
APPENDIX C

GAUSSIAN QUADRATURE

THIS appendix gives a derivation of the fundamental results of Gaussian

quadrature, which were discussed but not derived in Section 5.5.2.

Gaussian quadrature, defined over the standard domain from −1 to 1,

makes use of an integration rule of the form
∫ 1

−1
f (x) dx ≃

n

∑
k=1

wk f (xk). (C.1)

The derivation of the positions xk of the sample points and the weights wk is

based on the mathematics of Legendre polynomials. The Legendre polyno-

mial Pn(x) is an nth-order polynomial in x that has the property
∫ 1

−1
xkPn(x) dx = 0 for integer k in the range 0 ≤ k < n (C.2)

and satisfies the normalization condition
∫ 1

−1

[

Pn(x)
]2

dx =
2

2n + 1
. (C.3)

Thus, for instance, P0(x) = constant, and the constant is fixed by (C.3) to give

P0(x) = 1. Similarly, P1(x) is a first-order polynomial ax + b satisfying
∫ 1

−1
(ax + b) dx = 0. (C.4)

Carrying out the integral, we find that b = 0 and a is fixed by (C.3) to be 1,

giving P1(x) = x. The next two polynomials are P2(x) = 1
2 (3x

2 − 1) and

P3(x) = 1
2 (5x

3 − 3x), and you can find tables on-line or elsewhere that list

them to higher order.

Now suppose that q(x) is a polynomial of degree less than n, so that it can

be written q(x) = ∑
n−1
k=0 ckx

k for some set of coefficients ck. Then

∫ 1

−1
q(x)Pn(x) dx =

n−1

∑
k=0

ck

∫ 1

−1
xkPn(x) dx = 0, (C.5)
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by Eq. (C.2). Thus, for any n, Pn(x) is orthogonal to every polynomial of lower

degree. A further property of the Legendre polynomials, which we will use

shortly, is that for all n the polynomial Pn(x) has n real roots that all lie in

the interval from −1 to 1. That is, there are n values of x in this interval for

which Pn(x) = 0.

Returning now to our integral, Eq. (C.1), suppose that the integrand f (x) is

a polynomial in x of degree 2n− 1 or less. If we divide f (x) by the Legendre

polynomial Pn(x), then we get

f (x) = q(x)Pn(x) + r(x), (C.6)

where q(x) and r(x) are both polynomials of degree n − 1 or less. Thus our

integral can be written

∫ 1

−1
f (x) dx =

∫ 1

−1
q(x)Pn(x) dx +

∫ 1

−1
r(x) dx =

∫ 1

−1
r(x) dx, (C.7)

where we have used (C.5). This means that to find the integral of the poly-

nomial f (x) we have only to find the integral of the polynomial r(x), which

always has degree n− 1 or less.

But we already know how to solve this problem. Aswe saw in Section 5.5.1,

for any choice of sample points xk a polynomial of degree n− 1 or less can be

fitted exactly and uniquely using the interpolating polynomials, Eq. (5.43), and

then the fit can be integrated to give a formula of the form

∫ 1

−1
f (x) dx =

∫ 1

−1
r(x) dx =

n

∑
k=1

wkr(xk), (C.8)

where, unlike Eq. (C.1), the equality is now an exact one (because the fit is exact

and unique).

Thus we have a method for integrating any polynomial of order 2n− 1 or

less exactly over the interval from −1 to 1: we divide by the Legendre poly-

nomial Pn(x) and then integrate the remainder polynomial r(x) exactly using

any set of n sample points we choose plus the corresponding weights.

This, however, is not a very satisfactory method. In particular the polyno-

mial division is rather complicated to perform. However, we can simplify the

procedure by noting that, so far, the positions of our sample points are uncon-

strained and we can pick them in any way we please. So consider again an

integration rule of the form (C.1) and make the substitution (C.6), to get

n

∑
k=1

wk f (xk) =
n

∑
k=1

wkq(xk)Pn(xk) +
n

∑
k=1

wkr(xk). (C.9)
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But we know that Pn(x) has n zeros between −1 and 1, so let us choose our n

sample points xk to be exactly the positions of these zeros. That is, let xk be the

kth root of the Legendre polynomial Pn(x). In that case, Pn(xk) = 0 for all k

and Eq. (C.9) becomes simply

n

∑
k=1

wk f (xk) =
n

∑
k=1

wkr(xk). (C.10)

Combining with Eq. (C.8), we then have

∫ 1

−1
f (x) dx =

n

∑
k=1

wk f (xk), (C.11)

where the equality is an exact one.

Thus we have a integration rule of the standard form that allows us to in-

tegrate any polynomial function f (x) of order 2n− 1 or less from −1 to 1 and

get an exact answer (except for rounding error). It will give the exact value for

the integral, even though we only measure the function at n different points.

We have not derived the closed-form expression for the weights wk given in

Eq. (5.54). The derivation of this expression is lengthy and tedious, so we omit

it here. The enthusiastic reader can find it in Hildebrand, F. B., Introduction to

Numerical Analysis, McGraw-Hill, New York (1956).
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