

Multi-ion and Anisotropic Magnetohydrodynamics

Gábor Tóth

Xing Meng, Alex Glocer, Yingjuan Ma, Dalal Najib, Bart van der Holst, Tamas Gombosi
Center for Space Environment Modeling
University Of Michigan

Outline

m BATS-R-US

m MHD equations with multiple ion fluids
m MHD equations with anisotropic pressure
M Instabilities
m Implementation and verification
M Some modeling results
M Summary

BATS-R-US

Block Adaptive Tree Solar-wind Roe Upwind Scheme

M Physics

- Classical, semi-relativistic and Hall MHD
- Multi-species, multi-fluid, anisotropic pressure
- Radiation hydrodynamics multigroup diffusion
. Multi-material, non-ideal equation of state
. Solar wind turbulence, Alfven wave heating
M Numerics
- Conservative finite-volume discretization
- Parallel block-adaptive grid

Scaling of BATS-R-US from 8 to 262,144 cores with 40,960 cells/core on the Cray Jaguar system.

- Cartesian and generalized coordinates
. Splitting the magnetic field into $B_{0}+B_{1}$
. Divergence B control: 8-wave, CT, projection, parabolic/hyperbolic
- Shock-capturing TVD schemes: Rusanov, HLLE, AW, Roe, HLLD

Explicit, point-implicit, semi-implicit, fully implicit time stepping
M Applications
(2) Heliosphere, sun, planets, moons, comets, HEDP experiments m 100,000+ lines of Fortran 90 code with MPI parallelization

Multi-Fluid MHD

m Multi-fluid MHD has many space physics applications

- ionospheric outflow, Earth magnetosphere, Martian ionosphere, outer heliosphere interaction with interstellar medium, etc.
M BATS-R-US now contains a general multi-fluid solver with arbitrary number of ion and neutral fluids.
m Each fluid has separate densities, velocities and temperatures.
M One ion fluid + neutrals can be solved as MHD for ions, and HD for neutrals.
m Ions and neutrals are coupled by charge exchange and chemical reactions.
m Neutrals are coupled by collisions and chemical reactions.
m Coupling source terms can be evaluated point-implicitly.

Multi-Ion MHD Derived

Momentum equations for ion fluids s with charge q_{s} and electrons with charge $-e$

$$
\begin{aligned}
& \frac{\partial \rho_{s} \mathbf{u}_{s}}{\partial t}+\nabla \cdot\left(\rho_{s} \mathbf{u}_{s} \mathbf{u}_{s}+I p_{s}\right)=+n_{s} q_{s}\left(\mathbf{E}+\mathbf{u}_{s} \times \mathbf{B}\right)+S_{\rho_{s} \mathbf{u}_{s}} \\
& \frac{\partial_{R} \mathbf{u}_{e}}{\partial t}+\nabla \cdot\left(\rho_{e} \mathbf{u}_{e} \mathbf{u}_{e}+I p_{e}\right)=-n_{e} e\left(\mathbf{E}+\mathbf{u}_{e} \times \mathbf{B}\right)+S_{\rho_{e} \mathbf{u}_{e}}
\end{aligned}
$$

Express electric field from electron momentum equation peglecting small terms:

$$
\mathbf{E}=-\mathbf{u}_{e} \times \mathbf{B}-\frac{1}{e n_{e}} \nabla p_{e}+\eta \mathbf{J}
$$

Obtain electron density from charge neutrality and electron velocity from current:

$$
\begin{aligned}
& n_{e}=\frac{1}{e} \sum_{s} n_{s} q_{s} \\
& \mathbf{u}_{e}=-\frac{\mathbf{J}}{e n_{e}}+\mathbf{u}_{+} \quad \text { where the charge averaged ion velocity is } \quad \mathbf{u}_{+}=\frac{\sum_{s} n_{s} q_{s} \mathbf{u}_{s}}{e n_{e}}
\end{aligned}
$$

The electron pressure p_{e} is either a fixed fraction of total ion pressure, or we solve

$$
\frac{\partial p_{e}}{\partial t}+\nabla \cdot\left(p_{e} \mathbf{u}_{e}\right)=-(\gamma-1) p_{e} \nabla \cdot \mathbf{u}_{e}+S_{p_{e}}
$$

Multi-Ion MHD

For each ion fluid s we obtain (neglecting resistive terms):

$$
\begin{aligned}
\frac{\partial \rho_{s}}{\partial t}+\nabla \cdot\left(\rho_{s} \mathbf{u}_{s}\right) & =S_{\rho_{s}} \\
\frac{\partial \rho_{s} \mathbf{u}_{s}}{\partial t}+\nabla \cdot\left(\rho_{s} \mathbf{u}_{s} \mathbf{u}_{s}+I p_{s}\right) & =\frac{n_{s} q_{s}}{n_{e} e}\left(\mathbf{J} \times \mathbf{B}-\nabla p_{e}\right)+n_{s} q_{s}\left(\mathbf{u}_{s}-\mathbf{u}_{+}\right) \times \mathbf{B}+S_{\rho_{s} \mathbf{u}_{s}} \\
\frac{\partial p_{s}}{\partial t}+\nabla \cdot\left(p_{s} \mathbf{u}_{s}\right) & =-(\gamma-1) p_{s} \nabla \cdot \mathbf{u}_{s}+S_{p_{s}}
\end{aligned}
$$

We can also solve for hydro energy density $e_{s}=\rho_{s} \mathbf{u}_{s}^{2} / 2+p_{s} /(\gamma-1)$
$\frac{\partial e_{s}}{\partial t}+\nabla \cdot\left[\left(e_{s}+p_{s}\right) \mathbf{u}_{s}\right]=\mathbf{u}_{s} \cdot\left[\frac{n_{s} q_{s}}{n_{e} e}\left(\mathbf{J} \times \mathbf{B}-\nabla p_{e}\right)+n_{s} q_{s}\left(\mathbf{u}_{s}-\mathbf{u}_{+}\right) \times \mathbf{B}\right]+S_{e_{s}}$

Finally the induction equation with or without the Hall term becomes

$$
\frac{\partial \mathbf{B}}{\partial t}-\nabla \times\left(\mathbf{u}_{e} \times \mathbf{B}\right)=0 \quad \text { or } \quad \frac{\partial \mathbf{B}}{\partial t}-\nabla \times\left(\mathbf{u}_{+} \times \mathbf{B}\right)=0
$$

Two-Stream Instability

m Perpendicular ion velocities are coupled through the magnetic field
M Parallel ion velocities are not coupled by the multi-ion MHD equations.
M Two-stream instability restricts the velocity differences parallel to B

- We cannot resolve the two-stream instability
- Use a simple ad-hoc friction source term in the momentum equations:

$$
S_{\rho \mathbf{u}_{s}}^{\text {friction }}=\frac{1}{\tau_{c}} \sum_{q \neq s} \min \left(\rho_{s}, \rho_{q}\right)\left(\mathbf{u}_{q}-\mathbf{u}_{s}\right)\left(\frac{\left|\mathbf{u}_{s}-\mathbf{u}_{q}\right|}{u_{c}}\right)^{\alpha_{c}}
$$

- Using the minimum of the two densities makes the friction uniformly effective in regions of low and high densities.
- τ_{C} is the time scale, u_{C} is the cut-off velocity, α_{C} is the cut-off exponent
- Adjustable parameters. It would be better to use physics based formulas.

O+ Escape from Mars lonosphere

Multi-fluid MHD
$\log \mathrm{Op}$

Multi-species MHD
$\log \mathrm{Op}$

Anisotropic MHD

M In (nearly) collisionless plasma pressure can be anisotropic

- Different pressures parallel and perpendicular to the magnetic field:

$$
P=\left(p_{\perp}+p_{e}\right) I+\left(p_{\|}-p_{\perp}\right) \mathbf{b b} \quad \mathbf{b}=\mathbf{B} / B
$$

m Where does it matter in space physics?

- Reconnection
- Magnetosphere
- Inner magnetosphere
- Solar wind heating

Hall MHD with isotropic electron and anisotropic ion pressure

$$
\begin{array}{ll}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u})=0 & \\
\frac{\partial \rho \mathbf{u}}{\partial t}+\nabla \cdot\left[\rho \mathbf{u u}+p_{\perp} \mathbf{I}+\left(p_{\|}-p_{\perp}\right) \mathbf{b b}+p_{e} \mathbf{I}+\frac{B^{2}}{2} \mathbf{I}-\mathbf{B B}\right]=0 & \\
\frac{\partial \mathbf{B}}{\partial t}+\nabla \times\left[-\mathbf{u} \times \mathbf{B}+\frac{\mathbf{J} \times \mathbf{B}}{e n_{e}}-\frac{\nabla p_{e}}{e n_{e}}\right]=0 & \mathbf{u}_{e}=\mathbf{u}-\frac{\mathrm{J}}{e n_{e}} \\
\frac{\partial p_{e}}{\partial t}+\nabla \cdot\left(p_{e} \mathbf{u}_{e}\right)=-(\gamma-1) p_{e} \nabla \cdot \mathbf{u}_{e} & \\
\frac{\partial p_{\|}}{\partial t}+\nabla \cdot\left(p_{\|} \mathbf{u}\right)=-2 p_{\|} \mathbf{b} \cdot(\nabla \mathbf{u}) \cdot \mathbf{b} & p_{\perp}=\frac{3 p-p_{\|}}{2}
\end{array}
$$

Adiabatic index is $\gamma=5 / 3$. Resistive and relaxation terms are implemented but not shown. Hall and grad P_{e} terms are implemented but not used in the rest of this work.

Hall MHD with isotropic electron and anisotropic ion pressure

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u})=0 \\
& \frac{\partial \rho \mathbf{u}}{\partial t}+\nabla \cdot\left[\rho \mathbf{u u}+p_{\perp} \mathbf{I}+\left(p_{\|}-p_{\perp}\right) \mathbf{b b}+p_{e} \mathbf{I}+\frac{B^{2}}{2} \mathbf{I}-\mathbf{B B}\right]=0 \\
& \frac{\partial \mathbf{B}}{\partial t}+\nabla \times\left[-\mathbf{u} \times \mathbf{B}+\frac{\mathrm{J} \times \mathbf{B}}{e n_{e}}-\frac{\nabla p_{e}}{e n_{e}}\right]=0 \\
& \frac{\partial p_{e}}{\partial t}+\nabla \cdot\left(p_{e} \mathbf{u}_{e}\right)=-(\gamma-1) p_{e} \nabla \cdot \mathbf{u}_{e} \\
& \frac{\partial p_{\|}}{\partial t}+\nabla \cdot\left(p_{\|} \mathbf{u}\right)=-2 p_{\|} \mathbf{b} \cdot(\nabla \mathbf{u}) \cdot \mathbf{b} \\
& \begin{array}{ll}
\frac{\partial e}{\partial t}+\nabla \cdot\left[\mathbf{u}\left(e+p_{\perp}+p_{e}+\frac{\mathbf{B}^{2}}{2}\right)+\mathbf{u} \cdot\left(\left(p_{\|}-p_{\perp}\right) \mathbf{b b}-\frac{\mathbf{B B}}{2}\right)\right]=0 \\
\text { Adiabatic index is } \gamma=5 / 3 . & \mathbf{u}_{e}=\mathbf{u}-\frac{\mathrm{J}}{e n_{e}} \\
& e=\frac{\rho \mathbf{u}^{2}}{2}+\frac{\mathbf{B}^{2}}{2}+\frac{p+p_{e}}{\gamma-1}
\end{array}
\end{aligned}
$$ Resistive and relaxation terms are implemented but not shown. Hall and grad P_{e} terms are implemented but not used in the rest of this work.

Characteristic Speeds

M Entropy: $\quad \lambda_{1,2,3}=u_{x}$
M Alfven: $\quad \lambda_{4,5}=u_{x} \pm b_{x} \sqrt{\frac{B^{2}+p_{\perp}-p_{\|}}{\rho}}$
M Magnetosonic:

$$
\begin{aligned}
\lambda_{6,7,8,9} & =u_{x} \pm \frac{1}{\sqrt{2 \rho}}\left\{B^{2}+2 p_{\perp}+\gamma p_{e}+\left(2 p_{\|}-p_{\perp}\right) b_{x}^{2}\right. \\
& \pm\left[\left(B^{2}+2 p_{\perp}+\gamma p_{e}+\left(2 p_{\|}-p_{\perp}\right) b_{x}^{2}\right)^{2}\right. \\
& +4\left(\frac{1}{4} p_{\perp}{ }^{2}\left(1-b_{x}^{2}\right)-3 p_{\|} p_{\perp} b_{x}^{2}\left(2-b_{x}^{2}\right)+3 p_{\|}{ }^{2} b_{x}^{4}\right. \\
& \left.\left.\left.+\frac{5}{3} p_{e}\left(4 p_{\|} b_{x}^{2}-p_{\perp} b_{x}^{2}-3 p_{\|}\right) b_{x}^{2}-\left(3 p_{\|}+\frac{5}{3} p_{e}\right) B_{x}^{2}\right)\right]^{1 / 2}\right\}^{1 / 2}
\end{aligned}
$$

M Agrees with Baranov (1970) with no electron pressure

Alfvén waves with anisotropic pressure

Circularly polarized Alfvén wave propagates at $v_{A}=\sqrt{\left(\mathbf{B}^{2}+p_{\perp}-p_{\|}\right) / \rho}$
This can become unstable if the parallel pressure is large enough!

Alfvén waves with anisotropic pressure

Circularly polarized Alfvén wave propagates at $\quad v_{A}=\sqrt{\left(\mathbf{B}^{2}+p_{\perp}-p_{\|}\right) / \rho}$
This can become unstable if the parallel pressure is large enough!

Instabilities Limiting the Anisotropy

M Instabilities from kinetic theory including finite Larmor radius (FLR) effects:
(Fire-hose:

$$
\frac{p_{\|}}{p_{\perp}}>1+\frac{B^{2}}{p_{\perp}}
$$

$$
\tau_{f}=\frac{1}{\gamma_{f f_{L R}}\left(\lambda_{f}\right)}=\frac{2}{\Omega_{i}} \frac{\sqrt{p_{\|}\left(p_{\perp}-p_{\|} / 4\right)}}{\Delta p_{f}}
$$

. Mirror:

$$
\frac{p_{\perp}}{p_{\|}}>1+\frac{B^{2}}{2 p_{\perp}}
$$

$$
\tau_{m}=\frac{1}{\gamma_{m}\left(\lambda_{m}\right)}=\frac{3 \sqrt{5}}{4 \Omega_{i}} \sqrt{\frac{p_{\|}}{2 \Delta p_{m}}}
$$

- Proton cyclotron: $\frac{p_{\perp}}{p_{\|}}>1+C_{1}\left(\frac{\mathbf{B}^{2}}{2 p_{\|}}\right)^{C_{2}} \quad \tau_{i c}=\frac{10^{2}}{\Omega_{i}}$
© Constants depend on growth rate limit, we use $\mathrm{C}_{1}=0.3$ and $\mathrm{C}_{2}=0.5$
m The ion pressure is pushed towards isotropy with relaxation source terms (similar to Birn et al. 1995):

$$
\frac{\delta p_{\|}}{\delta t}=\frac{\bar{p}_{\|}-p_{\|}}{\tau}
$$

m We allow for a global relaxation rate as well.
m Instabilities also help to provide proper jump conditions.

Magnetosphere Simulation, 16 June 2008

m Simulation set-up

- Input solar wind and IMF measured by the ACE and WIND satellites
- Computational domain: X from -224R R_{e} to 32 Re, Y and Z from -128 to $128 R_{e}$
- Grid resolution: $1 / 8 \mathrm{R}_{\mathrm{e}}$ where the THEMIS satellites cross the dayside magnetopause

Solar wind and IMF conditions on 16 June 2008

Uz
n

RMS error

Isotropic MHD Anisotropic MHD

$n[/ \mathrm{cc}]$	2.18	2.29
$u_{x}[\mathrm{~km} / \mathrm{s}]$	63.37	52.93
$u_{y}[\mathrm{~km} / \mathrm{s}]$	37.67	36.45
$u_{z}[\mathrm{~km} / \mathrm{s}]$	45.48	46.12
$b_{x}[\mathrm{nT}]$	5.81	5.52
$b_{y}[\mathrm{nT}]$	11.75	11.77
$b_{z}[\mathrm{nT}]$	11.57	10.86

RMS error

Isotropic MHD Anisotropic MHD

$n[/ \mathrm{cc}]$	1.66	1.66
$u_{x}[\mathrm{~km} / \mathrm{s}]$	80.21	74.22
$u_{y}[\mathrm{~km} / \mathrm{s}]$	46.68	45.23
$u_{z}[\mathrm{~km} / \mathrm{s}]$	42.52	42.30
$b_{x}[\mathrm{nT}]$	3.95	3.93
$b_{y}[\mathrm{nT}]$	6.85	6.70
$b_{z}[\mathrm{nT}]$	10.13	10.32

m We have implemented the multi-ion and anisotropic MHD equations into BATSRUS

- Wave speeds are required
- There is no fully conservative form
- Point-implicit scheme for stability

Sub-grid scale / non-fluid effects need to be taken into account

m Publications

(3daptive Numerical Algorithms in Space Weather Modeling, G. Toth et al. 2012, Journal of Computational Physics, 231, 870, doi:10.1016/j.jcp.2011.02.006
(3) Pressure anisotropy in global magnetospheric simulations: A magnetohydrodynamics model. X. Meng et al. 2012, Journal of Geophysical Research, 117, A08216, doi:10.1029/2012JA017791

- Classical and Semirelativistic Magnetohydrodynamics with Anisotropic Ion Pressure, X. Meng et al. 2012, Journal of Computational Physics, 231, 3610, doi:10.1016/j.jcp.2011.12.042
- Multifluid Block-Adaptive-Tree Solar wind Roe-type Upwind Scheme: Magnetospheric composition and dynamics during geomagnetic storms -- Initial results, A. Glocer et al. 2009, Journal of Geophysical Research, 114, A12203, doi:10.1016/j.jastp.2009.01.003

