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In computational fluid dynamics, for problems with periodic flow solutions, the computational cost
of spectral methods is significantly lower than that of full, unsteady computations. As is the case
for regular steady-flow problems, there are various interesting periodic problems, such as those in-
volving helicopter rotor blades, wind turbines, or oscillating wings, that can be analyzed with spec-
tral methods. When conducting gradient-based numerical optimization for these types of problems,
efficient sensitivity analysis is essential. We develop an accurate and efficient sensitivity analysis
for time-spectral computational fluid dynamics. By combining the cost advantage of the spectral-
solution methodology with an efficient gradient computation, we can significantly reduce the total
cost of optimizing periodic unsteady problems. The efficient gradient computation takes the form
of an automatic differentiation discrete adjoint method, which combines the efficiency of an adjoint
method with the accuracy and rapid implementation of automatic differentiation. To demonstrate
the method, we compute sensitivities for an oscillating ONERA M6 wing. The sensitivities are shown
to be accurate to 8–12 digits, and the computational cost of the adjoint computations is shown to scale
well up to problems of more than 41 million state variables.

Nomenclature
α angle of attack
CL average lift coefficient
CD average drag coefficient
Cm average pitch moment coefficient
Dt spectral derivative operator
et total energy
fi flux term (Section III), function (Section V)
h step size
I function of interest
k frequency index
l time instance index
M Freestream Mach number
n time instance index
N number of spectral time intervals
Ncells number of cells in mesh
NI number of functions of interest
Nx number of design variables
Nζ number of states per cell
NζT total number of states
p pressure
t time (Sections III and IV), intermediate variables (Section V)
T time period of periodic flow problem
u flow velocity with respect to fixed frame
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v flow velocity with respect to moving grid
V volume
w velocity of moving grid
x time interval (Section III), design variables (Section IV)
y coordinate direction
δi elements of identity matrix
ψ adjoint vector
ρ density
ζ flow states
R steady-state flow residuals
RT S time-spectral flow residuals

I. Introduction
For cost-effective gradient-based optimization, both efficient function analysis and efficient sensitivity analysis are

needed. In this work, we demonstrate the application of the ADjoint method, an efficient sensitivity analysis method,
to a time-spectral computational fluid dynamics solver; the latter is an efficient method for solving periodic unsteady
flow problems. As the background section will show, significant progress has been made in both the development
of adjoint techniques and the solution of periodic unsteady problems. Building on this previous work, we apply the
accurate and efficient ADjoint technique to the time-spectral equations, producing sensitivities that are demonstrably
more accurate than those of previous time-spectral adjoint implementations. Further, we demonstrate the scaling of
the method to cases of up to 41 million flow states, showing that it is valid and useful for practical problem sizes. A
summary of related work is presented in the background section, and the implementation of our method is discussed
in the implementation section.

II. Background
The adjoint method for sensitivity analysis is now commonly used in aerodynamic shape optimization. The ap-

plication of the adjoint method to fluid dynamics was first developed by Pironneau [1], who demonstrated how to
minimize the drag over bodies immersed in laminar viscous flows. Jameson [2] applied the adjoint method to the
Euler-based aerodynamic shape optimization of airfoils and wings. Since these seminal contributions, the method has
been applied to the optimization of airfoils including viscous effects [3, 4, 5, 6], laminar-turbulent transition predic-
tion [7], and to multi-point airfoil optimization problems [6, 8]. The adjoint method has also been extended to three
dimensions and used to optimize wings for inviscid flows [9, 10] and viscous flows [11, 12] as well as for multi-point
wing problems [13] and full-wing body configurations [14, 15]. The applications of the method go beyond shape
optimization with strictly aerodynamic considerations: it has been applied to sonic-boom reduction [16], hypersonic
flows including magneto-hydrodynamic effects [17, 18], and coupled aerostructural design [19, 20]. In each case, the
adjoint method enabled efficient design optimization with large numbers of variables.

While the adjoint method is relatively common in steady-state optimizations—at least in the research community—
it is still relatively uncommon in time-dependent problems. The adjoint solution of two-dimensional time-dependent
problems was demonstrated by Nadarajah and Jameson [21], Mani and Mavriplis [22], Rumpfkeil and Zingg [23],
and Wang et al. [24]. A three-dimensional adjoint solution was developed by Mavriplis [25]. These methods are
a significant improvement over finite-difference sensitivity methods, but they still have a high computational cost.
The unsteady adjoint computation requires a reverse integration in time from the final solution back to the initial
condition [22, 21]. Thus, a time-dependent adjoint requires the full forward solution of the unsteady problem, storing
the flow states for each time step along the way, followed by a reverse sweep of the solution process to find the adjoint
solution. While this process is more efficient than computing a full unsteady solution for every design variable in
the problem, it is expensive. Various methods for reducing the computational requirements have been suggested, for
example writing the solution history to disk rather than storing the solution in memory [22], evaluating only a periodic
portion of the time history for the adjoint problem [21, 23], or using checkpointing algorithms in combination with
automatic differentiation [26]. However, even with these additions, the computational cost of the full unsteady adjoint
method is significant.

Recently, the use of spectral methods to discretize the time-domain portion of periodic CFD problems has gained
popularity. These methods exploit the periodic nature of the problem by expressing the states of the system as a Fourier
series in time. The entire periodic solution can then be recovered from a small number of representative state instances
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spanning the time period, or frequency spectrum, of the solution. These state instances can then be solved for directly,
eliminating the need to iterate through the starting transients typical of unsteady CFD solutions.

In this context, spectral-method computations can be performed in either the time domain, the frequency domain,
or a combination of the two. In the time domain, the state instances represent discrete snapshots of the solution in time,
while in the frequency domain, the state instances represent distinct frequencies present in the solution. In each case,
the spectral solution is capable of representing a fundamental frequency as well as a number of higher harmonics. The
number of resolved harmonics is related to the number of time or frequency instances present in the solution.

Early work on time nonlinear spectral solution techniques was conducted by Hall et al. [27], who derived a spec-
tral formulation for the two-dimensional Navier–Stokes equations. This derivation was conducted in the frequency
domain, but to facilitate the computation they transformed the flow equations back to the time domain. This allowed
a typical time-domain residual formulation to be used for the computation of the solution in each of the spectral in-
stances. This residual was augmented by a spectral term that coupled the various solution instances. The residuals
were computed in the time domain, but both the spectral operator and the boundary conditions were applied in the
frequency domain, yielding a mixed time-domain/frequency-domain approach. In an extension of this work, Ekici and
Hall [28] applied this technique, known as the harmonic balance technique, to multistage turbomachinery applications
where a variety of frequencies may be present.

The time-spectral method introduced by Gopinath and Jameson [29, 30] is similar to the harmonic balance method
of Hall et al. [27]. However, the time-spectral method is derived completely in the time domain. This yields a purely
real spectral operator, and allows for the use of the time-domain residual operator in its original form, including
the boundary conditions. This is particularly advantageous in the context of the present work, because it allows
us to check the newly developed time-spectral ADjoint sensitivities against those computed using the complex-step
method [31, 32, 33, 34]. This verification is not possible for codes that use frequency-domain analysis, since they use
complex arithmetic in the solution process.

Another nonlinear spectral solution technique is the nonlinear frequency domain (NLFD) method developed by
McMullen et al. [35, 36, 37]. In this technique, the solution process takes place primarily in the frequency domain.
The states of the system are stored as frequency-domain Fourier coefficients, and the solution steps are generated from
the frequency-domain residual and spectral operator. To simplify the implementation, the residual is evaluated in the
time domain, where the states are transformed from the frequency domain to the time domain. Then, the residual is
transformed from the time domain to the frequency domain using fast Fourier transform (FFT) techniques.

The time-spectral CFD method reduces the computational cost of a periodic unsteady flow solution relative to a full
unsteady flow solution for periodic problems. Similarly, the time-spectral adjoint method can dramatically reduce the
computational cost of an optimization problem that involves a periodic unsteady problem. Just as the spectral solution
technique modifies a single unsteady CFD problem into a set of coupled steady CFD problems, the time-spectral
adjoint technique converts a full unsteady adjoint problem into a single large steady adjoint problem. Coupling this
with the efficient solution of large sparse linear systems provided by modern software packages, such as PETSc [38],
allows us to rapidly implement an adjoint technique for periodic unsteady problems.

Adjoint methods have been developed for each of the spectral methods mentioned above. Thomas et al. [39] de-
veloped an adjoint for the two-dimensional viscous harmonic balance equations. They used a combination of forward-
and reverse-mode automatic differentiation (AD) to generate the terms necessary for the adjoint. They computed
mesh sensitivities for an airfoil and verified their implementation using finite-difference sensitivities as the bench-
mark. Nadarajah and Jameson [40] developed an adjoint implementation for the NLFD equations. They used analytic
techniques to derive a discrete adjoint operator for the NLFD solver. The resulting technique was used to optimize an
oscillating transonic wing. Finally, Choi et al. [41] developed an adjoint implementation for the time-spectral equa-
tions. They used a manually coded adjoint method and a time-spectral flow solver to calculate the gradients required
for a helicopter rotor-blade optimization. The method improved the blades, but the adjoint implementation did not
achieve the full numerical accuracy that is theoretically possible with a discrete adjoint method. This limited accuracy
was the result of approximations made in the differentiation of the functions related to the spectral radius and artificial
dissipation.

We use the automatic differentiation adjoint (ADjoint) approach of Mader et al. [42] to generate the discrete
adjoint operator. Similarly to the work by Thomas et al. [39], this approach combines AD and adjoint methods to
generate accurate and efficient sensitivities. The characteristics of the adjoint method ensure an efficient method for
computing the sensitivities of a small number of output functions of interest with respect to a large number of design
variables. The use of AD ensures that the partial derivatives used in the adjoint formulation are accurate and reduces
the time required to compute those derivatives. We extend our method to a three-dimensional time-spectral CFD solver,
providing a detailed overview of the implementation, and demonstrate the resulting code on large-scale problems with
up to 41 million flow states. Further, we conclusively demonstrate the accuracy of the method by comparing the
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derivatives computed to those computed with the complex-step method. In the following sections, we introduce each
of the components—the time-spectral flow solver, the adjoint method, and automatic differentiation—and then discuss
how these components are used in the implementation of a time-spectral ADjoint. We then demonstrate the accuracy
and efficiency of the method on an oscillating-wing test case.

III. Time-Spectral Computational Fluid Dynamics
We first review the time-spectral flow solver and its relation to the steady flow solver. The particular spectral

method that we use, the time-spectral method, was derived by Gopinath et al. [29, 43]. As discussed in the Introduction,
this method is one of a class of solution techniques based on representing the time derivative operator in the flow
equations as a Fourier series. Expressing the time derivative operator in this fashion allows for a significant reduction
in the number of time snapshots needed to model the flow, thereby reducing the computational cost of the solution. In
particular, this method focuses on expressing the time derivative strictly in the time domain, which eliminates the need
to use complex numbers and FFTs in the solution process. The details of this method and the resulting time derivative
operator can be found in Gopinath [30]. The specific implementation of the time-spectral method used here is that
of the SUmb flow solver [44]. SUmb is a cell-centered multiblock solver for the Reynolds-averaged Navier–Stokes
equations—steady, unsteady, and time-spectral—and it has options for a variety of turbulence models with one, two,
and four equations. The details of the flow equations in this context are given below.

To put the derivation of the time-spectral adjoint sensitivity equations in context, we provide a basic derivation of
the time-spectral flow equations. We start by writing the governing equations for unsteady flow,

V
∂ζ

∂t
+
∂fi
∂yi

= 0, (1)

where yi are the coordinates in the ith direction. We assume a nondeforming mesh, so the cell volume, V , can be
moved outside the time derivative.

Because we are simulating periodic problems, grid motion needs to be accounted for, so the velocity of the grid,
w, is included in the flux term. A more detailed discussion of the formulation used in our flow solver can be found in
Mader and Martins [45]. Based on this formulation, the inviscid flow states and fluxes for each cell are

ζ =


ρ
ρu1
ρu2
ρu3
ρet

 , fi =


ρui − ρwi

ρuiu1 − ρwiu1 + pδi1
ρuiu2 − ρwiu2 + pδi2
ρuiu3 − ρwiu3 + pδi3
ρui(et + p)− ρwiet

 . (2)

We can then rewrite Eq. (1) in a concise semi-discrete form as

V
∂ζ

∂t
+R(ζ) = 0, (3)

where R represents the spatially discretized residual operator implemented in the flow solver. In our case, this is a
second-order cell-centered finite-volume scheme. This operator includes all of the boundary conditions and artificial
dissipation operators in the flow solver.

The goal of the time-spectral approach, as for other spectral approaches, is to find a way to solve directly for the
periodic steady-state solution of a given problem. This eliminates the need to iterate through the initial transients
of the unsteady problem in the solution process, thus reducing the computational cost. For spectral methods, this is
accomplished by expressing the states of the system as a Fourier series and then solving the problem at a finite number
of frequencies (for frequency-domain approaches) or time instances (for time-domain approaches). The derivation of
the time-spectral equations from the general unsteady form of the equations is described below.

The fundamental assumption here is that the flow is periodic in time and thus the states of the system, ζ, can be
expressed as a Fourier series. We can then write the Fourier transform of the states as

ζ̂k =
1

N

N−1∑
n=0

ζn e−ikxn , (4)

with the corresponding inverse transform given by

ζn =

N−1
2∑

k=−N−1
2

ζ̂k eikxn . (5)
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In Eqs. (4) and (5) we have two representations of the state vector, ζ and ζ̂. These vectors represent the time-domain
and frequency-domain representations, respectively, of the state vector. The time interval for the series is xn = 2πn/N
where N is the number of time intervals, and n is the index of the current time interval. In the frequency domain, k
represents the frequency component index of the state matrix.

Combining Eqs. (4) and (5) to express ζn explicitly in the time domain yields

ζn =

N−1
2∑

k=−N−1
2

1

N

N−1∑
l=0

ζl e−ikxl eikxn . (6)

Rearranging the sums yields

ζn =
1

N

N−1∑
l=0

ζl

N−1
2∑

k=−N−1
2

e−ikxl eikxn . (7)

Now, defining another form of the time interval as xln = xn − xl, and using that in the above equation, we have

ζn =
1

N

N−1∑
l=0

ζl

N−1
2∑

k=−N−1
2

eikxln . (8)

The inner sum is a geometric series, and therefore

N−1
2∑

k=−N−1
2

eikxln = e−i
N−1

2 xln
1− eiNxln

1− eixln
=

sin
(
Nxln

2

)
sin
(
xln
2

) . (9)

Replacing this term in Eq. (8), we have

ζn =
1

N

N−1∑
l=0

ζl
sin(Nxln2 )

sin(xln2 )
. (10)

Differentiating Eq. (10) with respect to time yields

Dtζ
n =

1

N

N−1∑
l=0

ζl

[
N cos

(
N
2 xln

)
2 sin

(
xln
2

) −
sin
(
Nxln

2

)
cos
(
xln
2

)
2 sin2

(
xln
2

) ]
dxln
dtln

, (11)

and since Nxln/2 is an integer multiple of π,

sin

(
Nxln

2

)
= 0 and cos

(
Nxln

2

)
= (−1)(n−l). (12)

Using these relationships in Eq. (11), we have

Dtζ
n =

1

N

N−1∑
l=0

ζl
[
N(−1)(n−l)

2 sin(xln2 )

]
dxln
dtln

. (13)

We now consider the derivative dxln/dtln from Eq. (13). Substituting in the value of xln and evaluating gives

xln =
2π(n− l)

N
=

2π

T

T (n− l)
N

=
2π

T
∆t(n− l) =

2π

T
(tn − tl) =

2π

T
tln. (14)

Therefore, the derivative of xln with respect to time is

dxln
dtln

=
2π

T
, (15)

and we can now use this relationship in Eq. (13) to get

Dtζ
n =

π

T

N−1∑
l=0

ζl
[

(−1)(n−l)

sin(xln2 )

]
. (16)
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Finally, we can simplify this expression to

Dtζ
n =

π

T

N−1∑
l=0

dlnζ
l (17)

where dln is a matrix operator defined as

dln =

{
(−1)(n−l)

sin(
π(n−l)
N )

if l 6= n

0 if l = n
. (18)

Thus, Dt is an operator that spans all of the time instances in the solution. By solving the N coupled time instances
represented in the equation,

V Dtζ
n +R(ζn) = 0, (19)

where n represents each of the N time instances, we obtain a coupled set of solutions that represents the periodic
steady-state solution to a given problem.

IV. Adjoint Equations
Having derived the governing equations of the flow solver, we can now derive the corresponding adjoint equations.

To derive the time-spectral adjoint equations, we start by writing the vector-valued function of interest, I , as

I = I(x, ζn(x)), (20)

where x represents the vector of design variables, and ζn is the state variable vector for the nth time instance where
n = 1, . . . , N , with N representing the total number of instances.

When deriving the adjoint equations for the steady-flow case, we can express the governing equations as

R (x, ζ (x)) = 0. (21)

In the time-spectral case, following the methods of van der Weide et al. [43], we redefine the governing equations by
augmenting them with the spectral derivative operator. This yields

RT S = Dtζ
n (x) +R(x, ζn (x)) = 0, (22)

where R(x, ζn (x)) is a spatially discretized steady-state residual for the nth time instance, and Dt is the spectral
operator defined in Eq. (17). This yields a modified set of residuals,

RT S (x, ζn (x)) = 0, (23)

that must be satisfied at the end of the solution process. For each vector of design variables, x, these residuals yield
a solution vector ζn. They can now be treated in the same fashion as the steady-state residual is treated in a normal
adjoint formulation.

For the following derivations we will first define some size variables. LetNζT be the total number of states,Nx the
number of design variables, and NI the number of functions of interest. We now discuss the derivation of the adjoint
equations.

We first use the chain rule to find the total sensitivity of the vector-valued function of interest:

dI

dx
=
∂I

∂x
+

∂I

∂ζn
dζn

dx
. (24)

Note that we make a distinction between total and partial derivatives. This is because the value of the state vector
that satisfies RTs = 0 is implicitly dependent on the value of the design variables, x. Therefore, in the context of
this paper, a partial derivative is a derivative evaluated for a constant set of states. A total derivative is a derivative
evaluated including a solution of the governing equations to determine a new set of states ζn that satisfyRTs = 0 for
the new design variables, x. Thus, in the above equation, the derivative dI/ dx is the total derivative that we obtain
by performing a standard finite-difference calculation over the entire flow solver. ∂I/∂x and ∂I/∂ζn are partial
derivative vectors, of size Nx and NζT respectively, that are evaluated for a fixed set of states, ζn. dζn/ dx represents
the total derivative of the states with respect to the design variables and is of size NζT × Nx. Similarly, in Eq. (25),
dRT S/ dx is the total derivative of the residuals, including the solution of the governing equations. By definition, this
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term must be zero to within the convergence tolerance of the flow solution. ∂RT S/∂ζn is simply the flux Jacobian,
a partial derivative of size NζT ×NζT . ∂RT S/∂x is the partial derivative, of size NζT ×Nx, of the residuals of the
governing equations with respect to the design variables, and dζn/ dx is as in Eq. (24).

As mentioned above, because the governing equations must always be satisfied at a converged solution, the total
derivative of the residual in Eq. (23) with respect to any design variable must also be zero. This gives

dRT S
dx

=
∂RT S
∂x

+
∂RT S
∂ζn

dζn

dx
= 0. (25)

The derivative expressions in Eqs. (24) and (25) contain the total derivative dζn/ dx, the evaluation of which requires
Nx flow solutions. Since the total derivative in Eq. (25) must equal zero, we can eliminate this term from the equations.
Moving the first term of this equation to the right-hand side gives

∂RT S
∂ζn

dζn

dx
= −∂RT S

∂x
. (26)

Substituting the solution of this system into Equation (24) yields

dI

dx
=
∂I

∂x
− ∂I

∂ζn

[
∂RT S
∂ζn

]−1
∂RT S
∂x

. (27)

As in a steady adjoint solution, we now have an expression containing four partial-derivative terms and a set of linear
solutions. The adjoint approach consists in factorizing the ∂RT S/∂ζn matrix with the term to its left, yielding the
adjoint system [

∂RTS
∂ζ

]T
ψ =

∂I

∂ζ
. (28)

Then, this solution is used in Eq. (27) to obtain the total sensitivity:

dI

dx
=
∂I

∂x
− ψT RTS

∂x
. (29)

As in the steady-state case, we now have a system of equations that requires NI linear solutions to provide the nec-
essary sensitivities for the optimization rather than the Nx nonlinear solutions necessary for a finite-difference or
complex-step approach. Since many aerodynamic optimization formulations contain many more design variables than
functions of interest, this can be extremely advantageous. Note that because the time-spectral system is N times the
size of the steady-state solutions, the adjoint system is also N times larger than the equivalent steady-state system.

Having derived the theory behind the adjoint equations, we will now consider the practical implementation of the
partial derivatives in Eqs. (28) and (29). Specifically, we will examine the use of AD in the implementation of these
partial derivatives.

V. Automatic Differentiation
The final theoretical component of our method is automatic differentiation, also known as computational differ-

entiation or algorithmic differentiation. This is a well-known technique based on the systematic application of the
chain rule of differentiation to computer programs. The method relies on tools that automatically augment the original
program to compute user-specified derivatives [46, 47].

The concept behind this technique is the idea that any computer program representing a function performs a series
of simple operations, fi, for which simple analytic derivatives can be defined. Each of these functions produces an
intermediate variable, ti, and is a function of all the previous intermediate variables tj , j = 1, 2, . . . , i− 1 such that

ti = fi (t1, t2, . . . ti−1) . (30)

If we know the sequence of elementary functions that defines the overall function, and the derivatives of these func-
tions, we can determine the derivative of the overall function by applying the chain rule to the derivatives of the
elementary functions.

There are two common approaches to AD, forward mode and reverse mode. In forward mode, we select an input
value of interest, tj , and propagate the derivative with respect to this value forward as the program is evaluated. As
shown by Bendtsen and Stauning [48], the operation for the forward mode can be expressed

∂ti
∂tj

=

i−1∑
k=j

∂fi
∂tk

∂tk
∂tj

. (31)
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This approach produces the derivatives of all of the output values with respect to a single input variable in one forward
pass. Note that the function derivatives ∂fi/∂tk account only for the explicit dependence of fi on tk. The derivatives
∂tk/∂tj are total derivatives, including all of the implicit dependencies of tk on tj through all of the other intermediate
t values.

The reverse mode can be expressed similarly. After an evaluation in the forward direction to compute all of the
intermediate function values ti, we perform a backward pass starting with a single output value ti to accumulate the
value of the derivatives of ti with respect to all of the inputs tj . The operation for the reverse mode (see Bendtsen and
Stauning [48]) can be expressed

∂ti
∂tj

=

i∑
k=j+1

∂fk
∂tj

∂ti
∂tk

. (32)

This approach produces the derivatives of a single ti with respect to all of the input variables in one backward pass.
Note that once again the function derivatives ∂fk/∂tj account only for the explicit dependence of fk on tj . The
derivatives ∂ti/∂tk are total derivatives, including all of the implicit dependencies of ti on tk through all of the other
intermediate t values.

These operations can also be expressed in matrix form. If we define

Df =


0 . . .
∂f2
∂t1

0 . . .
∂f3
∂t1

∂f3
∂t2

0 . . .

. . .
...

...
. . .

∂fn
∂t1

∂fn
∂t2

. . . 0

 (33)

and

Dt =


1 . . .
∂t2
∂t1

1 . . .
∂t3
∂t1

∂t3
∂t2

1 . . .

. . .
...

...
. . .

∂tn
∂t1

∂tn
∂t2

. . . 1

 , (34)

then (see Bendtsen and Stauning [48]) the chain-rule operations can be expressed

Dt = I +DFDt. (35)

Rearranging this to combine the Dt variables gives

(I −DF )DT = I. (36)

Now, given the derivatives of the elementary functions Df , we can solve for the total derivatives Dt. To produce the
reverse-mode formulation, we simply transpose the entire equation, yielding

(I −DF )TDtT = I. (37)

A detailed example can be found in [42]. For further details see, for example, [46]. Note that the relative efficiency
of the two modes depends on the ratio of inputs to outputs in the function being differentiated. In forward mode,
the function must be evaluated once for each input variable being differentiated, while in reverse mode, it must be
evaluated once for each output variable being differentiated. The efficiency of the reverse mode for small numbers
of output variables is a factor that we seek to exploit. As seen in the previous section, the adjoint equations contain
two partial derivatives, ∂I/∂x and ∂I/∂ζn, for which the number of output variables is significantly smaller than the
number of input variables. Further, we will show that it is more efficient to use reverse-mode differentiation when
differentiating the single-cell residual routine described in Section VI.

Finally, there are two main approaches to implementing AD: source-code transformation and operator overloading.
Tools that use source-code transformation add new statements to the original source code to compute the derivatives
of the original statements. The operator-overloading approach consists in introducing a new user-defined type. This
new type includes not only the value of the original variable, but the derivative as well. All the intrinsic operations
and functions have to be redefined (overloaded) in order for the derivative to be computed together with the original
computations. We use a source-transformation tool, Tapenade [49, 50], because such tools are typically more efficient
than operator-overloading tools [46, 51].
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VI. ADjoint Implementation
The main idea of the ADjoint approach is to use AD to produce the routines that compute the partial-derivative

terms in Eq. (27). In that sense, this work follows the procedure previously published by the authors [42]. However,
we have significantly enhanced the method’s capability and efficiency. This section provides a brief overview of the
ADjoint method and discusses the improvements and the extension to time-spectral equations.

A. Single-Cell Routine
In the previous work, the basis for the residual derivatives was a set of single-cell residual routines, developed from
the original residual routines. These routines contained all of the functionality of the original block-based routines,
including dissipation terms and boundary conditions, but were designed to operate on a 5 × 5 × 5 cell cube. This is
the smallest block of cells that encloses the second-order inviscid flux stencil, shown in Fig. 1. Evaluating this set of
routines once produces the exact residuals for one cell in the mesh. These single-cell residual routines are generated
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Figure 1. Single-cell stencil

by cutting and pasting the residual computation from the original residual code, modifying the indices to limit the
evaluation to a single stencil. This process, while not ideal, is less onerous than coding a derivative scheme from
scratch. Further, by reducing the residual computation to a single cell at a time, we significantly reduce the size of
the differentiation problem, making reverse-mode differentiation more manageable. This is advantageous, as we will
discuss in more detail later, because of the 13 : 1 ratio of inputs to outputs in the residual stencil. Figure 2 shows an
outline of the subroutines used in this implementation of the single-cell residual routine.

ComputeResidual

ComputePressure

ApplyAllBCs

InitializeResidual

Residual

VolumeNormalization

BC Farfield

BC EulerWall

Inviscid Central Flux

Inviscid Upwind Flux

Riemann Flux

Left/Right State

Figure 2. Previous residual computation: Steady case

We have continued to use this single-cell residual approach in this work, extending the routines to include addi-
tional boundary conditions, discretizations, and solution modes. As shown in Fig. 3, the single-cell routines now in-
clude a second dissipation scheme, additional boundary conditions, the metric terms necessary for the mesh derivatives,
and the loops required for the time-spectral implementation. Figure 3 also shows the locations of the time-instance
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Figure 3. Current residual computation: Steady and time-spectral cases

loops needed to compute the residual for all time instances in the solution. The spectral operator from Eq. (17) is
implemented in the initializeResidual subroutine.

B. ∂R/∂ζ and ∂R/∂x
All of the derivatives used in the ADjoint formulation are computed using reverse-mode AD. Specifically, the Tape-
nade [50, 49] AD tool is used to perform reverse-mode source-transformation AD. For the residual derivatives, ∂R/∂ζ
and ∂R/∂x, the reverse-mode differentiation is performed on the single-cell residual routine described above. To ex-
plain this choice, we must discuss, in some detail, the structure of the single-cell residual routine.

For the steady case, the residual computation shown in Fig. 3 computes the value of the residual in a single-cell.
This evaluation produces a result of length Nζ , one value for each of the governing equations in that cell. The number
of inputs required to generate the result is much higher. The variables of interest here are the system states, ζ, and the
mesh coordinates, x. For the second-order finite-volume discretization of the Euler equations used here, this requires
the states in the nearest-neighbor cells for the central flux and the nearest-neighbor states, as well as the next-nearest-
neighbor states, for the dissipation fluxes. Therefore, 13 × Nζ states are required for the evaluation of the residual.
The residual evaluation also depends on the coordinate locations of the corner nodes of each of the nearest-neighbor
cells. This includes a total of 32 × 3 independent spatial degrees of freedom. Therefore, for the five states in the
Euler equations, we have an overall ratio of 13 × 5 + 32 × 3 = 161 : 5, more than 32 : 1, input variables to output

10 of 20

American Institute of Aeronautics and Astronautics (In press-AIAA Journal)



variables. Even if we consider the fact that a single reverse-mode calculation is about 4.5 times more expensive than
the equivalent forward evaluation of the single-cell routine, the reverse-mode calculation is still about 7 times faster
than a forward computation for the single-cell routines.

In the time-spectral case, we must consider not only the spatial dependence of the operator but also its temporal
dependence. In this discussion we refer to on-time-instance states and off-time-instance states. On-time-instance states
are those that exist in the same time instance as the current residual evaluation. Off-time-instance states are those that
exist in a time instance other than that associated with the current residual evaluation. In the case of a time-spectral
solution, the residual is dependent on the same on-time-instance states and coordinates as described above. In addition,
it is dependent on the states and coordinates of the current cell on each of the off-time instances. Thus, we now have
Nζ ×N residual values and (13×Nζ + 32× 3)×N + (Nζ + 8× 3)× (N − 1) input states and coordinates. This
leads to a ratio of 36 : 1 input variables to output variables for the Euler equations with three time instances, a ratio
that increases as the number of time instances increases.

Note that both of these ratios include the state variable derivatives of ∂R/∂ζn as well as the coordinate derivatives
of ∂R/∂x. This is possible because we have used reverse-mode AD for the derivative calculation. The reverse
accumulation, shown in Eq. (32), allows us to start with a single residual and, accumulating backwards through the
routines, calculate the derivatives of all the inputs at once. This turns out to be a significant advantage.

An important aspect of the expanded routine in the context of the time-spectral adjoint is the need for additional
loops to account for the extra time instances. As shown in Fig. 3, there are two time-instance loops in the spectral
computation. The outer loop accounts for the time instances in the residual, and the inner loop accounts for the time
instances of the states and coordinates. Therefore, we can see that the inner part of the computation scales with the
number of instances squared, whereas the outer part scales with the number of instances. However, this is a somewhat
naive implementation of the single-cell routine. Examining Eq. (19) more closely, we notice that it is only the spectral
operator, V Dtζ

n, that contains states from all N time instances at one time. Therefore, we can reduce the number
of terms in the inner time-spectral loop to only those necessary for this term. Figure 4 shows this simplified routine.
With this improved implementation, we have significantly reduced the number of computations needed in the inner
time-spectral loop. Thus, the derivative computation now scales, essentially, with the number of time instances, N ,
rather than N2. Timing results demonstrating this are presented in Section VII.

C. ∂I/∂ζ and ∂I/∂x
For most aerodynamic shape optimization problems, the objectives of interest are the forces and moments—or the
corresponding coefficients—acting on the body being optimized. Computing the partial derivatives of these quantities
with respect to the states and mesh coordinates, ∂I/∂ζ and ∂I/∂x, is significantly simpler than the computation of the
residual partial derivatives. This is evident when we compare the routines required to compute the residual (Fig. 4) and
the routines required to compute the forces and moments (Fig. 5). As we can see from these figures, for the inviscid
equations considered here, the force computation simply requires an integration of the pressure over the surface of the
body in question. This requires an application of the boundary conditions as well as a surface normal computation,
but this is significantly simpler than the complicated flux computation required for the residual. Further, we can see
that the ratio of input variables to output variables strongly favors a reverse-mode technique for this computation. For
a typical optimization problem, we might be interested in fewer than ten force and moment coefficients—for example,
CL and CD for a lift-constrained drag minimization—while the surface needed to compute those coefficients may
require hundreds, thousands, or even tens of thousands of surface cells for accurate discretization. This yields an
extremely high ratio of input variables to output variables and thus strongly favors the reverse-mode approach. As
for the residual routines, the force routines have been differentiated using the reverse-mode source-transformation
capabilities of Tapenade [50, 49]. This differentiation yields a routine that computes all the state and coordinate
derivatives of a specified force or moment coefficient in a single pass.

The extension of this concept to the time-spectral case is relatively straightforward. We consider simple spectral
objectives, such as the average lift, drag, and moment coefficients. In these cases, the spectral objective is based on
simple algebraic combinations of the corresponding coefficient values at each of the discrete time instances in the
solution. For example, the average drag may be computed as

CD =
1

N
CD1

+
1

N
CD2

+ · · ·+ 1

N
CDN (38)

where each of the coefficients CDi is computed directly from the states of time instance i. The time instances of the
residual computation are coupled through the spectral time derivative of Eq. (19), but once the solution is computed, the
computations of the coefficients at each instance in time are independent. Therefore, provided the objective function
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is a function of these independent coefficients, the time-instance-based coefficients and their derivatives can be used
to form the time-spectral objective derivatives. Using the chain rule we can express this idea as

∂I

∂ζn
=

∂I

∂CDi

∂CDi
∂ζn

. (39)

In this case, we are looking to compute a derivative of size Ni × [Nζ ×Ncells] by computing a matrix-matrix product
of two matrices of size Ni × N and N × [Nζ ×Ncells] respectively. However, we already have a reverse-mode
computation for the derivative ∂CDi/∂ζ

n. Because we know that the coefficient computation in each of the time
instances is independent, we can form the first derivative matrix, ∂I/∂CDi , and then multiply it by the result of the
∂CDi/∂ζ

n computation, time instance by time instance, to generate the necessary derivatives without storing the
second matrix. This approach yields the same ratio of inputs to outputs as in the general steady case discussed above.
The only distinction is that in the spectral computation the coefficient derivatives are run N times, once for each time
instance, while for the steady case, the derivatives are run once.

D. Solution of Adjoint System
Based on the characteristics of the adjoint equations and the fact that we can compute both the residual sensitivity
matrices at the same time, we have chosen to explicitly store each of the terms in Eq. (27) for the solution of the
adjoint equations. The time-spectral solution has a slightly different sparsity pattern than the steady case. The sparsity
patterns of the steady and time-spectral cases for a 24-block H-H mesh are shown in Figs. 6 and 7 respectively.
Comparing the two figures, we note that the overall sparsity pattern is similar. From the close-up views, we can see
that what was a single block in the steady case has become a grouping ofN blocks in the spectral case. Further, there is
an additional set of off-diagonal entries present in each row for each time instance in the solution. These off-diagonal
entries come from the spectral operator that couples the time instances together. The grouping apparent in Fig. 7 is
indicative of our choice to order the matrix such that all time instances of a given block are adjacent. This ordering
provides much better performance than the alternative, where all blocks of a given time instance are adjacent. This
is because our code is parallelized by block, not by time instance. Thus, the derivatives for all time instances of a
given block are computed in the same processor. Grouping the cells in the matrix by block instead of by time instance
requires an immense amount of communication during the assembly of the matrix.

Once the various terms are generated, we use the Portable Extensible Toolkit for Scientific Computation (PETSc) [38]
to store the sparse derivatives and solve the linear system of equations. Specifically, the linear solution is computed
using a restarted GMRES iterative solver—restarted after 150 subspace vectors—with an additive-Schwarz global pre-
conditioner and ILU(1) local preconditioning. The preconditioning matrix is computed using the lumped dissipation
technique of Hicken and Zingg [52]. This technique reduces the bandwidth of the preconditioning matrix, thereby
reducing both the cost of generating the matrix and the memory requirements for storing it. In addition, we neglect
the off-time-instance entries of the matrix when forming the preconditioner. This further reduces the fill-in of the ILU
preconditioner and contributes to a reduction in the memory required to solve the system. Note that since the precondi-
tioning matrix contains derivatives with respect to the states only, it is computed with a reduced residual computation
similar to that shown in Fig. 2. Also note that because all the terms are explicitly stored, the cost of computing adjoint
solutions for multiple objectives is reduced.

VII. Results
To demonstrate the effectiveness of the time-spectral ADjoint, we present results showing the numerical accuracy

and computational efficiency of the method. Numerical accuracy is demonstrated by comparing the ADjoint sensitiv-
ities to sensitivities computed using the complex-step method [34]. In the complex-step method, the sensitivity of a
function, I(x), is computed as

dI

dx
=

Im(I(x+ ih))

h
+O(h2), (40)

where i =
√
−1 and h is an extremely small step, in this case 10−20. Because the perturbation is carried through

the code in the complex portion of the variable, the subtractive cancellation issues associated with finite-difference
sensitivities are not present. Thus, h can be made very small, reducing the O(h2) truncation error to negligible levels
and yielding sensitivities that have the same level of precision as the function I . To demonstrate the computational
efficiency, we show weak scaling results, showing how the implementation scales as the numbers of time instances
and processors increase. The ideal scaling in this sense would be constant time for equal increases in problem size and
number of processors, N1. As we will show, the ADjoint implementation scales with N1.2.
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A. Test Case Description
To benchmark the time-spectral ADjoint for accuracy, we compute the sensitivities for a 917,000 cell ONERA M6 [53]
wing mesh. The wing is simulated with Euler wall surfaces and a symmetry plane at the root. The mesh has an H-H
topology with a nominal off-wall spacing of 0.002.

B. Accuracy
The design variables are those corresponding to a simple wing planform optimization, specifically a simple linear twist
distribution and a single value of the sweep, as well as the angle of attack. The sensitivities of the average lift, drag,
and moment coefficients are shown for both pitching and plunging motions. Table 1 shows the sensitivities for the
pitching motion, and Table 2 shows the sensitivities for the plunging motion.

Table 1. Sensitivity verification for pitching motion case with 10−12 relative convergence of the norm of the density residual, 10−20

complex-step size

I Design Variable ADjoint Complex Step
CL 9.630674822394×10−2 9.630674822417×10−2

CD α 7.800095886613×10−3 7.800095886603×10−3

Cm 4.840706880027×10−2 4.840706880028×10−2

CL −1.216072002894×10−3 −1.216072052039×10−3

CD Sweep −2.50954656804×10−4 −2.50954662672×10−4

Cm 5.594081595955×10−3 5.594081590141×10−3

CL 2.9912916269936×10−2 2.9912916277759×10−2

CD Twist 2.754766857997×10−3 2.754766858921×10−3

Cm 1.7946758914073×10−2 1.7946758914994×10−2

Table 2. Sensitivity verification for plunging motion case with 10−12 relative convergence of the norm of the density residual, 10−20

complex-step size

I Design Variable ADjoint Complex Step
CL 9.6528123612840×10−2 9.6528123639616×10−2

CD α 8.484790352376×10−3 8.484790352748×10−3

Cm 5.0358984234680×10−2 5.0358984256455×10−2

CL −1.207345004567×10−1 -1.207345059580×10−3

CD Sweep −3.04006061953×10−4 −3.04006068085×10−4

Cm 5.490542451699×10−3 5.490542444506×10−3

CL 2.9974067104863×10−2 2.9974067113723×10−2

CD Twist 2.950611281951×10−3 2.950611282771×10−3

Cm 1.8579734812958×10−2 1.8579734813456×10−2

As can be seen from Tables 1 and 2, the time-spectral ADjoint implementation is extremely accurate. For both
the pitching and plunging motions, the sensitivities of the coefficients, CL, CD, and Cm, match to between 8 and 12
digits, which is consistent with the accuracy of the flow solution and ADjoint solution. Further, this level of accuracy
allows for tightly converged optimization results, which provides greater certainty for designers.

C. Computational Cost
To assess the computational cost of the method, we compare the cost of the time-spectral ADjoint with the cost of
the time-spectral flow solver and the steady-state ADjoint. The flow solver is a Newton–Krylov solver implemented
using the nonlinear solvers in PETSc. The steady-state ADjoint is also solved using PETSc and implemented with the
methods discussed in this work. The results of these comparisons are shown in Table 3.

Table 3 shows that the time-spectral ADjoint implementation is cost competitive with the steady-state case and
that the overall cost of the ADjoint method is reasonable. The cost of the adjoint solution is between 1.6 and 2.4 times
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Time-Spectral
Steady-State N = 3 N = 5 N = 7 N = 9

Number of processors 24 80 112 176 224
Number of flow states 4,587,520 13,762,560 22,937,600 32,112,640 41,287,680
Average # of flow states per processor 191,147 172,032 204,800 182,458 184,320
Percentage load imbalance 7.14 7.15 0 17.86 0

Flow solution time (10−10 convergence) 1.08 1.56 1.87 2.46 2.34
Jacobian matrix assembly time 0.26 0.46 0.58 0.68 0.66
Preconditioner assembly time 0.03 0.04 0.08 0.1 0.13
Algebraic volume/surface sensitivity time 0.14 0.14 0.14 0.14 0.14
Adjoint solution time (10−10 convergence) 1.89 2.89 2.53 2.98 2.75
Total sensitivity time 0.23 0.23 0.23 0.23 0.23
Total adjoint time 2.54 3.76 3.56 4.12 3.92

Flow solution: normalized total computational cost 1 4.82 8.71 14.82 21.82
Adjoint solution: normalized total computational cost 1.76 8.95 11.81 17.93 25.71

Table 3. Time-spectral ADjoint computational cost breakdown for ONERA M6 (times normalized to the total computational cost of the
flow solution, which takes 160.3 s)

the cost of the flow solution. Further, the highest ratios occur between the steady case and the N = 3 case, indicating
that our implementation scales well.

To quantify this, we plot the log of the total work done (scaled time multiplied by the number of flow states) versus
the log of the number of flow states in the problem (Ncell×Nζ ×N ). In the ideal case, this plot would have a slope of
one, indicating that the amount of work required to solve the problem scales exactly with the problem size. Figure 8
shows that the slope for the flow solver is 1.38 and that for the adjoint is 1.21. There are several possible reasons for
the lack of ideal scaling. The time-spectral formulation requires the computation of off-time-instance coupling terms.
The computation of these terms increases the cost of the time-spectral flow solution with respect to the steady case, and
computing the derivatives of these terms increases the cost of computing the Jacobian for the adjoint system. While
the number of terms in the on-time-instance blocks of the Jacobian scales linearly with the number of time instances,
the number of off-time-instance terms scales with the number of time instances squared. Because the cost of the on-
time-instance terms is much higher than that of the off-time-instance terms, the overall impact on the scaling of the
algorithm is muted. A second potential reason for the imperfect scaling is the increased bandwidth of the time-spectral
matrices. The addition of the off-time-instance terms changes the sparsity pattern of the matrix and causes additional
fill-in in the preconditioner. This can impact the performance of the linear solution process and impact the solution
efficiency. Finally, the number of processors changes for each case. Since no parallel implementation is perfect, this
will impact the scaling to some extent as well. While not perfect, the scaling is satisfactory. A single adjoint solution
is shown here, but this method increases in efficiency when multiple adjoint solutions are required. Because we store
the full Jacobian and the preconditioner, they are calculated just once for each group of adjoint solutions. Therefore
the cost can be amortized over multiple adjoint solutions, minimizing the cost per adjoint.

Finally, if we look at the cost in an absolute sense, we have demonstrated an implementation of the ADjoint that
allows for the solution of problems with over 41 million flow states. Furthermore, the solution of that system, for both
the flow and the adjoint, was computed in under 30 minutes on 224 Intel Nehalem processors. While this is not a
trivial computational cost, it does bring the optimization of periodic unsteady problems into the realm of possibility.

VIII. Conclusions
We have developed and verified an adjoint method for the three-dimensional time-spectral Euler equations. We

have discussed the time-spectral flow equations and their differences from the steady equations. Those differences that
affected the implementation of the adjoint method were the focus of a particularly detailed discussion. Based on this
theory, we extended the ADjoint method to the time-spectral equations. We have presented a detailed discussion of
this implementation, including details of the computation of the derivatives in the adjoint equations, as well as details
related to the solution of the adjoint system.

Our results show that our method is extremely accurate, yielding derivatives accurate to between 8 and 12 digits
for a solution converged to a relative tolerance of 10−12. We demonstrated the computational efficiency of the method
by comparing the steady-state case with time-spectral cases with 3, 5, 7, and 9 time instances. The results show that
the method scaled well in a weak scaling sense up to more than 41 million flow states. The total cost of a single
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adjoint was approximately twice that of a flow solution. For a workload of approximately 180,000 flow states per
processor, a flow solution and an adjoint solution can be computed in under 30 minutes. Thus, the optimization of
periodic unsteady problems is now feasible.
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[50] Pascual, V. and Hascoët, L., “Extension of TAPENADE Towards Fortran 95,” Automatic Differentiation: Applications, The-
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Figure 4. Improved residual computation: Time-spectral case
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Figure 6. Steady case sparsity pattern: 24-block H-H mesh
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Figure 7. Time-spectral sparsity pattern: 24-block H-H mesh: 3 time instances

Log of number of flow states

Lo
g

o
fT

ot
al

C
om

pu
ta

tio
na

lC
os

t

6.8 7 7.2 7.4 7.6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Slope =1.21

Slope = 1.38

Flow Solution
Adjoint Solution

Figure 8. Time-spectral ADjoint scaling
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