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Entropy and information theory

Some notes on the connections between statistical mechanics and information theory.

1.1 Shannon entropy

Consider a system that can be in any one of N microstates denoted by 7 = 1... N. Imagine in fact
that we have a large number M > N of copies of this system—a so-called ensemble—and that we
measure each one to find out what microstate it is in. Let n; be the number of systems found to be in
the ith microstate. Then the number of ways of getting a particular set of values {n; }—the number of
microstates corresponding to this macrostate—is given by the multinomial distribution

Q({n:}) = S L (1.1)
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Then the most likely macrostate is the one which corresponds to the maximum of this quantity, or
equivalently to the maximum of the entropy

S:%logQ:%[logM!—glogni!}. (1.2)
We make use of Sterling’s approximation
logk! ~ klogk — k, (1.3)
giving
1 N N n; 7
S = M[MlogM - M — gnilogni-i—;ni] = —;ﬁlogﬁz
= —Zpilogpi, (1.4)
where n
pi= 3 (1.5)



Note that in this formulation the macrostate can only be defined with respect to the entire ensemble.
Also, note the minus sign.

There is sometimes a constant k£ given in front of the definition of the entropy thus:
S = —kZpilogpi. (1.6)
i

Of course, this constant makes no difference to where the maximum of the entropy is. In traditional
statistical mechanics, & = 1.3807 x 10723 JK~!, for reasons which are rooted in the obscure and often
nonsensical history of physics.

Equation (1.6) is perhaps the most important equation in sta-
tistical physics. It gives the Gibbs entropy for an ensemble.
The Gibbs entropy is the quantity which is maximized in or-
der to find the most probable macrostate of the ensemble,
which corresponds to a set of values {p;}.

1.2 Examples of the use of the Gibbs entropy

To make use of the Gibbs entropy, one usually specifies the system of interest and any relevant con-
straints on the probabilities p;, and then maximizes the entropy to find the most probable set {p;}
subject to those constraints. Here are some examples.

1.2.1 The microcanonical ensemble

Consider again systems like the simple ones at the beginning of this lecture in which all microstates ¢
are equally likely, and a macrostate m corresponds to a specific set of microstates. Then the constraints
on p; are simple:

_ anl if state 7 belongs to macrostate m (1.7)
Pi=10 otherwise. .
Thus . ,
Sm = =2 o 10g 5~ =108, 1.8

exactly as we defined it before.

In fact, if we don’t restrict all p; to be equal, we find that p; = constant maximizes S anyway—the
uniform probability distribution maximizes the entropy with or without the constraint.

1.2.2 The canonical ensemble

A more realistic type of constraint on a system is a constraint on the average value of some observable
quantity E. In almost all experiments that we do on systems we don’t simply measure a quantity once,
we measure it repeatedly. The universal assumption one makes, which is almost entirely unproven,
and probably wrong except in all the cases that matter, is the ergodic hypothesis:
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The average of a large number of measurements on the same system will be the same as
the average of measurements on an ensemble of different and independent systems.

This means that the average of our measurements, which is the thing one almost always calculates, is

(E) = szEz (1.9)

Suppose we have measured (E), and we want to know what the most likely probability distribution
over microstates is. Then we should maximize Eq. (1.6) subject to the constraint (1.9), as well as the
obvious sum rule

E:Zpizl. (1.10)
We can do the maximization using the method of Lagrange multipliers:
oS ox o(FE
——a— -0 (E) =0 for all 1, (1.11)
Opi Opi Op;
which gives us
logp; — 1 —a— [BE; =0. (1.12)
Or equivalently
efﬂEi
P = ) 1.13
p 7 (1.13)
where Z is a normalization coefficient which ensures that Eq. (1.10) is satisfied. Z’s value is
Z=Y e’ (1.14)

and it is called the partition function.

The Lagrange multiplier 3 is given in terms of (E) by substituting Eq. (1.13) back into Eq. (1.9). Al-
ternatively, in some cases one actually specifies 3 and then calculates (E) from Egs. (1.9) and (1.13).
For example, in classical equilibrium statistical mechanics 8 = (kT')~!, where T is the temperature
of the system, k is the Boltzmann constant defined in Section 1.1, and the observable F is, in this
case, the total internal energy of the system.

Since it is by far the most common approach to measure the
average of an observable quantity as in Eq. (1.9), the distri-
bution (1.13) applies to a huge variety of different systems.
This distribution is called the Boltzmann distribution.

Once we have the distribution of probabilities p; we can use it to predict other things. For example,
the variance of £ immediately follows from

Yie PEE?

o= () —(B) = 55—

—(E)?. (1.15)



1.2.3 Information theory

Consider a communication channel—a letter sent through the mail for example, or a page of a book,
or an email message. Suppose there are N different possible messages that can be sent, and suppose
that message 7 is sent with probability p;. How much information is received per message sent?

Imagine receiving a large number M of messages. The distribution p; defines the numbers n; of
messages of each type received. The information contained in them is only in their order. How many

orders are there? There are M'
Q{ni}) = ———- (1.16)
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Thus 2 is a measure of the information sent, as is its logarithm:
S =-=> p;logp;. (1.17)
i

This is the Shannon information or Shannon entropy of a message. If the logarithms are taken
base 2, then the units of information are bits.

The maximum information per message is achieved when all messages are equally likely, in which
case we have S = log N. For example, the English language, in which the “messages” are just single
letters, would have an information content of log, 26 = 4.7 bits per letter. In fact, however, not all
letters are equally likely, so the information content is less than this. Here are the frequencies of the
26 alphabetic letters in the 1.2 million characters of the novel Moby Dick:

letter frequency percentage letter frequency percentage
A 75982 8.16583 N 64146 6.89381
B 16489 1.77208 O 67654 7.27082
C 22036 2.36822 p 17507 1.88149
D 37387 4.01800 Q 1510 0.16228
E 114225 12.27580 R 50781 5.45746
F 20358 2.18789 S 62704 6.73884
G 20334 2.18531 T 85998 9.24226
H 61366 6.59504 U 25967 2.79069
I 64146 6.89381 v 8429 0.90587
J 1046 0.11241 w 21617 2.32319
K 7888 0.84773 X 1199 0.12886
L 41861 4.49883 Y 16462 1.76918
M 22765 2.44657 Z 630 0.06771

Exercise: estimate the entropy per character of the text of Moby Dick.



