SIWULITED CURARENT-DAIUEN DESTABIITIIES INIAN JTES

Sean M. O'Neill JILA/University of Colorado

In collaboration with:
Kris Beckwith (JILA/Tech-X Corporation), Mitch Begelman (JILA/APS), Krzysztof Nalewajko (JILA),
Greg Salvesen (JILA/APS)
Based on O'Neill, Beckwith, \& Begelman (2012)

What Are CurrentDriven Instahilities?

Why Are Current-Driven Instahilities Relevant?

M87/Jirgo A/VIirgo K-1

Credit: X-ray: H. Marshall (MIT), et al., CXC, NASA Radio: F. Zhou, F. Owen (NRAO), J. Biretta (STScl) Optical: E. PerIman (UMBC), et al., STScl, NASA

Gonnections With AHX

Jets dominated by Poynting flux near source but kinetic energy at greater distances (Sikora et al. 2005).

Gonnections With AHX

Jets dominated by Poynting flux near source but kinetic energy at greater distances (Sikora et al. 2005).

Rapid gamma-ray blazar variability (MAGIC/HESS) suggests either very large Doppler factors or emission from highly compact region (e.g. PKS 2155-304 in Aharonian et al. 2007, Mrk 501 in Albert et al. 2007).

Gonnections With AHX

Jets dominated by Poynting flux near source but kinetic energy at greater distances (Sikora et al. 2005).

Rapid gamma-ray blazar variability (MAGIC/HESS) suggests either very large Doppler factors or emission from highly compact region (e.g. PKS 2155-304 in Aharonian et al. 2007, Mrk 501 in Albert et al. 2007).

How do jet magnetic fields cross shear layer?

Gonnections With AHL

Jets dominated by Poynting flux near source but kinetic energy at greater distances (Sikora et al. 2005).

Rapid gamma-ray blazar variability (MAGIC/HESS) suggests either very large Doppler factors or emission from highly compact region (e.g. PKS 2155-304 in Aharonian et al. 2007, Mrk 501 in Albert et al. 2007).

How do jet magnetic fields cross shear layer?

How do jets remain collimated over many orders of magnitude in physical scale (sub-pc to Mpc)?

How to Model Current-

 Driven Instahilities?
Linear Amalysis

Physics: Lundquist (1951), Kruskal \& Schwarzschild (1954), Tayler (1957), Kadomtsev (1966)

Astrophysics: Non-relativistic limit

Cohn (1983), Pietrini \& Torricelli-Ciamponi (1989), Corbelli \& Torricelli-Ciamponi (1990), Appl \& Camenzind (1992), Appl (1996), Appl et al. (2000), Kersalé et al. (2000), Bonanno \& Urpin (2011)

Astrophysics: Relativistic limit

Istomin \& Pariev (1994, 1996), Begelman (1998), Lyubarskii (1999), Tomimatsu et al. (2001), Narayan et al. (2009), Nalewajko \& Begelman (2012)

Numerical Mouleling

Relativistic simulations:

Global models (full jet propagation) McKinney \& Blandford (2009), Mignone et al. (2010)

Local models (small section of jet)
Mizuno et al. (2009) and
Mizuno et al. $(2011,2012)$

Our Approach

Local simulations co-moving with jet

Away from shear layer, jet origin
Athena code (Gardiner \& Stone 2005, 2008, Stone et al. 2008, Stone \& Gardiner 2009, Beckwith \& Stone 2011)

- Special relativistic MHD (Beckwith \& Stone 2011)
- Conservative, second-order accurate
- Well-tested, publicly available
- Diverse set of physics and algorithmic options

Initial Force Equilibrium
 $$
-\frac{v_{0}^{2}}{r} \hat{\mathbf{r}}=-\frac{1}{\rho} \nabla p+\frac{1}{4 \pi \rho}(\mathbf{J} \times \mathbf{B})
$$

Initial Force Equilibrium

$$
-\frac{v_{r}^{2}}{r} \hat{\mathbf{r}}=-\frac{1}{\rho} \nabla p+\frac{1}{4 \pi \rho}(\mathbf{J} \times \mathbf{B})
$$

GISE 1: $v_{\phi}=0{ }_{\rho}^{\frac{1}{\rho}} \nabla_{p}=0$

$$
\frac{1}{4 \pi \rho}(\mathbf{J} \times \mathbf{B})=0
$$

Intial Force Equilibrium

$$
-\frac{v_{p}^{2}}{r} \hat{\mathrm{r}}=-\frac{1}{\rho} \nabla p+\frac{1}{4 \pi \rho}(\mathbf{J} \times \mathbf{B})
$$

GISE $1:$

$v_{\phi}=0$

$\frac{1}{\rho} \nabla p=0$

 $\frac{1}{4 \pi \rho}(\mathbf{J} \times \mathbf{B})=0$ BISE 2: $v_{\phi}=0 \frac{1}{\rho} \nabla p=\frac{1}{4 \pi \rho}(\mathbf{J} \times \mathbf{B})$
Initial Force Equilibrium

$$
-\frac{v_{\hat{p}}^{2}}{r} \hat{\mathbf{r}}=-\frac{1}{\rho} \nabla p+\frac{1}{4 \pi \rho}(\mathbf{J} \times \mathbf{B})
$$

GRSE $1:$

$$
v_{\phi}=0
$$

$$
\frac{1}{\rho} \nabla p=0
$$

$$
\frac{1}{4 \pi \rho}(\mathbf{J} \times \mathbf{B})=0
$$

BISE 2: $v_{\phi}=0 \frac{1}{\rho} \nabla p=\frac{1}{4 \pi \rho}(\mathbf{J} \times \mathbf{B})$
Bise

Initial Force Equilibrium

$$
-\frac{v_{0}^{2}}{r} \hat{\mathbf{r}}=-\frac{1}{\rho} \nabla p+\frac{1}{4 \pi \rho}(\mathbf{J} \times \mathbf{B})
$$

Force-free:

$$
v_{\phi}=0
$$

$$
\frac{1}{\rho} \nabla p=0
$$

$$
\frac{1}{4 \pi \rho}(\mathbf{J} \times \mathbf{B})=0
$$

P/B-supported:

$$
v_{\phi}=0
$$

$$
\frac{1}{\rho} \nabla p=\frac{1}{4 \pi \rho}(\mathbf{J} \times \mathbf{B})
$$

Rot/P/Bsupported

$$
-\frac{v_{\phi}^{2}}{r} \hat{\mathbf{r}}=-\frac{1}{\rho} \nabla p+\frac{1}{4 \pi \rho}(\mathbf{J} \times \mathbf{B})
$$

Simulated Column Morphology

Foree-free

P/B-sumported

Rot/P/B-sumported

Simulated Column Energetics

Force-Free

$\begin{array}{lllll}0 & 100 & 200 & 300 & 400 \\ & & 500 \\ & \text { Time } & \left(\tau_{A}\right)\end{array}$

P/B-Supported

DB: SRcol_join.0000.vtk Cycle: 0
Contour
Var: cell_centered_B_magnitude

Max: 3.931
Min: 0.000

DB: SRcol_join.0050.vtk Cycle: 50
Contour
Var: cell_centered_B_magnitude

Max: 3.938
Min: 0.000

DB: SRcol_join.0100.vtk Cycle: 100
Contour
Var: cell_centered_B_magnitude

Max: 3.983
Min: 0.000

DB: SRcol_join.0150.vtk Cycle: 150
Contour
Var: cell_centered_B_magnitude

Max: 4.516
Min: 0.000

DB: SRcol_join.0200.vtk Cycle: 200
Contour
Var: cell_centered_B_magnitude

Max: 4.745
Min: 0.000

DB: SRcol_join.0400.vtk Cycle: 400
Contour
Var: cell_centered_B_magnitude
-1
-0.1
-0.01

Max: 2.837
Min: 0.000

DB: SRcol_join.0600.vtk Cycle: 600

Contour

Produced with VideoMach

Acknowledgements

- NASAATP Grant NNX09AG02G
- NSF AST-0907872
- Computations supported by NSF through XSEDE resources at the Texas Advanced Computing Center (TG-AST090106) and the University of Colorado's Janus supercomputer (CNS-0821794).
- Simulations run using Athena (https://trac.princeton.edu/Athena/)
- Visualizations accomplished using Vislt (Lawrence Livermore National Lab).

