
APPENDIX E

USEFUL PROGRAMS

THIS appendix contains a few programs and functions that are used in the

main text. All of these are also available for download in the on-line re-

sources.

E.1 GAUSSIAN QUADRATURE

The function gaussxw below calculates sample points and weights for Gaus-

sian quadrature. The points are defined on the standard interval [−1, 1]. To use

the function you would write, for example “x,w = gaussxw(N)”. The function

returns two floating-point arrays of N elements each with x containing the

positions of the sample points xk and w containing the weights wk such that

∑k wk f (xk) is the N-point Gaussian approximation to the integral
∫ 1

−1
f (x) dx.

To perform integrals over any other domain [a, b] both the positions and the

weights must be transformed according to

x′k = 1
2 (b− a)xk + 1

2 (b + a), w′
k = 1

2 (b− a)wk. (E.1)

A second function gaussxwab is provided which calls the first to calculate the

positions and weights then performs the transformation for you and returns

arrays x and w for any interval [a, b] that you specify. To use this function you

would write “x,w = gaussxwab(N,a,b)”. See Section 5.5 for further discus-

sion and examples.

File: gaussxw.py from numpy import ones,copy,cos,tan,pi,linspace

def gaussxw(N):

Initial approximation to roots of the Legendre polynomial

a = linspace(3,4*N-1,N)/(4*N+2)

x = cos(pi*a+1/(8*N*N*tan(a)))

412

E.2 | SOLUTION OF TRIDIAGONAL OR BANDED SYSTEMS OF EQUATIONS

Find roots using Newton’s method

epsilon = 1e-15

delta = 1.0

while delta>epsilon:

p0 = ones(N,float)

p1 = copy(x)

for k in range(1,N):

p0,p1 = p1,((2*k+1)*x*p1-k*p0)/(k+1)

dp = (N+1)*(p0-x*p1)/(1-x*x)

dx = p1/dp

x -= dx

delta = max(abs(dx))

Calculate the weights

w = 2*(N+1)*(N+1)/(N*N*(1-x*x)*dp*dp)

return x,w

def gaussxwab(N,a,b):

x,w = gaussxw(N)

return 0.5*(b-a)*x+0.5*(b+a),0.5*(b-a)*w

Copies of these functions can be found in the on-line resources in the file

gaussxw.py.

E.2 SOLUTION OF TRIDIAGONAL OR BANDED SYSTEMS OF

EQUATIONS

The function banded below calculates the solution to a system of linear simul-

taneous equations of the form Ax = v for the vector x when the matrix A is

tridiagonal, or more generally banded, as described in Section 6.1.6. To use it

you say x = banded(A,v,up,down), where A is an array containing the banded

matrix, v is the vector on the right-hand side of the equation, and the variables

up and down specify how many nonzero elements there are above and below

the diagonal, respectively, in each column of the matrix. More generally, v can

be a two-dimensional array containing several independent right-hand sides

to Ax = v, each appearing as a separate column of the array.

To save space storing the matrix A—given that most of its elements are

zero—the array A is not in the usual form of a matrix, but instead contains

the diagonals of the matrix along its rows. Suppose, for instance, our banded

413

APPENDIX E | USEFUL PROGRAMS

matrix was like this:

A =















a00 a01 a02
a10 a11 a12 a13

a21 a22 a23 a24
a32 a33 a34

a43 a44















(E.2)

That is, it has two nonzero elements above the diagonal, one below, and four

nonzero diagonals in all. We would represent this with a four-row array A

having elements as follows:

A =











− − a02 a13 a24
− a01 a12 a23 a34
a00 a11 a22 a33 a44
a10 a21 a32 a43 −











(E.3)

The values in the elements marked “–” do no matter—you can put anything in

these elements and it will make no difference to the results.

The vector v is stored in the array v in standard form—no special arrange-

ment is used. The function returns a single array with the same length as v

containing the solution x to the equations, or, in the case of multiple right-

hand side, an array with the same shape as v with the solution for each of the

right-hand sides in the corresponding column.

File: banded.py from numpy import copy

def banded(Aa,va,up,down):

Copy the inputs and determine the size of the system

A = copy(Aa)

v = copy(va)

N = len(v)

Gaussian elimination

for m in range(N):

Normalization factor

div = A[up,m]

Update the vector first

v[m] /= div

for k in range(1,down+1):

if m+k<N:

414

E.3 | DISCRETE COSINE AND SINE TRANSFORMS

v[m+k] -= A[up+k,m]*v[m]

Now normalize and subtract the pivot row

for i in range(up):

j = m + up - i

if j<N:

A[i,j] /= div

for k in range(1,down+1):

A[i+k,j] -= A[up+k,m]*A[i,j]

Backsubstitution

for m in range(N-2,-1,-1):

for i in range(up):

j = m + up - i

if j<N:

v[m] -= A[i,j]*v[j]

return v

A copy of this function can be found in the file banded.py in the on-line re-

sources.

E.3 DISCRETE COSINE AND SINE TRANSFORMS

Functions for performing (complex) discrete Fourier transforms (DFTs) are

available in Python in the module numpy.fft, but not functions for perform-

ing discrete cosine and sine transforms. As discussed in Section 7.5.3, however,

the cosine and sine transforms are simply DFTs of data that have a particular

symmetry, either even or odd, about the midpoint of their interval. So one

can calculate such transforms by first mirroring the data to create the required

symmetry and then using the standard DFT functions in numpy.fft. The func-

tions given below use this trick to perform both forward and inverse discrete

cosine and sine transforms.

File: dcst.pyfrom numpy import empty,arange,exp,real,imag,pi

from numpy.fft import rfft,irfft

1D DCT Type-II

def dct(y):

N = len(y)

y2 = empty(2*N,float)

y2[:N] = y[:]

y2[N:] = y[::-1]

415

APPENDIX E | USEFUL PROGRAMS

c = rfft(y2)

phi = exp(-1j*pi*arange(N)/(2*N))

return real(phi*c[:N])

1D inverse DCT Type-II

def idct(a):

N = len(a)

c = empty(N+1,complex)

phi = exp(1j*pi*arange(N)/(2*N))

c[:N] = phi*a

c[N] = 0.0

return irfft(c)[:N]

1D DST Type-I

def dst(y):

N = len(y)

y2 = empty(2*(N+1),float)

y2[0] = y2[N+1] = 0.0

y2[1:N+1] = y[:]

y2[N+2:] = -y[::-1]

return -imag(rfft(y2)[1:N+1])

1D inverse DST Type-I

def idst(a):

N = len(a)

c = empty(N+2,complex)

c[0] = c[N+1] = 0.0

c[1:N+1] = -1j*a

return irfft(c)[1:N+1]

One can then build upon these functions to perform cosine and sine transforms

in higher dimensions. Here are functions to perform forward and inverse two-

dimensional cosine and sine transforms.

File: dcst.py # 2D DCT

def dct2(y):

M = y.shape[0]

N = y.shape[1]

a = empty([M,N],float)

b = empty([M,N],float)

for i in range(M):

a[i,:] = dct(y[i,:])

for j in range(N):

b[:,j] = dct(a[:,j])

416

E.3 | DISCRETE COSINE AND SINE TRANSFORMS

return b

2D inverse DCT

def idct2(b):

M = b.shape[0]

N = b.shape[1]

a = empty([M,N],float)

y = empty([M,N],float)

for i in range(M):

a[i,:] = idct(b[i,:])

for j in range(N):

y[:,j] = idct(a[:,j])

return y

2D DST

def dst2(y):

M = y.shape[0]

N = y.shape[1]

a = empty([M,N],float)

b = empty([M,N],float)

for i in range(M):

a[i,:] = dst(y[i,:])

for j in range(N):

b[:,j] = dst(a[:,j])

return b

2D inverse DST

def idst2(b):

M = b.shape[0]

N = b.shape[1]

a = empty([M,N],float)

y = empty([M,N],float)

for i in range(M):

a[i,:] = idst(b[i,:])

for j in range(N):

y[:,j] = idst(a[:,j])

return y

Copies of these functions can be found in the on-line resources in the file

dcst.py.

417

APPENDIX E | USEFUL PROGRAMS

E.4 COLOR SCHEMES

As described in Section 4.3, one can change the color scheme—or colormap as

it is technically known—used in density plots, to make particular plots clearer

or more attractive. The pylab module defines a range of useful colormaps,

some of which are listed in the table in Section 4.3. However, there are some

others that are occasionally useful in physics applications that are not included

in pylab. The following short package defines three additional color maps that

I find useful. They are:

redblue Goes from red to blue via black

redwhiteblue Goes from red to blue via white

inversegray Goes from white to black, the opposite of gray

Code defining these colormaps is given below and can be found in the on-line

resources in the file colormaps.py. To use the redblue colormap, for exam-

ple, you would say “from colormaps import redblue”, then “redblue()”

when you want to change the colormap. (For the technically minded, you

can also import the colormap objects themselves. They are called cp_redblue,

cp_redwhiteblue, and cp_inversegray.) The red/blue colormaps are use-

ful for representing hot/cold distinctions and especially positive/negative dis-

tinctions in electric potentials. The inversegray colormap is sometimes useful

when you are going to print out your density plot on paper.

File: colormaps.py from matplotlib.colors import LinearSegmentedColormap

from matplotlib.cm import RdBu

from matplotlib.pyplot import set_cmap

cdict = {"red": [(0.0,1.0,1.0),(0.5,0.0,0.0),(1.0,0.0,0.0)],

"green": [(0.0,0.0,0.0),(1.0,0.0,0.0)],

"blue": [(0.0,0.0,0.0),(0.5,0.0,0.0),(1.0,1.0,1.0)]}

cp_redblue = LinearSegmentedColormap("redblue",cdict)

cp_redwhiteblue = RdBu

cdict = {"red": [(0.0,1.0,1.0),(1.0,0.0,0.0)],

"green": [(0.0,1.0,1.0),(1.0,0.0,0.0)],

"blue": [(0.0,1.0,1.0),(1.0,0.0,0.0)]}

cp_inversegray = LinearSegmentedColormap("inversegray",cdict)

def redblue():

set_cmap(cp_redblue)

418

E.4 | COLOR SCHEMES

def redwhiteblue():

set_cmap(cp_redwhiteblue)

def inversegray():

set_cmap(cp_inversegray)

419

