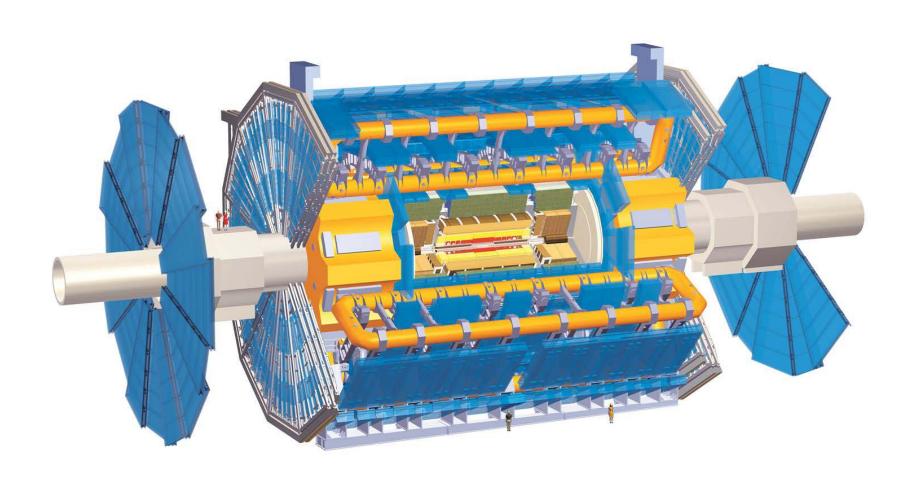
Higgs-related SM Measurements at ATLAS

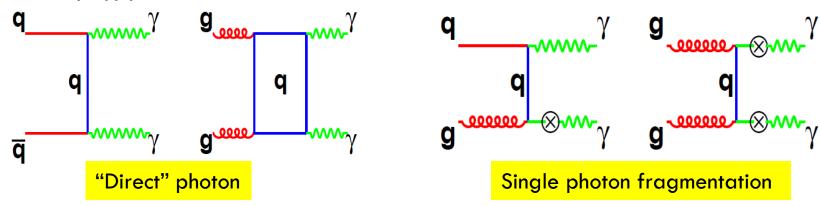
Junjie Zhu
University of Michigan

2nd MCTP Spring Symposium on Higgs Boson Physics April 19, 2012


Outline

- Introduction
- Isolated $\gamma\gamma$ cross section (37 pb⁻¹, Phys. Rev. D 85, 012003 (2012))
- □ WW \rightarrow IvIv cross section measurement (4.7 fb⁻¹, ATLAS-CONF-2012-025)
- □ ZZ \rightarrow IIII cross section measurement (4.7 fb⁻¹, ATLAS-CONF-2012-026)
- $ZZ\rightarrow IIvv$ cross section measurement (4.7 fb⁻¹, ATLAS-CONF-2012-027)
- Conclusions

Introduction


- □ Importance of Higgs-related SM Measurements:
- Precise measurements of inclusive and differential cross sections
- Validation of SM predictions
- Constraints on anomalous triple gauge couplings
- Major backgrounds for SM Higgs and other new physics searches
- Important for measurements of Higgs properties if it does exist

The ATLAS Detector

Prompt $\gamma\gamma$ Production at Hadron Colliders

ullet Prompt $\gamma\gamma$ production at hadron collider via QCD interactions:

- gg scattering: despite $O(\alpha_s^2)$ suppression relative to qqbar process, the large gluon luminosity can make this contribution sizable in particular kinematic regions
- Several sources of enhancement corrections: ISR, FSR, other possible small-x logs (resummation)
- □ Fragmentation contributions can be suppressed via experimental photon isolation requirement and $p_{\tau}(\gamma\gamma) < M(\gamma\gamma)$

Double photon fragmentation (not included In any theoretical predictions)

Low mass and small angle $\gamma\gamma$ pairs

$\gamma\gamma$: Theoretical Predictions

PYTHIA

- \neg qq $\rightarrow \gamma \gamma$ and gg $\rightarrow \gamma \gamma$ matrix elements
- All orders resummation to LL accuracy via parton shower
- No fragmentation contributions included

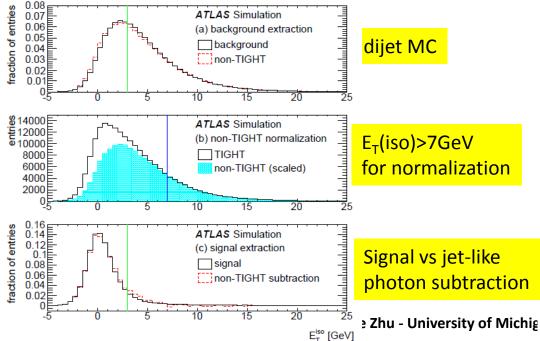
DIPHOX

- □ Fixed-order NLO calculation (except for $gg \rightarrow \gamma \gamma$ which is at LO)
- □ No resummation: usually avoid divergence by requiring asymmetric cut $p_T(\gamma_1)$ - $p_T(\gamma_2)$ >0
- Single-photon fragmentation (to NLO) included

RESBOS

- All-order resummation (to NNLL accuracy) matched to NLO
- Single photon fragmentation included via parameterization that approximates rate predicted by NLO fragmentation functions
- Partonic isolation applied
- PYTHIA/DIPHOX/RESBOS predictions need to be corrected for non-perturbative effects: underlying event and hadronization

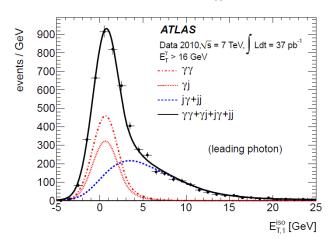
$\gamma\gamma$: Photon Identification

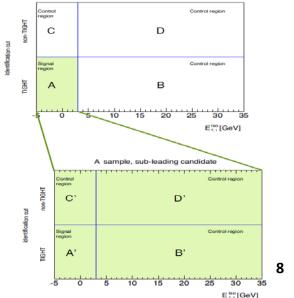

- Seeded by a cluster in the EM calorimeter
 - Unconverted γ : no tracks pointing to the cluster
 - $lue{}$ Converted γ : one or two tracks associated to the cluster
- Cut on f_{EM} , narrow shower width, no second significant maximum in the 1st ECAL layer (high granularity strips in η), shower shape in the 2nd ECAL layer
- Reconstruction efficiency: 80-85% (barrel) and 70% (endcap)

□ Photon isolation: E_T (iso) < 3 GeV within cone R<0.4

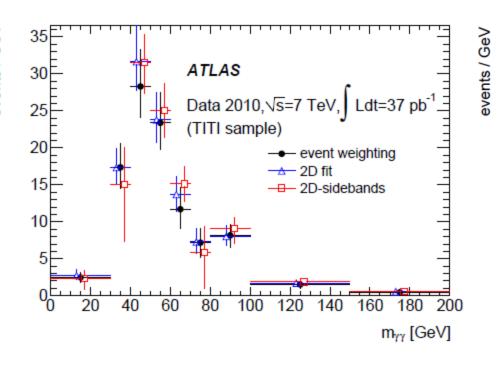
 \mathbf{E}_{τ} (iso) is used to estimate the contribution from jet background

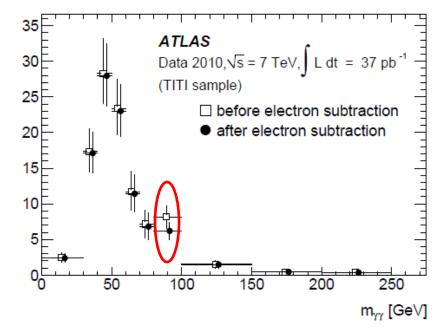
Use electron isolation to predict photon isolation 600 ATLAS 500 Data 2010,√s=7 TeV, Ldt = 37 pb 400 300 (leading photon) 200 100 E_{T 1} [GeV] entries/GeV 350 ATLAS 300 Data 2010,√s=7 TeV, Ldt = 37 pb 250 200 (sub-leading photon) 150 100 50


E_{T,2} [GeV]

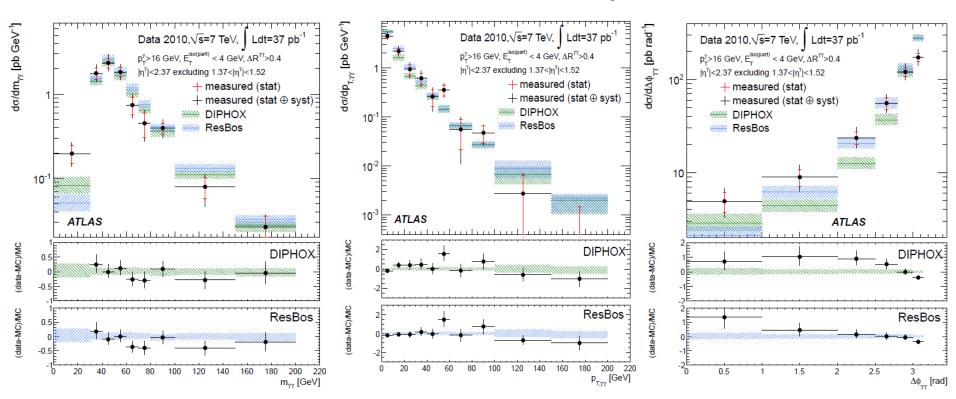


γγ: Subtracting Backgrounds


- 4x4 matrix method: classify events into 4 categories (PP/PF/FP/FF) using photon isolation cut (E_T(iso)<3 GeV) and construct an efficiency matrix E (ε: 80-95%, f: 20-40%)</p>
- 2D isolation template fits $[E_T(iso1) \text{ vs } E_T(iso2)]$: isolation templates for γγ, γ and ij events are built from data (using electron extrapolations and non-tight control sample)
- 2D sideband method for the case of two photon candidates: for events with the leading candidate in A region, a second 2D matrix is used for the second candidate

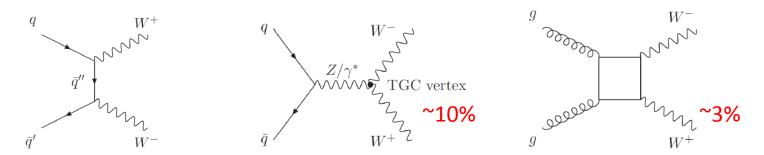

$$\begin{pmatrix} S_{\text{PP}} \\ S_{\text{PF}} \\ S_{\text{FP}} \\ S_{\text{FF}} \end{pmatrix} = \mathbf{E} \begin{pmatrix} W_{\gamma\gamma} \\ W_{\gamma j} \\ W_{j\gamma} \\ W_{ij} \end{pmatrix}$$

- $\,\square\,$ 2022 diphoton events selected with $p_T > 16$ GeV within fiducial region, tight photon quality and isolated (E_T(iso) < 3 GeV)
- □ All three background estimation methods agree fairly well with comparable systematic uncertainty (\sim 15%)
- □ Electron background subtracted using $N(Z \rightarrow ee) \times f(e \rightarrow \gamma)$


$\gamma\gamma$: Data/Theory Comparison

Single differential cross section:

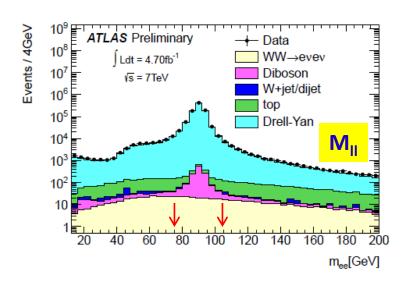
$$\frac{d\sigma}{dX} = \frac{N - N_{bkg}}{\varepsilon \cdot A \cdot L \cdot \Delta}$$

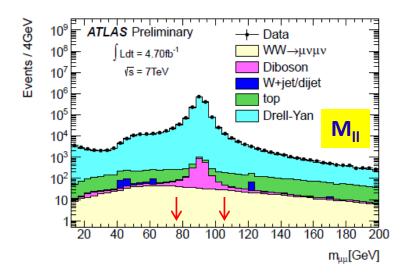

$$X = M_{\gamma\gamma}, p_T^{\gamma\gamma}, \Delta\phi_{\gamma\gamma}$$

- Some disagreement especially in the low $\Delta \phi$ region and $\Delta \phi \sim \pi$ (missing double photon fragmentation?)
- Qualitatively compatible with measurements from D0, CDF and CMS
- Double differential cross section measurements with larger dataset will be useful

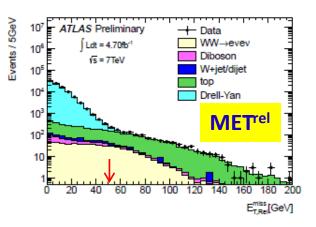
SM WW Cross Section Measurement

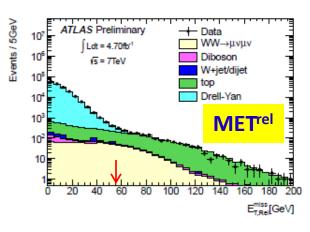
ightharpoonup Irreducible background to the Higgs search in HightarrowWWightarrowIhoIhoIho

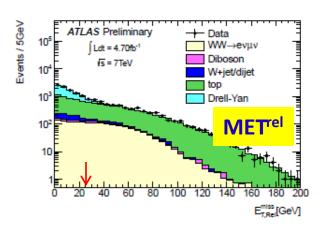


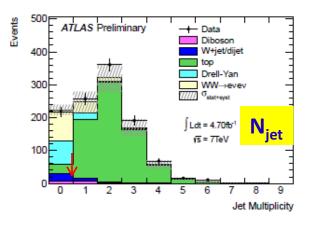

- □ NLO prediction: $\sigma(pp \rightarrow WW) = 45.1 \pm 2.8 \text{ pb}$
- ullet Two high $ullet_{\mathsf{T}}$ leptons (e, μ) with large MET
- Sequential decays to electrons or muons via tau leptons are included as signals
- Dominant backgrounds: Z+jets, top and W+jets
- Cross section is measured as (fiducial vs total cross sections):

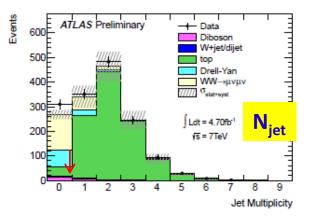
$$\sigma(pp \to W^+W^-) = \frac{N_{\text{data}} - N_{\text{bg}}}{A_{WW} \times C_{WW} \times \mathcal{L} \times BR}$$

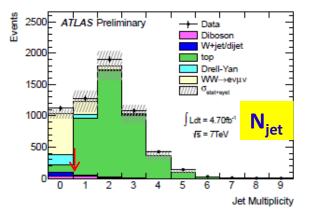

WW -> IVIV Event Selection


- ightharpoonup igh
 - Electrons: isolated, shower shape, inner track matched with $p_T > 20 \text{GeV}$
 - \square Muons: isolated, combined muon and inner detector track with p_T>20GeV ($|\eta|$ <2.4)
 - Leading lepton with $p_T > 25$ GeV
 - Dilepton invariant mass cut: $|M_{II}-M_7| > 15$ GeV for ee and $\mu\mu$
 - METrel cut
 - □ No jets with p_T >25 GeV and $|\eta|$ <4.5
 - Reject events with at least one b-jet with p_T>20 GeV




WW -> IVIV Event Selection





- lacksquare MET^{rel} is defined as $E_{ ext{T, Rel}}^{ ext{miss}} = \left\{egin{array}{ll} E_{ ext{T}}^{ ext{miss}} imes \sin\left(\Delta\phi_{\ell,j}
 ight) & ext{if } \Delta\phi < \pi/2 \ E_{ ext{T}}^{ ext{miss}} & ext{if } \Delta\phi \geq \pi/2 \end{array}
 ight.$
- MET^{rel}>50 GeV for ee, 55 GeV for μμ and 25 GeV for eμ

WW→IVIV Cut Flow

Selections	$ee + E_{\rm T}^{\rm miss}$	$\mu\mu + E_{\rm T}^{\rm miss}$	$e\mu + E_{\rm T}^{\rm miss}$
2 leptons (SS+OS)	1049296	1823285	21549
2 leptons (OS)	1043310	1822980	20677
leading lepton $p_T > 25 \text{GeV}$	1025363	1773911	15618
trigger matching	1024912	1763886	15579
$m_{\ell\ell'} > 15/15/10 \text{ GeV}$	1021200	1753923	15563
Z mass veto	95889	178777	15563
$E_{\rm T, Rel}^{\rm miss}$ cut	1303	1784	6653
Jet veto (No. of jet=0)	254	357	1265
b-jet veto	229	325	1176
sub-leading lepton $p_T > 20 \text{ GeV}$	196	287	1041

1524 candidates observed for 4.7 fb⁻¹ of data

Electron efficiency: 64-78%

Muon efficiency: 93%

WW-IVIV Signal Estimation

- □ WW \rightarrow IvIv generated with MC@NLO (gg2WW) with HERWIG for parton shower and JIMMY for underlying event simulation
- Mean number of interactions per event in MC is reweighted to reproduce that observed in data
- Corrections for lepton identification efficiencies, energy/momentum scale and resolution, MET resolution applied
- Corrections for jet-veto efficiency: $f_Z = \epsilon_Z^{data}/\epsilon_Z^{mc} = 0.953 \pm 0.048$ determined from Z events

Selections	ee Ch	ee Channel μμ C		nannel	eμ Channel	
	evev	$\tau \nu \ell \nu$	μνμν	$\tau \nu \ell \nu$	ενμν	$\tau \nu \ell \nu$
Total Events (4.7 fb ⁻¹)	2474.4	946.9	2474.4	946.9	4944.8	1893.6
2 leptons (SS+OS)	628.4	90.7	1099.1	150.3	1679.5	229.5
2 leptons (OS)	623.2	90.1	1099.1	150.3	1679.5	229.5
leading lepton $p_{\rm T} > 25 {\rm GeV}$	616.9	88.2	1081.1	145.4	1496.1	179.7
trigger matching	615.9	87.9	1063.8	141.0	1492.1	179.0
$m_{\ell\ell'} > 15/15/10 \text{ GeV}$	612.0	87.6	1054.8	140.0	1491.0	178.9
Z mass veto	478.9	66.6	824.1	108.0	1491.0	178.9
$E_{\mathrm{T, Rel}}^{\mathrm{miss}}$ cut	150.2	13.9	238.3	21.2	940.1	100.7
Jet veto	96.6	7.5	149.9	12.5	623.5	64.1
<i>b</i> -jet veto	93.8	7.4	145.2	11.9	603.1	61.9
sub-leading lepton $p_T > 20 \text{GeV}$	83.3	5.2	128.1	8.8	562.6	51.0
W ⁺ W [−] Acceptance	3.37%	0.55%	5.18%	0.93%	11.38%	2.69%

Sources	$e^+e^-E_{ m T}^{ m miss}$	$\mu^+\mu^-E_{ m T}^{ m miss}$	$e^{\pm}\mu^{\mp}E_{\mathrm{T}}^{\mathrm{miss}}$	Combined
A_{WW} uncertainties \leftarrow	Kinematic a	nd geometri	ic acceptanc	e
PDF	1.4%	1.4%	1.4%	1.2%
Scale (μ_R, μ_F)	2.1%	1.6%	1.7%	1.5%
Jet Veto (MC modeling)	5.0%	5.0%	5.0%	5.0%
C_{WW} uncertainties \leftarrow	Measured t	o produced	events in fid	ucial region
Trigger	0.3%	0.6%	0.5%	0.5%
Electron Scale	0.9%	0.0%	0.3%	0.3%
Electron Resolution	0.0%	0.0%	0.0%	0.0%
Muon Scale	0.0%	0.9%	0.2%	0.3%
ID Muon Resolution	0.0%	0.0%	0.0%	0.0%
MS Muon Resolution	0.0%	0.1%	0.0%	0.0%
Electron Reconstruction	1.6%	0.0%	0.8%	0.8%
Flectron ID	2.3%	0.0%	1.0%	1.0%
Muon ID	0.0%	0.7%	0.4%	0.4%
Lepton Isolation	4.0%	2.3%	2.3%	2.3%
B Tagging	0.4%	0.5%	0.5%	0.5%
$E_{\mathrm{T}}^{\mathrm{miss}}$ Pile-Up	2.5%	2.8%	0.7%	1.2%
$E_{\rm T}^{\rm miss}$ Cluster	1.8%	1.8%	0.5%	0.8%
Jet Energy Scale & Resolution	3.2%	3.2%	1.9%	2.5%
Total Acceptance uncertainty	8.7%	7.5%	6.4%	6.7%

WW -> IVIV Background Estimation

- W+jets: scale the W+jet control sample (one fully identified lepton + a jetrich lepton) by a measured fake factor, cross checked with same-sign dilepton events enhanced in W+jets
- **Z+jets:** shape determined from MC simulation, for ee and μμ channels, the normalization is corrected with a scale factor derived from the MET^{rel} tail distributions in data and MC with $|M_{II}-M_7| < 1.5$ GeV
- □ Top: Using the number of observed top events in the N-jet bins (N \geq 2):

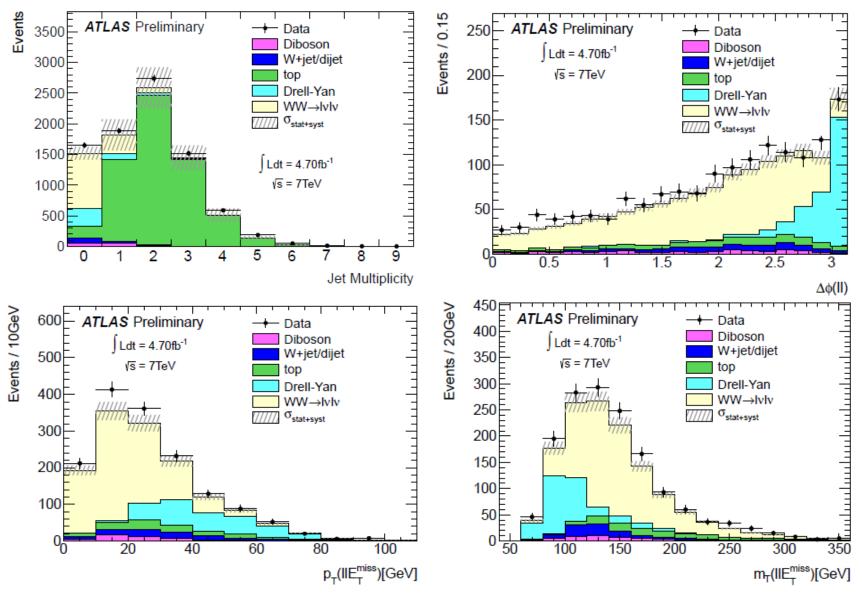
$$N_{\text{top}}^{\text{zero-jet}}(\text{estimate}) = N_{\text{MC top}}^{\text{zero-jet}} \times (N_{\text{data}}^{\geq 2-\text{jets}}/N_{\text{MC top}}^{\geq 2-\text{jets}})$$

WW-IVIV Cross Section Measurement

Final State	$e^+e^-E_{\mathrm{T}}^{\mathrm{miss}}$	$\mu^+\mu^-E_{\mathrm{T}}^{\mathrm{miss}}$	$e^{\pm}\mu^{\mp}E_{\mathrm{T}}^{\mathrm{miss}}$	Combined
Observed Events	196	287	1041	1524
Total expected				
events (S+B)	$202.9 \pm 7.2 \pm 15.3$	$250.1\pm7.4\pm15.9$	$916.9 \pm 10.0 \pm 68.9$	$1370.1\pm14.3\pm96.5$
MC WW Signal	88.5±1.3±10.1	$137.0 \pm 1.6 \pm 14.4$	613.6±3.6±59.8	839.0±4.2±83.3
Background estimations				
Top(data-driven)	$14.0\pm2.0\pm2.9$	$25.2\pm2.9\pm5.1$	$70.8 \pm 5.2 \pm 14.4$	$110.0\pm6.2\pm22.4$
W+jets (data-driven)	$19.8 \pm 0.5 \pm 10.5$	$5.1 \pm 0.9 \pm 2.0$	$54.1 \pm 1.0 \pm 28.3$	$79.0\pm1.4\pm39.0$
Drell-Yan (MC/data-driven)	$72.0\pm6.7\pm3.2$	$70.0\pm6.5\pm3.5$	$142.2 \pm 7.1 \pm 12.5$	$284.2 \pm 11.7 \pm 17.2$
Other dibosons (MC)	$8.6\pm1.2\pm1.9$	$12.8 \pm 0.6 \pm 2.0$	$36.2\pm2.9\pm3.5$	$57.6 \pm 3.2 \pm 7.4$
Total background	$114.4 \pm 7.1 \pm 11.5$	$113.1 \pm 7.2 \pm 6.8$	$303.3 \pm 9.3 \pm 34.3$	$531.1\pm13.7\pm48.7$
Significance (S / \sqrt{B})	8.3	12.9	35.2	36.4

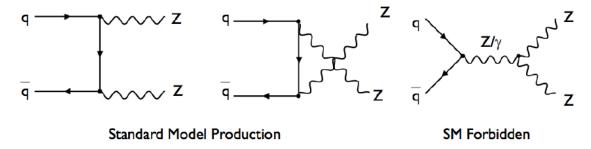
ullet Fiducial cross section: same cuts as used for event selection except using $p_T^{\nu\nu}$ and jets reconstructed at the generator level

Channels	expected σ^{fid} (fb)	measured σ^{fid} (fb)	$\Delta\sigma_{stat}$ (fb)	$\Delta\sigma_{syst}$ (fb)	$\Delta\sigma_{lumi}$ (fb)
evev	44.9 ± 3.7	41.4	± 6.5	± 5.7	± 1.6
μνμν	38.0 ± 3.1	48.2	± 4.6	± 3.8	± 1.9
evμv	237.4 ± 19.4	284.9	\pm 12.7	± 14.1	± 11.1


Total cross section (-0.3 σ for ee, +1.4 σ for $\mu\mu$, +1.5 σ for e μ): $\sigma(WW) = 45.1\pm2.8$ pb

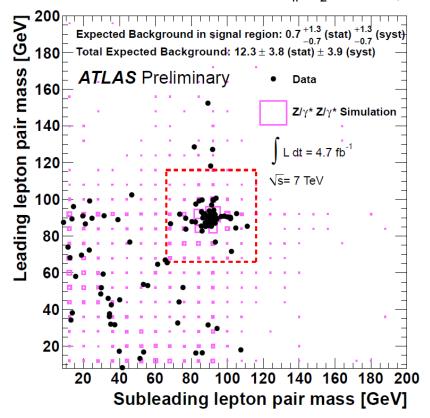
Channels	Total cross-section (pb)	$\Delta\sigma_{stat}(pb)$	$\Delta\sigma_{syst}(pb)$	$\Delta\sigma_{lumi}(pb)$
evev	41.5	± 6.5	± 7.8	± 1.6
μνμν	57.3	± 5.5	± 5.4	± 2.2
evμv	54.3	± 2.4	± 4.4	± 2.1
Combined	53.4	± 2.1	± 4.5	± 2.1

4% stat uncertainty
10% overall uncertainty


2.9, 5.4 and 19.6 Higgs events expected for m_H=125 GeV

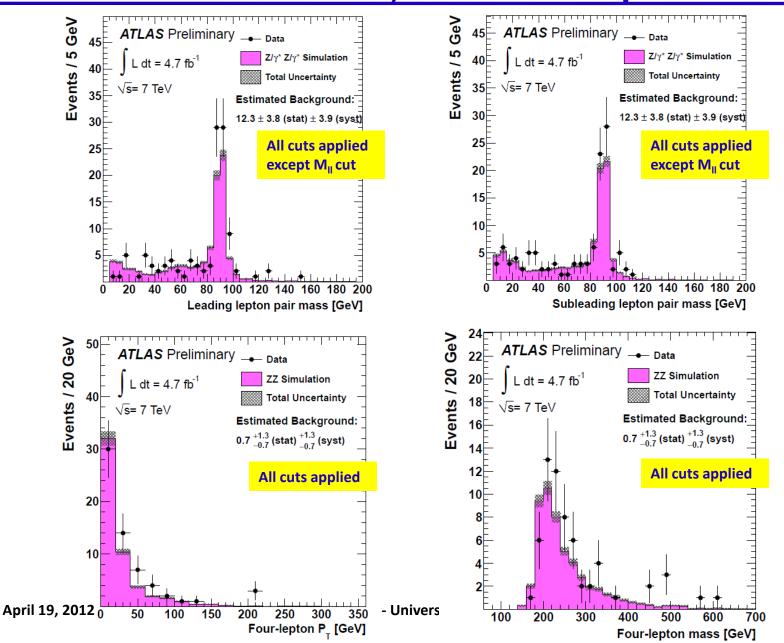
Data and MC Comparison

SM ZZ Cross Section Measurements


- \blacksquare Irreducible backgrounds to the HightarrowZZ $^*
 ightarrow$ 4I and HightarrowZZightarrowII \lor \lor searches
- \square Mainly produced through qq annihilation, \sim 6% contribution from gluon fusion
- Study ZZZ and ZZγ neutral TGCs

- $\sigma_{NLO}(pp \rightarrow ZZ) = 6.5^{+0.3}_{-0.2} \text{ pb (MCFM with MSTW 2008 NLO PDF)}$
- ullet Production cross section ~ 5 timers larger than at the Tevatron
- Results from two decay channels presented here: 41 and IIvv
 - IIII: 0.5% of the total ZZ cross section, clean detector signature
 - Ilvv: has six times higher cross section but larger backgrounds

ZZ 4| Event Selection


- □ ZZ \rightarrow 4I: two pairs of opposite-sign dilepton (e⁺e⁻e⁺e⁻, $\mu^+\mu^-\mu^+\mu^-$, e⁺e⁻ $\mu^+\mu^-$)
 - □ Electrons: isolated, shower shape, inner track matched with $p_T > 7$ GeV and $|\eta| < 2.47$
 - $\,\Box\,$ Muons: isolated, combined muon and inner detector track with p_T>7GeV (|\eta|<2.5) or muon track with p_T>10 GeV (2.5<|\eta|<2.7)
 - \Box At least one lepton with $p_T > 20$ (25) GeV for a muon (electron)
 - Two Z candidates with $66 < m_{||} < 116$ GeV (for $e^+e^-e^+e^-$ and $\mu^+\mu^-\mu^+\mu^-$, use the pairs which results in the smaller value of the sum of the two $|m_{||} m_Z|$ values)

- Signal: LO SHERPA generator used with CTEQ66 PDF
 - □ Interference terms between the Z and γ^* also included (m_{Z/ γ^*}>7GeV)
 - Normalized to the NLO calculation using MCFM with MSTW2008 NLO PDF
- Reconstruction correction factor from data to the ZZ fiducial phase space: $0.46\pm0.02\pm0.04$ (4e), $0.81\pm0.02\pm0.02$ (e μ), $0.60\pm0.01\pm0.02$ (2e2 μ)
- Dominant systematics arise from ϵ_e (5.8% for 4e and 2.8% for 2e2 μ) and ϵ_μ (1.3% for 4 μ and 0.6% for 2e2 μ)
- Background: W/Z+jets, WW and WZ: one or two jets misidentified as isolated leptons
- Define lepton-like jets: fail isolation or d₀ significance requirement (muon), fail isolation or identification requirement (electron)
- □ Fake factor for jets: $f = \varepsilon_{lepton}/\varepsilon_{lepton-like jet}$ $N(\text{background}) = N(\ell\ell\ell j) \times f - N(\ell\ell j j) \times f^2 - N(ZZ \text{ in control sample})$

ZZ > 41: Data/MC Comparison

ZZ > 41 Cross Section Measurement

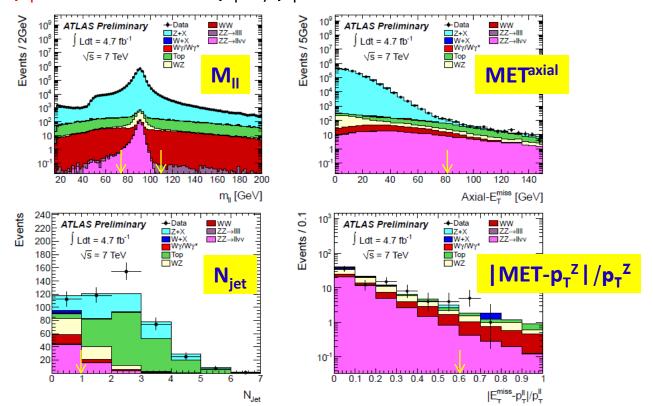
Number of observed and expected ZZ candidates:

Final state	eeee	μμμμ	ееµµ	combined (llll)
Observed	15	21	26	62
Signal(MC)	$9.9 \pm 0.5 \pm 0.8$	$16.6 \pm 0.6 \pm 0.3$	$26.8 \pm 0.8 \pm 1.0$	$53.2 \pm 1.1 \pm 1.9$
Bkg(d.d.)	$0.6^{+0.7+0.8}_{-0.6-0.6}$	$< 0.3^{+0.5}_{-0.2}$	$0.3^{+0.9}_{-0.3}^{+0.9}_{-0.3}$	$0.7^{+1.3}_{-0.7}^{+1.3}_{-0.7}$
Bkg(MC)	0.3 ± 0.3	< 0.8	0.6 ± 0.6	1.0 ± 0.6

 A maximum likelihood method is applied to extract the ZZ cross section from these three channels (I=e, μ)

$$\sigma^{\rm fid}_{ZZ \to \ell^+ \ell^- \ell^+ \ell^-} = 21.2^{+3.2}_{-2.7} \, ({\rm stat}) \, ^{+1.0}_{-0.9} \, ({\rm syst}) \, \pm 0.8 \, ({\rm lumi}) \, {\rm fb} \, \, ^{17\%}$$
 overall uncertainty

- Consistent with the SM prediction of 19±1 fb
- Numbers from three individual channels:


4e
$$6.6^{+2.0}_{-1.6} \, (stat) \, ^{+0.8}_{-0.5} \, (syst) \, ^{+0.3}_{-0.2} \, (lumi) \, fb$$
 4 μ $5.5^{+1.3}_{-1.1} \, (stat) \, ^{+0.2}_{-0.1} \, (syst) \, ^{+0.3}_{-0.2} \, (lumi) \, fb$ 2e2 μ 9.1 $^{+2.1}_{-1.7} \, (stat) \, ^{+0.5}_{-0.4} \, (syst) \, ^{+0.4}_{-0.3} \, (lumi) \, fb$

Total on-shell ZZ cross section:

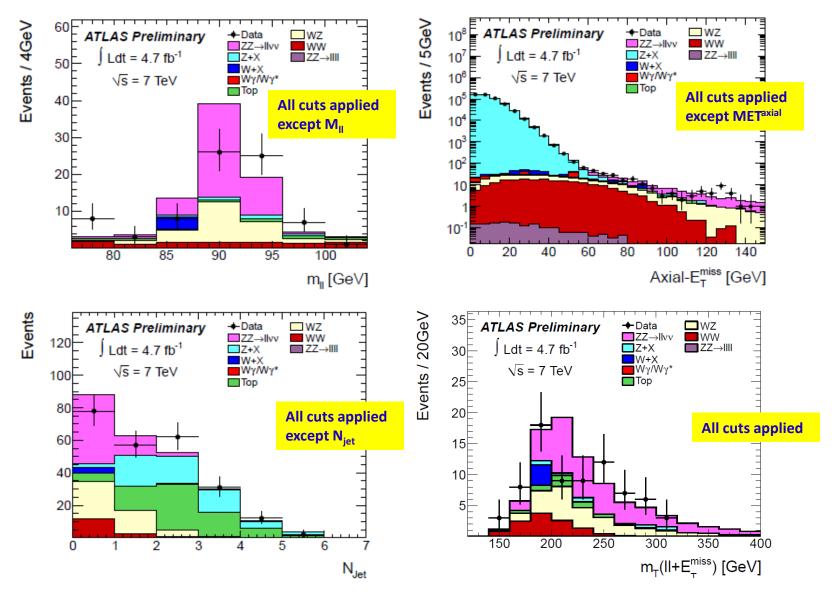
$$\sigma_{ZZ}^{\text{tot}} = 7.2^{+1.1}_{-0.9} \text{ (stat)} ^{+0.4}_{-0.3} \text{ (syst)} \pm 0.3 \text{ (lumi) pb}$$

ZZ - IIVV Event Selection

- ullet ZZ o IIvv: two oppositely-charged high ${\sf p}_{\scriptscriptstyle \sf T}$ electrons or muons
- Isolated in both calorimeter and tracker: reduce QCD multijet
- □ Dilepton invariant mass $|m_{\parallel}-m_{Z}| < 15$ GeV: reduce W+jets, top and WW
- □ MET^{axial} > 80 GeV (MET projected to the Z p_T direction): reduce Z+jets
- \square Zero jets with $p_T > 25$ GeV reconstructed: reduce top and Z+jets
- □ Fractional p_T difference | MET- p_T^Z | p_T^Z < 0.6: reduce WW

ZZ -> IIvv Signal Estimation

- NLO generator MC@NLO with CT10 PDF used
- ZZ bosons are treated as on-shell with zero width
- Production due to gg initial states is not included (MC@NLO predictions scaled up by 6.3%)
- Cut flow table for both channels:


Channels	eevv	μμνν	$\ell\ell\nu\nu$
Two leptons	140.5 ± 1.5	179.6 ± 1.6	320.1 ± 2.2
Z mass	138.4 ± 1.5	167.3 ± 1.6	305.7 ± 2.2
Axial $E_{\mathrm{T}}^{\mathrm{miss}}$	29.4 ± 0.6	35.4 ± 0.7	64.8 ± 0.9
Jet veto	19.8 ± 0.5	24.0 ± 0.6	43.8 ± 0.8
Frac. $p_{\rm T}$ diff.	$19.3 \pm 0.5 \pm 1.2$	$23.0 \pm 0.6 \pm 0.9$	$42.3 \pm 0.8 \pm 1.8$

ZZ > IIvv Background Estimation

- lacktriangle MC-based estimation: WZ (two real leptons and large MET) and W γ
- Data-driven estimation: top, WW, $Z \rightarrow \tau\tau$, W+jets and Z+jets
 - □ Top, WW, $Z \rightarrow \tau \tau$: using opposite-sign eµ events with $|m_{e\mu} m_Z| < 15$ GeV with corrections for electron and muon acceptance and identification applied
 - \Box Z+jets: estimated from γ +jets events with γ p_T reweighted to Z p_T
 - extstyle ext

Final State	$e^+e^-\nu\bar{\nu}$	$\mu^+\mu^-\nu\bar{\nu}$	$\ell^+\ell^-\nu\bar{\nu}$
Observed	33	45	78
Expected ZZ	$19.3 \pm 0.5 \pm 1.2$	$23.0 \pm 0.6 \pm 0.9$	$42.3 \pm 0.8 \pm 1.8$
Background estimations:			
$W^{\pm}Z$ (MC)	$9.4 \pm 0.5 \pm 1.5$	$13.3 \pm 0.6 \pm 2.1$	$22.7 \pm 0.8 \pm 3.5$
$W^{\pm} + \gamma (MC)$	$0.20 \pm 0.10 \pm 0.01$	$0.09 \pm 0.06 \pm 0.01$	$0.29 \pm 0.12 \pm 0.01$
$t\bar{t}$, $W^{\pm}t$, $W^{+}W^{-}$ and $Z \rightarrow \tau\tau$ (data-driven)	$6.5 \pm 1.8 \pm 0.3$	$8.2 \pm 2.3 \pm 0.3$	$14.7 \pm 4.1 \pm 0.6$
Z+jets (data-driven)	$0.8 \pm 0.4 \pm 0.4$	$0.9 \pm 0.3 \pm 0.4$	$1.7 \pm 0.5 \pm 0.8$
W^{\pm} +jets (data-driven)	$1.1 \pm 0.4 \pm 0.3$	$0.2 \pm 0.1 \pm 0.1$	$1.3 \pm 0.4 \pm 0.3$
Total Background	$18.0 \pm 2.0 \pm 1.6$	$22.7 \pm 2.4 \pm 2.1$	$40.7 \pm 4.3 \pm 3.7$

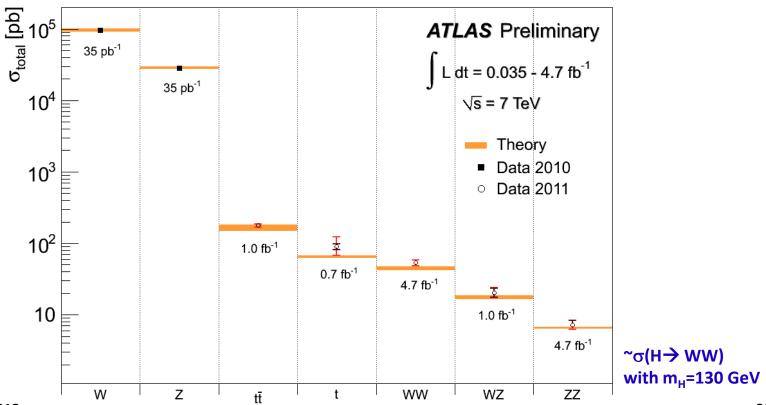
Data and MC Comparison

Cross Section Measurement

extstyle ext

$$\sigma_{ZZ \to \ell^+ \ell^- \nu \bar{\nu}}^{\text{fid}} = 12.2^{+3.0}_{-2.8} (\text{stat.}) \pm 1.9 (\text{syst.}) \pm 0.5 (\text{lumi.}) \text{ fb}$$

□ Fiducial acceptance: 0.084 ± 0.013 (uncertainties include PDF, QCD scale, acceptance difference between gg→ZZ[gg2zz] and qqbar→ZZ[MC@NLO])


$$\sigma_{ZZ}^{\text{tot}} = 5.4^{+1.3}_{-1.2}(\text{stat.})^{+1.4}_{-1.0}(\text{syst.}) \pm 0.2(\text{lumi.}) \text{ pb}$$

Consistent with the SM NLO prediction using MC@NLO

Conclusions

- Good agreement between data and SM expectation for $\gamma\gamma$, WW and ZZ cross section measurements
- Experimental precision will start to challenge theory calculations soon
- After a Higgs-like particle is discovered, it is important to understand these irreducible SM backgrounds in order to measure the Higgs boson properties

