
Physics 411: Homework 5

1. Pivoting: Download from the web site a copy of the program gaussback.py from Exam-

ple 6.1 on page 184.

(a) Modify the program to incorporate partial pivoting. (You’re also welcome to write

your own program from scratch if you prefer.) Use your program to solve the prob-

lem in Eq. (6.1) and check that you get the same answers as from the original pro-

gram without pivoting (which are given in Eq. (6.16)).

(b) Now use your program to solve the equations in Eq. (6.17) and show that it can find

the solution to these as well, even though Gaussian elimination without pivoting

fails.

For full credit turn in a printout of your program, plus your results from part (b).

2. A circuit of resistors: Consider a long chain of resistors arranged like this:
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All the resistors have the same resistance R. The power rail at the top is at voltage V+ =
5V. The problem is to find the voltages V1 . . .VN at the internal points in the circuit.

(a) Using Ohm’s law and the Kirchhoff current law, which says that the total net current

flow out of (or into) any junction in a circuit must be zero, show that the voltages

V1 . . .VN satisfy the equations

3V1 −V2 −V3 = V+,

−V1 + 4V2 −V3 −V4 = V+,

...

−Vi−2 −Vi−1 + 4Vi −Vi+1 −Vi+2 = 0,

...

−VN−3 −VN−2 + 4VN−1 −VN = 0,

−VN−2 −VN−1 + 3VN = 0.
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Express these equations in vector form Av = w and find the values of the matrix A

and the vector w.

(b) Write a program to solve for the values of the Vi when there are N = 6 internal

junctions with unknown voltages. Use any method you like to find the solution,

including the solve function from numpy or your own Gaussian elimination code.

Make a graph of the values of Vi along the chain. (Hint: All the values of Vi should

lie between zero and 5V. If they don’t, something is wrong.)

(c) Now repeat your calculation for the case where there are N = 10 000 internal junc-

tions. This part is not possible using standard tools like the solve function. You

need to make use of the fact that the matrix A is banded and use the banded function

that we discussed in class. A copy of this function can be found on the course web

page.

For full credit turn in your working from part (a), a printout of your final program,

and a printout your plot from part (b) for the N = 6 case.

3. The Lagrange point: There is a magical point between the Earth and the Moon, called

the L1 Lagrange point, at which a satellite will orbit the Earth in perfect synchrony with

the Moon, staying always in between the two. This works because the inward pull of the

Earth and the outward pull of the Moon combine to create exactly the needed centripetal

force that keeps the satellite in its orbit. Here’s the setup:

m

R

r

Satellite
Earth MoonM

(a) Assuming circular orbits, show that the distance r from the center of the Earth to the

L1 point satisfies
GM

r2
−

Gm

(R− r)2
= ω2r,

where M and m are the Earth and Moon masses, G is Newton’s gravitational con-

stant, and ω is the angular velocity of both the Moon and the satellite.

(b) The equation above is a fifth-order polynomial equation in r (also called a quintic

equation). Such equations cannot be solved exactly in closed form, but it’s straight-

forward to solve them numerically. Write a program to solve for the distance r from

the Earth to the L1 point. You can use any of the methods we have studied—binary

search, the fixed point method, Newton’s method, or the secant method all work
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well for this problem. Compute a solution accurate to at least four significant fig-

ures.

The values of the various parameters are:

G = 6.674× 10−11 m3 kg−1 s−2,

M = 5.974× 1024 kg,

m = 7.348× 1022 kg,

R = 3.844× 108 m,

ω = 2.662× 10−6 s−1.

You will also need to choose a suitable starting value for r, or two starting values if

you use the binary search or secant methods.

For full credit turn in a copy of your program and your result for the distance r.

4. Numerical derivatives and image processing: When light strikes a surface, the amount

falling per unit area depends not only on the intensity of the light, but also on the angle

of incidence. If the light makes an angle θ to the normal, it only “sees” cos θ of area per

unit of actual area on the surface:

θ What the light sees

surface

light

So the intensity of illumination is a cos θ, if a is the raw intensity of the light. This simple

physical law is a central element of 3D computer graphics. It allows us to calculate how

light falls on three-dimensional objects and hence how they will look when illuminated

from various angles.

Suppose, for instance, that we are looking down on the surface of the Earth from above

and we see mountains. We know the height of the mountains w(x, y) as a function of

position in the plane, so the equation for the Earth’s surface is simply z = w(x, y), or
equivalently w(x, y) − z = 0, and the normal vector v to the surface is given by the

gradient of w(x, y)− z thus:

v = ∇[w(x, y)− z] =





∂/∂x

∂/∂y

∂/∂z



 [w(x, y)− z] =





∂w/∂x

∂w/∂y

−1



 .

Now suppose we have light coming in represented by a vector a, with magnitude equal

to the intensity of the light. Then the dot product of the vectors a and v is

a · v = |a| |v| cos θ,
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where θ is the angle between the vectors. Thus the intensity of illumination of the surface

of the mountains is

I = |a| cos θ =
a · v

|v|
=

ax(∂w/∂x) + ay(∂w/∂y)− az
√

(∂w/∂x)2 + (∂w/∂y)2 + 1
.

Let’s take a simple case where the light is shining horizontally with unit intensity, along

a line an angle φ counter-clockwise from the east-west axis, so that a = (cos φ, sin φ, 0).
Then our intensity of illumination simplifies to

I =
cos φ (∂w/∂x) + sin φ (∂w/∂y)
√

(∂w/∂x)2 + (∂w/∂y)2 + 1
.

If we can calculate the derivatives of the height w(x, y) and we know φ we can calculate

the intensity at any point.

(a) On the web site you’ll find a file called altitude.dat, which contains the altitude

w(x, y) in meters above sea level (or depth below sea level) of the surface of the

Earth, measured on a grid of points (x, y). Write a program that reads this file and

stores the data in an array. Then calculate the derivatives ∂w/∂x and ∂w/∂y at each

grid point. Explain what method you used to calculate them and why. (Hint: You’ll

probably have to use more than one method to get every grid point, because awk-

ward things happen at the edges of the grid.) To calculate the derivatives you’ll need

to know the value of h, the distance in meters between grid points, which is about

30 000m in this case.1

(b) Now using your values for the derivatives calculate the intensity for each grid point

from the equation above with φ = 45◦, and make a density plot of the resulting

values using a gray scale where the brightness of each dot depends on the corre-

sponding intensity value. If you get it working right, the plot should look like a

relief map of the world—you should be able to see the continents and mountain

ranges in 3D. (Common problems include a map that is upside-down or sideways,

or a relief map that is “inside-out,” meaning the high regions look low and vice versa.

Work with the details of your program until you get a map that looks right to you.)

(c) There is another file on the web site called stm.dat, which contains a grid of values

from scanning tunneling microscope measurements of the (111) surface of silicon.

You made a simple visualization of the data in this file for Homework 3. Here you’ll

make a better one: modify the program you wrote for part (b) above to create a 3D

visualization the STM data similar to your visualization of the Earth’s surface—you

should be able to see what the actual shape of the silicon surface looks like. The

value of h for the derivatives in this case is around h = 2.5 (in arbitrary units).

For full credit turn in your final program and printouts of your two density plots.

1It’s actually not precisely constant because we are representing the spherical Earth on a flat map, but h =
30 000 m will give reasonable results.
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