
Physics 411: Homework 6

1. The temperature of a light bulb: An incandescent light bulb is a simple device—it con-

tains a resistive filament, usually made of tungsten, heated by the flow of electricity until

it becomes hot enough to radiate thermally. Essentially all of the power consumed by

such a bulb is radiated as electromagnetic energy, but some of the radiation is not in the

visible wavelengths, which means it is useless for lighting purposes.

Let us define the efficiency of a light bulb to be the fraction of the radiated energy that

falls in the visible band. It’s a good approximation to assume that the radiation obeys the

Planck radiation law, meaning that the power radiated per unit wavelength λ obeys

I(λ) = 2πAhc2
λ−5

ehc/λkBT − 1
,

where A is the surface area of the filament, T is the temperature, h is Planck’s constant, c is

the speed of light, and kB is Boltzmann’s constant. The visible wavelengths run from λ1 =

390 nm to λ2 = 750 nm, so the total energy radiated in the visible window is
∫ λ2

λ1
I(λ) dλ

and the total energy at all wavelengths is
∫

∞

0 I(λ) dλ. Dividing one expression by the

other and substituting for I(λ) from above, we get an expression for the efficiency η of

the light bulb thus:

η =

∫ λ2

λ1
λ−5/(ehc/λkBT − 1) dλ∫

∞

0 λ−5/(ehc/λkBT − 1) dλ
,

where the leading constants and the area A have canceled out. Making the substitution

x = hc/λkBT, this can also be written as

η =

∫ hc/λ1kBT
hc/λ2kBT

x3/(ex − 1) dx∫
∞

0 x3/(ex − 1) dx
=

15

π4

∫ hc/λ1kBT

hc/λ2kBT

x3

ex − 1
dx,

where we have made use of the known exact value of the integral in the denominator.

(a) Write a Python function that takes a temperature T as its argument and calculates the

value of η for that temperature from the formula above. The integral in the formula

cannot be done analytically, but you can do it numerically using any method of

your choice. (For instance, Gaussian quadrature with 100 sample points works fine.)

Use your function to make a graph of η as a function of temperature between 300K

and 10 000K. You should see that there is an intermediate temperature where the

efficiency is a maximum.

(b) Calculate the temperature of maximum efficiency of the light bulb to within 1K

using golden ratio search. What efficiency does the bulb achieve at this temperature?

(c) Is it practical to run a tungsten-filament light bulb at the temperature you found? If

not, why not?

For full credit turn a printout of your final (golden-ratio search) program, your plot

from part (a), and your results and discussion from parts (b) and (c).

1

2. Fourier transforms of simple functions: Calculate the coefficients in the discrete Fourier

transforms of the following periodic functions sampled at N = 1000 evenly spaced

points, then make a plot of their amplitudes, similar to the plot shown in Fig. 7.3:

(a) A single cycle of a square wave with amplitude 1

(b) The sawtooth wave yn = n

(c) The modulated sine wave yn = sin(πn/N) sin(20πn/N)

For full credit turn in your program from part (a) and printouts of your three plots.

3. Detecting periodicity: In the on-line resources there is a file called sunspots.dat, which

contains the observed number of sunspots on the Sun for each month since January 1749.

You previously made a visualization of the data in this file for Homework 3.

(a) Write a short program (or dig up your old one fromHomework 3) that reads the data

in the file and makes a graph of sunspots as a function of time. You should see that

the number of sunspots has fluctuated on a regular cycle for as long as observations

have been recorded. Make an estimate of the length of the cycle in months.

(b) Modify your program to calculate the Fourier transform of the sunspot data and

then make a graph of the magnitude squared |ck|
2 of the Fourier coefficients as a

function of k—also called the power spectrum of the sunspot signal. You should see

that there is a noticeable peak in the power spectrum at a nonzero value of k. The

appearance of this peak tells us that there is one frequency in the Fourier series that

has a higher amplitude than the others around it—meaning that there is a large sine-

wave term with this frequency, which corresponds to the periodic wave you can see

in the original data.

(c) Find the approximate value of k to which the peak corresponds. What is the period

of the sine wave with this value of k? You should find that the period corresponds

roughly to the length of the cycle that you estimated in part (a) above.

This kind of Fourier analysis is a sensitive method for detecting periodicity in signals.

Even in cases where it is not clear to the eye that there is a periodic component to a

signal, it may still be possible to find one using a Fourier transform.

For full credit turn your program and plot from part (b) and your results from

part (c).

4. Fourier filtering and smoothing: In the on-line resources you’ll find a file called dow.dat.

It contains the daily closing value for each business day from late 2006 until the end of

2010 of the Dow Jones Industrial Average, which is a measure of average prices on the

US stock market.

Write a program to do the following:

(a) Read in the data from dow.dat and plot them on a graph.

2

(b) Calculate the coefficients of the discrete Fourier transform of the data using the func-

tion rfft from numpy.fft, which produces an array of 1
2N + 1 complex numbers.

(c) Now set all but the first 10% of the elements of this array to zero (i.e., set the last 90%

to zero but keep the values of the first 10%).

(d) Calculate the inverse Fourier transform of the resulting array, zeros and all, using

the function irfft, and plot it on the same graph as the original data. You may need

to vary the colors of the two curves to make sure they both show up on the graph.

Comment on what you see. What is happening when you set the Fourier coefficients

to zero?

(e) Modify your program so that it sets all but the first 2% of the coefficients to zero and

run it again.

For full credit turn a printout of your program and a plot showing all three curves

on the same axes.

5. Extra credit: This problem is optional, for those who want an extra challenge (and extra

credit). It is pretty difficult, but you can learn a lot by completing it.

(a) Write your own program to compute the fast Fourier transform of a given set of

N samples, in the case where N is a power of two, based on the formulas given

in Section 7.5.1. As a test of your program, you can use it to calculate the Fourier

transform of the data in the file pitch.dat, which can be found on the web site, and

which is shown in Fig. 7.2 (and its transform is shown in Fig. 7.3).

You will have to calculate the coefficients E
(m,j)
k from Eq. (7.40) for all levelsm, which

means that first you will have to plan how the coefficients will be stored. Since, as

we have seen, there are exactly N of them at every level, one way to do it would be

to create a two-dimensional complex array of size N × (1+ log2 N), so that it has N

complex numbers for each level from zero to log2 N. Then within level m you have

2m individual transforms denoted by j = 0 . . . 2m − 1, each with N/2m coefficients

indexed by k. A simple way to arrange the coefficients would be to put all the k = 0

coefficients in a block one after another, then all the k = 1 coefficients, and so forth.

Then E
(m,j)
k would be stored in the j + 2mk element of the array.

This method has the advantage of being quite simple to program, but the disad-

vantage of using up a lot of memory space. The array contains N log2 N complex

numbers, and a complex number typically takes sixteen bytes of memory to store.

So if you had to do a large Fourier transform of, say, N = 108 numbers, it would take

16N log2 N ≃ 42 gigabytes of memory, which is much more than most computers

have.

An alternative approach is to notice that we do not really need to store all of the

coefficients. At any one point in the calculation we only need the coefficients at the

current level and the previous level (from which the current level is calculated). If

one is clever one can write a program that uses only two arrays, one for the current

level and one for the previous level, each consisting of N complex numbers. Then

3

our transform of 108 numbers would require less than four gigabytes, which is fine

on most computers.

(There is a third way of storing the coefficients that is even more efficient. If you

store the coefficients in the correct order, then you can arrange things so that every

time you compute a coefficient for the next level, it gets stored in the same place as

the old coefficient from the previous level from which it was calculated, and which

you no longer need. With this way of doing things you only need one array of N

complex numbers—we say the transform is done “in place.” Unfortunately, this in-

place Fourier transform is much harder to work out and harder to program. If you

are feeling particularly ambitious you might want to give it a try, but it’s not for the

faint-hearted.)

(b) Use your program to duplicate the plot shown in Fig. 7.3. Confirm that your plot

looks the same as the one in the figure.

To receive a substantial amount of extra credit turn a printout of your program and

your final plot.

4

