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A variable parametrization scheme is developed and demonstrated for shape optimiza-
tion using quasi-Newton methods. The scheme performs adaptive parametrization refine-
ment while preserving the approximate Hessian of the shape optimization problem and
enables free-form shape design using quasi-Newton optimization methods. Using a B-
spline parametrization, the scheme is validated using a 1-D shape approximation problem
and is shown to improve efficiency and optimal solution quality compared to the traditional
quasi-Newton method. The scheme is also applied to a 3-D test problem, demonstrating the
feasibility of free-form shape optimization using parametrization refinement and a method
for partially constraining the degrees of freedom.
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I. Introduction

Shape optimization is used in a wide range of engineering disciplines. Its roots lie in structural de-
sign where load carrying efficiency can be very sensitive to the shape of the structure, motivating the use
of optimization. Examples include the design of fillets, structures with holesX general 2-D bodies? and
curvilinear-stiffened panels® Shape optimization in fluid mechanics is another large area of research with
numerous applications in aerospace engineering. Specific examples range from the design of aeroshells to
shape design of aircraft outer mold lines (OML)* Beyond structural and fluid mechanics, other applications
to which shape optimization has been applied include hull design,” automotive aerodynamics,® electromag-
netics/@ and trajectory optimization®

In design settings, the importance of shape optimization is likely to increase as computational tools ma-
ture. With greater fidelity, physics-based models become more complex and unintuitive, increasing the value
of optimization for circumventing the need to explore design spaces manually. Additionally, more accurate
models could enable shape optimization to produce physically realizable designs rather than simply offering
an aid for understanding the physics. However, numerical optimizers must evolve with the computational
tools in order to achieve these benefits. This presents a challenge because analysis tools such as those in
computational fluid dynamics (CFD) and finite element analysis (FEA) achieve high accuracy by computing
millions of state variables at high computational cost. In addition to minimizing this cost, optimizers must
consider a larger number of design variables that provides the design flexibility to take advantage of the
increased level of fidelity. Thus, a high-fidelity analysis tool necessitates an efficient, high-fidelity shape
optimization algorithm to make full use of its capabilities.

In recent literature, a commonly explored avenue for improving the efficiency of shape optimization
algorithms is the use of an adaptive or refinement-based parametrization. Kohli and Carey®” proposed a shape
optimization algorithm with adaptive refinement, citing the increased likelihood of finding global optima and
the reduced cost of evaluating gradients with finite-difference schemes in early iterations. Desideri et all0
applied a nested, adaptive Bezier parametrization to a 2-D aerodynamic shape optimization problem and
found improved convergence rates and solution quality with respect to the objective function. Nagy et al'}
extended the isogeometric analysis concept with a refined parametrization for sizing variables, which are
optimized simultaneously with the shape variables, while Han and Zingg!? applied an evolutionary geometry
parametrization to airfoil and wing shape optimization problems, achieving improved efficiency.

In each of these works, the concept of varying the parametrization during the optimization process
succeeded in reducing computation time, improving the accuracy of the optimal solution, or both. What
remains to be addressed is the implementation of a dynamically varying parametrization within a quasi-
Newton optimizer. Previous studies use gradient-free optimizers or restart the optimization algorithm after
each refinement, losing the approximate Hessian information.

Integrating parametrization refinement with quasi-Newton methods would significantly enhance what are
already the most efficient optimization algorithms for high-cost solvers such as CFD. It has been shown that
gradient-based optimizers are one or two orders of magnitude more efficient than gradient-free optimizers
a gap that only grows with the number of design variables. Among gradient-based options, quasi-Newton
methods add the benefit of nearly second-order convergence close to the optimum, which makes it possible
to satisfy stricter convergence tolerances. In conjunction with the adjoint method, they achieve even more
favorable scaling with the number of design variables. The efficiency resulting from the synergy of the quasi-
Newton and adjoint methods is evident in a 3-D aerodynamic shape optimization algorithm developed by
Hicken and Zingg M which can optimize 251 shape variables on a 1.2 x 10 node CFD mesh in roughly 100
CPU hours. This synergy is also an enabling component in multidisciplinary design optimization (MDO)
as demonstrated by Kennedy and Martins ™ who solved a multi-point aerostructural design problem with
97236 structural degrees of freedom, 9440 aerodynamic panels, and 446 design variables in less than 300
CPU hours using the coupled adjoint method and a quasi-Newton optimizer.

An important part of shape optimimization is the choice of basis in the parametrization. A widely used
approach is to represent the shape using B-splines with uniform weights (hereafter referred to as simply
B-splines) and to manipulate the shape through the B-spline control points. B-splines have many desirable
mathematical properties; in particular, they represent the unique splines with minimum support for a given
order, yielding local control. Furthermore, they are constructed from polynomials, meaning their evaluation
and differentiation are both exact and fast to compute. B-splines are especially convenient because they are
linear with respect to the control points.

Given that high-fidelity shape optimization is the objective, the approach advocated here is adjoint-
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based quasi-Newton optimization with a B-spline parametrization. The primary contribution of this paper
is the development of a dynamic parametrization scheme that is compatible with quasi-Newton optimization
algorithms. This scheme offers three advantages. First, it addresses the likely presence of multiple local
minima due to the large design space, by removing design flexibility in early iterations and gradually restoring
it as the optimum is approached. Second, it enables free-form shape optimization by allowing for constraints
on the degrees of freedom of the B-spline control points, which are necessary to define a well-posed problem
but is not compatible with quasi-Newton methods using the traditional approach. Finally, it allows for
automatic positioning of control points where they are most required.

II. The Shape Optimization Problem

The goal in a shape optimization problem is to find the manifold of a certain type that minimizes the
objective function and satisfies the constraints. A manifold is a topological space locally homeomorphic to
an open subset of Euclidean space of dimension m and is a subset of Euclidean space of dimension n. Thus, a
point in the manifold is a vector of size n uniquely located by m coordinates, giving the following definition:

M= {(Vlvv%'"vvn) € R" ‘ Vi= fl(flaf?w--afm)}a (1)

where the vector V is a point in the manifold, the vector £ represents the parametric coordinates of a point
in the manifold, and f; is a continuous surjective function that maps the set of the parametric coordinates
€ to the set of I[** entries of V € M.

The description of the manifold must be simplified to a finite number of points so that it can be represented
numerically. When partial differential equations (PDEs) are involved, this involves discretizing the domain
into a finite number of cells (finite volume method), elements (finite element method), or nodes (finite
difference method). The natural tendency is to interpret this discretization step as the selection of a finite
subset of the manifold by evaluating its parametric representation, fj, at a discrete set of locations, changing
the object being optimized from a manifold into a discrete set of points. In truth, this discretization step
is not an evaluation of the manifold at a finite set of points — rather, its representation by a set of basis
functions, denoted N, that spans a subset of the original set of manifolds. The discrete points, P;;, are
simply the coefficients of these basis functions. The basis functions are interpolating functions that are often
implied by the context; in the isoparametric finite element method the basis functions are the shape functions
in the global coordinate frame, in finite-difference formulae the basis functions are polynomials of a specific
order, and with numerical integration the basis functions are the polynomials used to derive the quadrature
rule.

The next step is the selection of a parametrization, which is assumed here to be linear for simplicity.
The discrete points themselves may be used as the degrees of freedom, but typically this results in a larger
number than desired. Thus, one can use a much smaller number of basis vectors, B;;, whose coefficents are
the control points, Cj;.

Thus, the continuous, infinite degree of freedom manifold is reduced to one described by a discrete set of
points, then reduced again to the control points (Einstein notation is used):

M = {(Vl"/Z7"'7Vn) cR" | Vz = fl(glvf%"'vgm)}
M= {(Vlav27"'7vn) eR" | Vi= Ni(§1a€2;---,€m)Pil} (2)
M = {(‘/ia‘/év : avn) eR" | Vi= Ni(§1,§2, s agm)Bijle}-

What this shows is that discretizing the manifold does not mean that the discrete object is what we are
now optimizing — we are still optimizing a manifold, albeit in a subset of the original design space. That
is, the set of all parametrized manifolds is a subset of the set of all discretized manifolds, and the set of all
discretized manifolds is a subset of the set of all manifolds. With both discretization and parametrization,
we lose some accuracy in the optimal shape, though this loss is mitigated by an appropriate choice of
interpolation functions and basis vectors, respectively. The choice of basis vectors is more relevant to the
current discussion since shape optimization only deals with the parametrization step.

It is apparent that m and n are two important characteristics of a shape optimization problem that
are associated with the manifold being optimized. The dimension of the manifold, m, gives topological
information regarding the structure of the points in the manifold as m is equal to the number of coordinates
required to uniquely identify a given point in the manifold. The second one, n, is the dimension of the
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Euclidean space that is a superset of the manifold. Because the parametric representation of a manifold
— that is, the functions f; — is not unique, each point in the manifold must have only n — m degrees of
freedom in a shape optimization problem. Among the space of possible directions in which a point can move,
a subspace of dimension m represents movement within the manifold, which does not actually change the
shape. The degrees of freedom that do change the shape are denoted, x.

A manifold is then reduced from a continuous object with infinite degrees of freedom to one represented
by a finite number of variables through three stages:

1. Vi = Ni(&,&a, ..., &m) Py — Discretization: representation by points which are then interpolated
2. Vi =N;(&,&,. .. ,fm)Bijle — Parametrization: representation by control points and their basis
3. Vi=N;(&,&, ..., &n)BijDjixr, — Design space reduction: representation by design variables

where z is the vector of design variables and Djj; relates the design variable z, to the control point Cj;.
D1 represents the n —m-dimensional subspace in which control points are permitted to move, so in general
it is a function of the control points.

Using this description, we can characterize some common classes of shape optimization problems:

e Free-form shape optimization: In free-form shape design problems, the design space reduction
tensor evolves as the gradient-based optimizer progresses from iteration to iteration. In this case m
constraints must be enforced for each control point, preventing movement tangent to the manifold.

e Dimension reduction: In contrast to free-form shape optimization, the design space reduction tensor
simply eliminates m of the n dimensions in this case, and as a consequence the tensor Djj; is constant
and has a very simple form. An example is in airfoil design, where the control points are often permitted
to move only normal to the chord line and are fixed in the chord-wise direction.

e Problems with high-level shape parameters: In wing design, design variables with physical
meaning, such as sweep and span, are often used. In these types of problems, the Jacobian of the points
with respect to the design variables is the analogue of the basis matrix of the B-spline parametrization,
for example. The column vectors of the Jacobian are the shape functions corresponding to the design
variables. Here, the set of design variables is mapped directly to the set of discretized points.

e Trajectory optimization: Trajectory optimization problems are special cases in which m = 1 and
n=2orn=3.

e Partial differential equations: Within the given formulation, partial differential equations (PDEs)
can be treated as shape optimization problems. For example, the 2-D Laplace equation, 8 29 4 22‘5 =0,
is a problem with m = 2 and n = 3. The set of all ¢, x, and y form a 3-D Euclidean space, and the
manifold is a surface that seeks to minimize the residual in the discretized PDE. This view of PDEs
suggests the extension of shape optimization concepts such as B-spline and adaptive parametrizations

for the solution of PDEs.

III. Theory and Algorithms

ITII.A. Methods for Design Space Reduction

As was previously shown, m constraints must always be enforced on the control points, where m is the
dimension of the manifold. Often, the simplest approach is to prevent movement in m of the coordinate
axes; however, this often does not provide sufficient design flexibility. In these cases, a more general method
must be used to compute the n —m directions in which movement is permitted, where n is the total number
of coordinates. There are multiple options for selecting the basis for this space, and two are proposed below.

WEAK ORTHOGONALITY METHOD One proposed method is to compute the basis for the space of allowed

movement by enforcing the orthogonality of A f; with the m tangent vectors % for k=1,...,m, albeit in

a weak sense. This can be achieved by minimizing

[ | (o5) = (as52) s (ng) e .
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Assuming each point carries uniform weight, this is equivalent to minimizing

8P1k> ( aP¢l> asz aP’Ll

AP APy ACy B;B,—— AC, 4
Z( 7%, o 2 BB e, W
with respect to a single control point, AC. This expression is of the form X7 AX, where A = Z - B;B; 8812“‘ %Zl

and X = AC, and it is minimized by the solution to the linear system, AX = 0.

The trivial solution, X = 0, is not of interest, nor is any single vector X since the goal here is to find
n — m directions in which control point movement is to be permitted. It turns out that this information
is contained in the singular vectors corresponding to the n — m lowest singular values of A. Because of
the physical meaning of the above linear system, the singular values of A drop significantly after the first
m as the remaining n — m singular vectors are not strongly represented in A. These n — m orthonormal
singular vectors resemble the basis of the null space of a rank deficient square matrix as they span a subspace
whose vectors approximately solve AX = 0. In special cases such as when the curve is a straight line or
the surface is a flat plane, the matrix A is mathematically singular and the n — m least dominant singular
vectors actually span the null space of A. In all cases, inserting one of these n — m singular vectors into the
original quantity, X7 AX, yields the corresponding singular value, which will be relatively small, confirming
that we are indeed minimizing this metric and maximizing orthogonality.

SURFACE NORMALS METHOD The special case of m = 2,n = 3 corresponds to shape optimization of a
surface in R3, which is common since it represents the physical problem of boundary shape design of an
object in three-dimensional space. In this case, we can use the vector normal to the surface as the direction
of allowed movement, avoiding the computational cost of the method outlined above. This normal vector
can be evaluated at the location on the surface closest to the B-spline control point or at a general fixed
location on the surface mapped to the control point.

The design space reduction tensor in this case is

T
ny 0 0
a0, 0 hy oo
Djr = axj: = 7 ; ()
T ]
0 0 7y

where j and k are the row and column indices, respectively, of the matrix above and r is the number of
control points.

The weak orthogonality and the surface normals methods are related in that the former maximizes or-
thogonality over the support of the basis vector corresponding to the control point while the latter maximizes
orthogonality at the point at which the maximum of the basis vector occurs. Figure [I] compares the weak
orthogonality and surface normals methods for a cosine curve.

Distributed orthogonality Local orthogonality

1.2 12—
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> >
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Figure 1: Control point normal vectors plotted for a simple trigonometric curve. On the left is the weak
orthogonality method and on the right is the surface normals method, in the simpler case of a curve.
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III.B. Parametrization Transformations

The parametrization transformations described in this section are a central part of the dynamic parametriza-
tion algorithm. Henceforth, the [ index used in previous sections is collapsed into the corresponding ¢ and
j indices, using Voigt form. For a B-spline curve, a vector of points evaluated at a set of parameter values
w is given by the matrix product of the basis function matrix and the vector of control points C. The basis
function is nonlinear in w, giving the B-spline its order; however, the B-spline itself is linear in the control
points. This is a useful feature as the Jacobian of the parametrization is simply the basis vector matrix:

oP;

Different parametrizations of the same curve are related through the common set of points that they
represent. Thus, the Jacobian of the transformation between two parametrizations, C' and C, is

oC;  0C; 0P
Tl_] = = = =
86‘] 8Pk 8CJ

(7)

where gg}i is the left Moore—Penrose pseudoinverse of gg’“. The matrix expression for the Jacobian of the

transformation is given by

-9 _pip (8)
oC

Using this transformation matrix, it is possible to relate gradients and Hessians in one parametrization
to another. The transformation of the gradient of the Lagrangian can be used to derive that of the Hessian
of the Lagrangian, yielding

oL _ L Gy o)
g=9B'B

and
*L 0C, L 9C,
9C;0C;  9C; 0C,0C, dC;
H=BT"BTHBB.

(10)

The transformation must only be made from a finer parametrization to a coarser one. If H is m X
m and H is m x m, the highest rank that H can have is m, making it a singular matrix if m > m.
Transformation to a larger Hessian requires creating information, whereas transformation to a smaller Hessian
simply involves project onto a lower dimensional space. Moreover, transformation to a larger Hessian would
involve computing the Jacobian, 2%, of a coarse parametrization with respect to a finer one, requiring that
a fine representation of a shape be fitted by a coarser parametrization, which will produce large errors.

The method of computing the transformation matrix, 7', merits further discussion as it can have a large
computational cost. The naive approach would be to explicitly form the pseudoinverse, Bf, by computing the
full Singular Value Decomposition or the QR factorization of B. The most efficient approach is to recognize
that T is given by an overdetermined system with multiple right hand sides, described by

orPoC OP
S = T T = ].1
ocoC  aC ()

which is of the form AX = B, where the least-squares solution is equivalent to that of the square system,
ATAX = ATB. Since the B-spline basis yields sparse matrices when discretized and the number of right
hand sides is large, the best approach is to compute and use a sparse LU factorization of AT A as opposed
to an iterative solver.
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ITI.C. Quasi-Newton Algorithm with a Dynamic Parametrization

The method that follows outlines the application of the dynamic parametrization scheme to quasi-Newton
SQP optimization for nonlinear, continuous, constrained problems.*® For simplicity, 1-D shape optimization
is assumed — design space reduction is not addressed here.

First, the SQP method is reviewed. An SQP optimizer applies a Newton or quasi-Newton algorithm to
the KKT conditions. Sub-problems are repeatedly generated and solved in which a quadratic approximation
of the objective function is used along with a linearization of the constraints.

Consider an optimization problem with objective function f, constraint functions ¢, and design variables
x. We define the Lagrangian as £ = f + ¢\, the constraint Jacobian as A = %, the objective function
gradient as g = %, and the Hessian of the Lagrangian with respect to the design variables as H = gi§.
Since the vectors of design variables, z, and of Lagrange multipliers, A, are concatenated into a combined
set of unknowns, the Newton or quasi-Newton step is computed from

2L 9%L

oL
o7 oaox | |[AT] _ _ |5 (12)
9°L 9°L Al aL |-
Xox 0N B2

The key to the quasi-Newton SQP method that distinguishes it from the application of an unconstrained
quasi-Newton optimizer directly to the KKT conditions is the fact that we only approximate the matrix
2
block %, since we know the other matrix blocks. Inserting the known quantities for those blocks yields

o°L T T
5z A Ax _ g+ A" A ' (13)
A 0 AN c

The order in which the Jacobian evaluation, Hessian update, and step computation are performed is
illustrated in Figure [2| using the eXtended Design Structure Matrix (XDSM) ¥ The thick, grey lines indicate
data flow, the thin black lines indicate process flow, the numbers indicate order of execution, variables on
the upper triangular indicate feed-forward, and those on the lower indicate feed-back.

For shape optimization, the only problem-dependent component is the analysis module; all other compo-
nents are part of the shape optimizer. At the start of an SQP major iteration, the parametrization module
is called to evaluate the discrete points describing the shape based on the current set of design variables.
This vector, P, is passed to the user-supplied analysis function, which provides the objective and constraint
values as well as their respective adjoint vectors. Combined with geometric sensitivities, this information is
used to compute the objective function gradient and constraint Jacobian. After updating the Hessian with
these new first-order sensitivities, the step direction is computed by solving the resulting linear system.

We now incorporate dynamic parametrization refinement into this algorithm. Since Hessian transforma-
tions must always reduce the size of the Hessian, we must always store and update the Hessian with respect
to a finer parametrization than that at which we compute the step. Thus, the parametrization we initially
define for approximating the Hessian places an upper limit on the degree to which we can refine the current
parametrization. In the algorithm presented here, we keep track of two parametrizations — a fine one that
is fixed at which to update and store the Hessian, and a working one which is coarser but is dynamically
refined, and is the level at which we compute each step.

Practically, this approach can be implemented with only minor additions to the existing algorithm, as
the bulk of the regular SQP method is executed as normal, but at the fine parametrization level. The
major difference is that we transform the Newton system to the coarse parametrization immediately prior
to computing the step, and we transform the computed step back to the fine parametrization. This view
of dynamic parametrization refinement suggests a simple interpretation of the method; we are effectively
optimizing at the fine level, though each design step is computed in a subspace that gradually increases in
dimensionality after each refinement.

The other difference between the current method and the traditional SQP method is that there is an
additional reparametrization stage between the Hessian update and the computation of the step. There are
many options for the reparametrization scheme; intuitively, it seems appropriate to use the current adjoint
information and the current set of points and place the control points where they are needed to best capture
both vectors — e.g., concentrate the control points in regions of high curvature through some quantitative
scheme. The SQP method with dynamic parametrization refinement is illustrated in Figure
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Figure 2: eXtended Design Structure Matrix'? for quasi-Newton SQP-based shape optimization.
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Figure 3: eXtended Design Structure Matrix!™ for the incorporation of the dynamic parametrization scheme.
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IV. Model Problems

The variable parametrization algorithm presented is tested on two model problems. They are shape
approximation problems, so chosen to create the simplest possible environment in which to implement the
algorithms developed here and avoid the influence of the physics of the model. In other words, the idea is
to isolate the parametrization scheme in the shape design problem by assuming the optimal shape is known
and evaluating the ability of the shape optimization algorithm to find it.

IV.A. Shape Approximation of a Curve

Here, we are optimizing a curve in R? with one dimension eliminated, to compute the optimal i coordinates
of uniformly spaced B-spline control points. A least squares minimization problem is solved using a BFGS
quasi-Newton optimizer and a backtracking line search with a sufficient decrease condition ™ The objective
function is the square of the {>-norm of the differences between the y coordinates yielded by the B-spline
and those of the analytical function to be approximated, y = tanh(3wz), in the interval, [0, 1].

Five shape optimization algorithms are compared:

1. ‘Coarse’ — Fixed parametrization with 4 control points
2. ‘Fine’ — Fixed parametrization with 20 control points
3. ‘Restarted refinement’ — Adaptive parametrization with the quasi-Newton algorithm restarted after

each refinement
4. ‘Uniform refinement’ — Uniform-spacing parametrization refinement with Hessian transformations
5. ‘Dynamic refinement’ — Adaptive parametrization with Hessian transformations

The curve is discretized with 500 points and each of the variable parametrization cases begins with 4 control
points and adds 4 control points when a gradient norm of 10~° is reached until a maximum of 20 control
points and a gradient norm of 1072 is reached. For the Hessian transformation cases, the approximate
Hessian is stored with respect to a parametrization with 100 control points. The adaptive parametrization
schemes redistribute control points such that the arc lengths of segments of the curve between control points
are equal. The effect is that control points are more concentrated in & wherever the current curve has higher
slope. This is shown in Figure [

Figure[fillustrates the effectiveness of the dynamic parametrization scheme with Hessian transformations.
The objective function is used as the metric for convergence since all of the schemes parametrize the same
discrete representation of the curve, independent of the number of design variables. This is plotted against
the sum of function and gradient evaluations since this algorithm is designed for adjoint-based optimization
with large-scale nonlinear systems of equations. With the adjoint method, the cost of a gradient evaluation
is expected to be lower than a function evaluation, since the latter involves solving a nonlinear system as
opposed to a linear system in CFD, for example. However, the cost of a function evaluation is reduced in
practice, since the previous set of solved state variables can be used as the initial guess for the nonlinear
solver. Thus, it is assumed that function and gradient evaluations are roughly equivalent in cost for the
problems for which this algorithm is intended, making their sum a good metric for computational cost.

As expected, Figure[5]shows that the coarse parametrization case converges in the fewest number of func-
tion and gradient evaluations but achieves a much higher objective function value at the optimum than the
other cases. The fine parametrization requires more than double the number of evaluations, but significantly
improves the quality of the optimal curve. The adaptive, restarted algorithm is able to improve the quality of
the optimal curve further while finishing with the same number of control points as the fine parametrization
case. However, it expends double the computational effort because of the iterations required to rebuild the
Hessian approximation after each restart. The uniform refinement with Hessian transformations case does
not suffer from this problem. Since the Hessian approximation is continuously built up in this case, it is no
surprise that this case and the fine parametrization case reach the quadratric neighborhood of the optimum
in roughly the same number of evaluations — they both require 20 gradient updates to obtain a full approx-
imation of the 20 x 20 Hessian. The adaptive parametrization with Hessian transformations yields the most
accurate optimal shape, in fewer evaluations than all but the coarse parametrization. Figure [6] shows the
objective function and gradient norm histories for this last case.
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Figure 4: Snapshots of the shape during an adaptive parametrization shape optimization. The curve being
approximated is the hyperbolic tangent function. Each snapshot corresponds to the partially converged
shape just prior to the next parametrization refinement. Note the z-positions of the control points — a
constant arc length condition is used to determine the new locations of the control points for each refinement
(the plot is not to scale).
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Figure 5: Comparison of the convergence histories of the various parametrization schemes. ‘Coarse’ and ‘Fine’
refer to fixed parametrizations with 4 and 20 control points, respectively. The ‘Restarted refinement’ case uses
an adaptive parametrization scheme, but the quasi-Newton optimizer is restarted after each refinement. The
‘Uniform refinement’ refers to the use of Hessian transformations to maintain the Hessian approximation
through the refinement, but the refinement redistributes control points uniformly. ‘Dynamic refinement’
refers to the same but with adaptive instead of uniform refinements.
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Figure 6: Convergence history of the adaptive refinement scheme with Hessian transformations.

IV.B. Shape Approximation of a Free-Form Surface

In the second model problem, a surface is optimized using a free-form parametrization. The goal is to morph
a sphere into a cube or an ellipsoid using a shape approximation formulation. It is assumed that the target
shape has an unknown, unstructured representation. The objective function is the sum of the squares of the
differences between each point on the target shape and the nearest point on the surface being optimized.
This creates a C'! discontinuous function whenever the nearest point changes and possibilities for unphysical
solutions because of a subset of points not being accounted for; however, it is sufficient as a model problem
and provides a simple test problem for free-form shape design. Because of the discontinuities in the function
gradient, the approximate Hessian is updated at every iteration using information from only the last ten
iterations. The expectation is that close to the optimum, the nearest point for each point on the target
shape will not change.

Applying symmetry, only half of the sphere is parametrized, using a patchwork of 5 B-spline surfaces
discretized with a total of 4564 unique points. C' continuity is enforced at all boundaries between surfaces
to facilitate the definition of surface normals. Control points are permitted to move only along the normal
vector from the closest point on the surface. The parametrization is refined with a uniform distribution of
points after convergence to a gradient norm of 1071,

In the first case, the sphere is morphed into an ellipsoid, which is a challenge for the algorithm because
the surface normals allow for local shape changes, but are stiffer with respect to changes in the overall aspect
ratio of the shape. An adaptive parametrization such as the constant arc length condition would address
this difficulty, but it is not implemented here. For this problem, a relaxation factor on the Newton step size
is found to be more effective than a backtracking line search in ensuring robust convergence.

In the second case, the sphere is morphed into a cube, which is difficult because of the sharp edges
and corners. An adaptive parametrization would make a significant impact in this problem as well by
concentrating more control points at the edges and corners and enabling higher curvatures. Since the
control points are only permitted to move normal to the surface, large oscillations appear at the sharp
edges, resembling Runge’s phenomenon in interpolation. Convergence and final shape plots are shown in
Figures [7] and [§], respectively.

Unlike the 1-D curve optimization problem, the objective here is not to compare different parametrization
schemes; rather, it is to demonstrate that free-form shape optimization is feasible with adjoint-based quasi-
Newton optimization using parametrization transformations and design space reduction. The enabling aspect
of the variable parametrization approach is its ability to avoid local minima in early optimization iterations
by only permitting smooth, low-order changes with an initially coarse parametrization. As the optimization
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progresses, more degrees of freedom are added gradually, until the finest level of refinement. If a fixed
parametrization with a large number of design variables is used, it is difficult to avoid an irreversible,
catastrophic design step that results in an unphysical shape. The only alternative for fixed parametrizations
is to rely on heavy relaxation, which results in a less accurate Hessian approximation and unreasonable
computation times.
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Figure 7: The free-form shape approximation problem in which a sphere morphs into an ellipsoid. On the

left is the convergence history and on the right is the final shape. In the plot on the left, the small numbers

indicate the total number of control points after each reparametrization.
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Figure 8: The free-form shape approximation problem in which a sphere morphs into an cube. On the left
is the convergence history and on the right is the final shape. In the plot on the left, the small numbers
indicate the total number of control points after each reparametrization.

-1.0

V. Conclusion

The primary contribution of this work is the development and demonstration of a variable parametrization
shape design algorithm that is compatible with quasi-Newton optimization. The premise is that adjoint-
based quasi-Newton optimizers represent the only feasible approach for high fidelity shape optimization,
but previous adaptive parametrization schemes are not compatible with this approach. A 1-D test problem
showed that incorporating adaptive refinement reduces the number iterations and improves the quality of
the optimum, while a 3-D test problem demonstrated the feasibility of free-form shape optimization using
parametrization refinement. Beyond applying these algorithms to practical engineering problems, promising
avenues for future work include in-depth study of refinement techniques, particularly ones incorporating
sensitivity information, and applying adaptive refinement to the 3-D free-form shape optimization problem.
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