
APPENDIX B

DIFFERENCES BETWEEN PYTHON VERSIONS

THE Python programming language is continually being updated and im-

proved by its creators. The most recent version is version 3, which is the

version used in this book, but version 2 is still available and finds wide use.

(The much earlier version 1, which dates back to the 1980s, is now seen very

rarely.) For our purposes the differences between versions 2 and 3 are not

very great, and you can use the book with version 2 quite easily, but there are

a small number of significant differences between the versions that you will

need to know about, which are described in this appendix.

If you don’t want to read through the whole appendix in detail, then the

main thing you need to know is that to use version 2 with this book you should

include at the beginning of all your programs the following statement:

from __future__ import division,print_function

(Note the two underscore characters “_” on either side of the word “future”.)

This statement tells version 2 of Python to behave in the way version 3 does

with respect to the two most important differences, the differences in the divi-

sion of integers and the structure of the print command. Also, everywhere that

the programs in this book use the function “input”, you should use instead the

function “raw_input”. For details, see below.

Division returns a floating-point value: In version 2 of Python the division

of two integers, one by another, returns another integer, any fractional part of

the result being discarded. Thus 3/2 gives 1, not 1.5. In version 3 the same

operation gives 1.5. Furthermore, even if the result of a division is in fact an

integer, the operation will still give a floating-point value in version 3. Thus

4/2 gives a floating-point 2.0, not an integer 2.

If you are using version 2 of Python, you can duplicate the behavior of

version 3 with respect to division by including the statement

from __future__ import division

402

APPENDIX B | DIFFERENCES BETWEEN PYTHON VERSIONS

at the start of your program. If you are using version 2 I recommend you do

this with all your programs if you are using this book—it will prevent a lot of

misunderstandings and annoyances.

Print is a function: In version 3 of Python the print command is a function,

where in version 2 it is a statement. The main practical difference between the

two is that in version 3 you must enclose the argument(s) of a print command

within parentheses, while in version 2 you would not. Thus in version 2 you

might say

print "The energy is",E

while in version 3 you would say

print("The energy is",E)

In most other respects the two commands behave in the same way.

If you are using version 2 of Python, you can duplicate the behavior of the

version 3 print command by including the statement

from __future__ import print_function

at the start of your program. Again if you are using version 2 I recommend

that you do this in all your programs when you are using this book. It will

avoid a lot of annoyances.

Input returns a string: In version 3 of Python the input function always re-

turns a string, no matter what you type in, even if you type in a number. In

version 2, by contrast, the input statement takes what you type and evaluates

it as an algebraic expression, then returns the resulting value. Thus if youwrite

a program that includes the statement

x = input()

and you enter “2.5”, the result will be different in versions 2 and 3. In version 2,

x will be a floating-point variable with numerical value 2.5, while in version 3

it will be a string with string value “2.5”. In version 2 if you entered an actual

string like “Hello” you would get an error message, while in version 3 this

works just fine.

Version 2 of Python includes another function called raw_input, which be-

haves the same way that input does in version 3. Thus if you are using ver-

sion 2, you can still use the programs in this book if you just write “raw_input”

everywhere that the (version 3) programs in the book currently say “input”.

(In version 3 raw_input no longer exists.)

403

APPENDIX B | DIFFERENCES BETWEEN PYTHON VERSIONS

There is only one integer type: In version 2 of Python there are two types

of integer variables called int and long. Variables of type int are restricted to

numbers in the range ±231, but arithmetic using them is very fast; variables

of type long can store numbers of arbitrary size but arithmetic using them is

slower. In version 3 of Python there is only one type of integer variable, called

int, which subsumes both the earlier types. For smaller integer values version 3

will automatically use old-style ints with their fast arithmetic while for larger

values it will automatically use old-style longs but slower arithmetic. You do

not need to worry about the distinction between the two—Python takes care

of it all for you.

In fact, this change appeared earlier than version 3 of Python, starting in

version 2.4. If you are using version 2 of the language, it’s most likely that you

are using either version 2.6 or 2.7, in which case you don’t need to worry about

this point—version 2.4 and later already behave the same way as version 3

with respect to integer variables and you do not need to do anything special to

request this behavior.

Iterators: An iterator is an object in Python that behaves something like a list.

It is a collection of values, one after another, but it differs from a list in that the

values are not stored in the memory of the computer waiting for you to look

them up; instead they are calculated on the fly, which saves memory. Thus,

for example, in version 2 of Python the function range returns an actual list

of numbers, which occupies space in the computer memory. This can cause

problems if the list is very large. For instance, in version 2 on most computers

the statement

for n in range(10000000000):

will give an error message because there is not enough memory to store the

huge list generated by the range function. To get around this problem version 2

provides another function called xrange, which acts like range but produces

an iterator. Thus “xrange(100)” behaves in many respects like a list of 100

elements, but no actual list is created. Instead, when you ask for, say, the tenth

element, the computer just works out what the tenth element ought to be and

hands it to you. The value is never stored anywhere. Thus you could say

for n in xrange(1000000000000):

and the programwould run just fine, without crashing (although it would take

forever to finish because the loop is so long).

In version 3 of Python range behaves the way xrange does in version 2,

producing an iterator, not a true list. Since the most common use of range by

404

APPENDIX B | DIFFERENCES BETWEEN PYTHON VERSIONS

far is in for-loops, this is usually an improvement: it saves memory and often

makes the program run faster. Sometimes, however, you may actually want to

generate a real list from a range. In that case you can use a statement of the

form

x = list(range(100))

which will create an iterator then convert it into a list. In version 2 of Python

you do not need to do this (although it will work fine if you do).

(It’s worth noting that the function arange in the package numpy, which is

similar to range but works with arrays rather than lists, really does create an

array, not an iterator. It calculates all the values of the array and stores them in

memory, rather than calculating them on the fly. This means that using arange

with large arguments can slow your program or cause it to run out of memory,

even in Python version 3.)

Another situation in which iterators appear in version 3 is the map function,

which we studied in Section 2.4.1. Recall that map applies a given function to

each element of a list or array. Thus

from math import log

r = [1.0, 1.5, 2.2]

logr = map(log,r)

applies the natural logarithm function separately to each element of the list

[1.0,1.5,2.2]. In version 2 of Python this operation produces another list

with the three logarithms in it, but in version 3 it produces an iterator. That is, it

doesn’t actually compute the logarithms and store them away. Instead it waits

until you ask for the value of a particular element of logr and then calculates

what that value is. Again, this is usually an improvement—it typically saves

time and memory space. Sometimes, however, you may need a real list, in

which case you can generate one with a statement of the form

logrlist = list(logr)

which converts the iterator into a true list.

There are a number of other differences between versions 2 and 3 of Python,

but none of them will affect the programs in this book. For our purposes, the

ones above are the ones you need to know about. A full description of the

differences can be found on-line at the main Python web site www.python.org.

405

