are fully explained by 
understanding their procedure 

  As for the X-ray simulations comparison: small part of  the gap is explained by 
ICM physics and radial range but the majority has to be ascribed to the different 
methodology and selection functions. 

  Radial range: lowering the external fitting radius => slope reduced 

  Radial range: decreasing the central excision => normalization increased 

  Baryons => all physics: normalization increased 

  X-ray approach and Selection function=> slope increased 
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