Fermi Bubbles as AGN Laboratories: Supersonic Jets with Anisotropic Cosmic Ray Diffusion (arxiv: 1207.4185)

Karen Yang Mateusz Ruszkowski Paul Ricker Ellen Zweibel Dongwook Lee

2nd ICM theory & computation workshop University of Michigan August, 30, 2012

Nonthermal emission from AGN lobes/bubbles

Fermi bubbles – possible evidence for past jet activity of Sgr A*

- Morphology
- Flat intensity
- Sharp edges
- Hard spectrum
- ROSAT X-ray featuresWMAP Haze

Su 2010

WMAP 23 GHz haze

Credit: NASA/DOE/Fermi LAT/D. Finkbeiner et al

Forming Fermi bubbles by CR jets

CReenergy density

- 2D, hydro simulations including CR pressure, advection and diffusion
- Plausible to form
 bubbles within 2-3 Myr
- Axial ratio reproduced
- Large-scale instabilities
- Edge-darkened surface brightness
- => Viscosity may be at work

Projected CR energy density

No viscosity

log(projected e_c), run V3, t=1.67 Myr

With viscosity

Why are the bubble edges sharp?

- Sharp edges imply suppression of CR diffusion across bubble surface
- Due to magnetic draping + anisotropic CR diffusion?

Ruszkowski 2007, 2008

3D MHD simulations of CR jets with anisotropic CR diffusion

- FLASH, unsplit staggered mesh MHD solver, new CR module
- Included physics
 - CR pressure and advection
 - Ambient tangled (*mean*) magnetic fields
 - Injected magnetic fields (f_B=1e-3; Sutter 2012, Li 2006)
 - Anisotropic CR diffusion (κ_{ll}=4e28 or 1.2e29 cm²/s)
- Jet parameters:

η_j=0.05, P_{jth}=1.06e-9, P_{jcr}=8.3e-10, R_j=0.5kpc, v_j=0.025c, t_j=0.3Myr

- Observational constraints
 - Initial gas density profile (Miller 2012)
 - Bubble temperature ~ a few 10⁷ K (Miller 2012) => R_{ii} v_i
 - Limb-brightened X-ray image => $\eta_{i'} t_{j}$
 - Bubble axial ratio => P_{jth} + P_{jcr}

Supersonic jet-inflated Fermi bubbles – the pure-hydro case

CR energy density

- Projection of 3D bubbles => short
 bubble formation time ~ 1.2 Myr
- Naturally satisfy age constraint from IC cooling time of high-energy electrons
 - No sufficient time for instabilities to develop

Projected CR energy density

- Edge-brightened CR distribution
- => nearly flat surface brightness (in longitude)

Yang 2012

Magnetic draping due to supersonic bubble expansion

- B fields amplified and aligned with bubble surface
- Draping more effective for fields initially parallel to bubble surface
- Draping more effective when I_B > R_{bub}

Anisotropic CR diffusion + magnetic draping => sharp bubble edges

Bubble shape traces underlying B field if CR diffusivity is large

Slight bends of the Fermi bubbles

- Not: Ram pressure from IGM, jet precession, BH motion
- Both jets tilted to the *east* by 10° for 0 < t < 0.1t_j, possibly due to SN ram pressure

Leptonic or hadronic? (preliminary)

Spectra averaged over ||<10°, 20°<b<30°

- Either P_{CRe} ~ 5e-4 P_{sim} or P_{CRp} ~ P_{sim} could produce the observed gamma-ray
- Since P_{2nde} < 1e-6 P_{sim}, synchrotron is dominated by primary CRe
- ⇒ Gamma-ray is also dominated by CRe

$$\Rightarrow P_{CRp} << P_{sim}$$

 $\Rightarrow P_{sim} = P_{CRe} + P_{CRp} + P_{th} \text{ (thermal pressure dominates inside the bubbles)}$

Uncertainties

- Spectrum of CRe
- B fields inside the bubbles

How to get large enough strength and gradient of B fields inside the bubbles?

WMAP haze intensity decays away from GC

Summary and future work

- Primary features of the Fermi bubbles are reproduced by our 3D MHD simulations, providing evidence for past AGN jet activity at the GC
- Fermi bubbles are invaluable laboratories to study physics of CRs and B fields, and the compositions of AGN bubbles
- CRe cooling due to IC and synchrotron losses
- CR acceleration by shocks, MHD turbulence, or fast magnetic reconnection