
Physics 411: Homework 7

You have two weeks to do this homework. It is due on Tuesday, March 27.

1. Low-pass filter: Here is a simple electronic circuit with one resistor and one capacitor:

VoutVin

0

C

R

This circuit acts as a low-pass filter: you send a signal in on the left and it comes out

filtered on the right.

Using Ohm’s law and the capacitor law and assuming that the output load has very high

impedance, so that a negligible amount of current flows through it, we can write down

the equations that govern this circuit as follows. Let I be the current that flows through R

and into the capacitor, and let Q be the charge on the capacitor. Then:

IR = Vin −Vout , Q = CVout , I =
dQ

dt
.

Substituting the second equation into the third, then substituting the resulting relation

into the first, we find that Vin −Vout = RC (dVout/dt), or equivalently

dVout

dt
=

1

RC

(

Vin −Vout

)

.

(a) Write a program (or modify one from the course-pack) to solve this equation for

Vout(t) using the fourth-order Runge–Kutta method when in the input signal is a

square-wave with frequency 1 and amplitude 1:

Vin(t) =

{

1 if ⌊2t⌋ is even,

−1 if ⌊2t⌋ is odd,
(1)

where ⌊x⌋ means x rounded down to the next lowest integer. Use the program to

make plots of the output of the filter circuit from t = 0 to t = 10 when RC = 0.01,

0.1, and 1, with initial condition Vout(0) = 0. You will have to make a decision about

what value of h to use in your calculation. Small values give more accurate results,

but the program will take longer to run. Try a variety of different values and choose

one for your final calculations that seems sensible to you.

(b) Based on the graphs produced by your program, describe what you see and explain

what the circuit is doing.
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A program similar to the one you wrote is running inside your stereo or music player,

to create the effect of the “bass” control. In the old days, the bass control on a stereo

would have been connected to a real electronic low-pass filter in the amplifier circuitry,

but these days there is just a computer processor that simulates the behavior of the filter

in a manner similar to your program.

For full credit turn in a printout of your program and the plots it produces, along

with your answer to part (b).

2. Nonlinear pendulum: Building on the results from Example 8.6 in the course-pack, cal-

culate the motion of a nonlinear pendulum as follows.

(a) Write a program to solve the two first-order equations, Eqs. (8.44) and (8.45), using

the fourth-order Runge–Kutta method for a pendulum with a 10 cm arm. Use your

program to calculate the angle θ of displacement for several periods of the pendulum

when it is released from a standstill at θ = 179◦ from the vertical (i.e., pointing

almost exactly upward). Make a graph of θ as a function of time.

(b) Extend your program to create an animation of the motion of the pendulum. Your

animation should, at a minimum, include a representation of the moving pendu-

lum bob and the pendulum arm. (Hint: You will probably find the function rate

discussed in Section 4.5 useful for making your animation run at a sensible speed.

Also, you may want to make the step-size for your Runge–Kutta calculation smaller

than the framerate of your animation, i.e., do several Runge–Kutta steps per frame

on screen. This is certainly allowed and may help to make your calculation more

accurate.)

For full credit turn a printout of your plot from part (a), your final program from

part (b), and a snapshot of your animation in action.

3. The double pendulum:

θ1

θ2

m

Pivot

m

The pendulum in the last question is nonlinear, but its movement is nonetheless perfectly

regular and periodic—there are no surprises. A double pendulum on the other hand is

completely the opposite—chaotic and unpredictable. A double pendulum consists of a

normal pendulum with another pendulum hanging from its end. For simplicity let us
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ignore friction, and assume that both pendulums have bobs of the same mass m and

massless arms of the same length ℓ.

The position of the arms at any moment in time is uniquely specified by the two an-

gles θ1 and θ2. The equations of motion for the angles are most easily derived using the

Lagrangian formalism, as follows.

The heights of the two bobs, measured from the level of the pivot are

h1 = −ℓ cos θ1, h2 = −ℓ(cos θ1 + cos θ2),

so the potential energy of the system is

V = mgh1 + mgh2 = −mgℓ(2 cos θ1 + cos θ2),

where g is the acceleration due to gravity. The (linear) velocities of the two bobs satisfy

v1 = ℓθ̇1, v2
2 = ℓ

2
[

θ̇2
1 + θ̇2

2 + 2θ̇1θ̇2 cos(θ1 − θ2)
]

,

where θ̇ means the derivative of θ with respect to time t. (If you don’t see where the

second velocity equation comes from, it’s a good exercise to derive it for yourself from

the geometry of the pendulum.) Now the total kinetic energy is

T = 1
2mv2

1 + 1
2mv2

2 = mℓ
2
[

θ̇2
1 + 1

2 θ̇2
2 + θ̇1θ̇2 cos(θ1 − θ2)

]

,

and the Lagrangian of the system is

L = T −V = mℓ
2
[

θ̇2
1 + 1

2 θ̇2
2 + θ̇1θ̇2 cos(θ1 − θ2)

]

+ mgℓ(2 cos θ1 + cos θ2).

Then the equations of motion are given by the Euler–Lagrange equations

d

dt

(

∂L

∂θ̇1

)

=
∂L

∂θ1
,

d

dt

(

∂L

∂θ̇2

)

=
∂L

∂θ2
,

which in this case give

2θ̈1 + θ̈2 cos(θ1 − θ2) + θ̇2
2 sin(θ1 − θ2) + 2

g

ℓ
sin θ1 = 0,

θ̈2 + θ̈1 cos(θ1 − θ2) − θ̇2
1 sin(θ1 − θ2) +

g

ℓ
sin θ2 = 0,

where the mass m has cancelled out.

These are second-order equations, but we can convert them into first-order ones by the

usual method, defining new variables ω1 and ω2 thus:

θ̇1 = ω1, θ̇2 = ω2.

In terms of these variables our equations of motion become

2ω̇1 + ω̇2 cos(θ1 − θ2) + ω2
2 sin(θ1 − θ2) + 2

g

ℓ
sin θ1 = 0,

ω̇2 + ω̇1 cos(θ1 − θ2) − ω2
1 sin(θ1 − θ2) +

g

ℓ
sin θ2 = 0.
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Finally we have to rearrange these into the standard form of Eq. (8.28) with a single

derivative on the left-hand side of each one, which gives

ω̇1 = −
ω2

1 sin(2θ1 − 2θ2) + 2ω2
2 sin(θ1 − θ2) + (g/ℓ)

[

sin(θ1 − 2θ2) + 3 sin θ1

]

3 − cos(2θ1 − 2θ2)
,

ω̇2 =
4ω2

1 sin(θ1 − θ2) + ω2
2 sin(2θ1 − 2θ2) + 2(g/ℓ)

[

sin(2θ1 − θ2) − sin θ2

]

3 − cos(2θ1 − 2θ2)
.

(This last step is quite tricky and involves some trigonometric identities. You may find it

useful to go through the derivation for yourself.)

These two equations, along with the equations θ̇1 = ω1 and θ̇2 = ω2, give us four first-

order equations which between them define the motion of the double pendulum.

(a) Derive an expression for the total energy E = T + V of the system in terms of the

variables θ1, θ2, ω1, and ω2.

(b) Write a program using the fourth-order Runge–Kutta method to solve the equations

of motion for the case where ℓ = 40 cm, with the initial conditions θ1 = θ2 = 90◦

and ω1 = ω2 = 0. Use your program to calculate the total energy of the system

assuming that the mass of the bobs is 1 kg each, and make a graph of energy as a

function of time from t = 0 to t = 100 seconds.

Because of energy conservation, the total energy should be constant over time (ac-

tually it should be zero for this particular set of initial conditions), but you will find

that it is not perfectly constant because of the approximate nature of the solution of

the differential equation. Choose a suitable value of the step size h to ensure that the

variation in energy is less than 10−5 Joules over the course of the calculation.

(c) Make a copy of your program and modify the copy to create a second program that

does not produce a graph, but instead makes an animation of the motion of the

double pendulum over time. At a minimum, the animation should show the two

arms and the two bobs.

For full credit turn your plot of the energy from part (b), your final program from

part (c), and a snapshot of your animation in action.

4. Trajectorywith air resistance: Many elementary mechanics problems deal with the physics

of objects moving or flying through the air, but they almost always ignore friction and air

resistance to make the equations solvable. If we’re using a computer, however, we don’t

need solvable equations.

Consider, for instance, a spherical cannonball shot from a cannon standing on level ground.

The air resistance on a moving sphere is a force in the opposite direction to the motion

with magnitude

F = 1
2 πR2ρCv2,

where R is the sphere’s radius, ρ is the density of air, v is the velocity, and C is the so-called

coefficient of drag (a property of the shape of the moving object, in this case a sphere).
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(a) Starting from Newton’s second law, F = ma, show that the equations of motion for

the position (x, y) of the cannonball are

ẍ = −
πR2ρC

2m
ẋ
√

ẋ2 + ẏ2, ÿ = −g−
πR2ρC

2m
ẏ
√

ẋ2 + ẏ2,

where m is the mass of the cannonball and g is the acceleration due to gravity.

(b) Change these two second-order equations into four first-order equations using the

methods you have learned, then write a program that solves the equations for a

cannonball of mass 1 kg and radius 8 cm, shot at 30◦ to the horizontal with initial

velocity 100 ms−1. The density of air is ρ = 1.22 kg m−3 and the coefficient of drag

for a sphere is C = 0.47. Make a plot of the trajectory of the cannonball (i.e., a graph

of y as a function of x).

(c) When one ignores air resistance, the distance traveled by a projectile does not de-

pend on the mass of the projectile. In real life, however, mass certainly does make a

difference. Use your program to estimate the total distance traveled (over horizontal

ground) by the cannonball above, and then experiment with the program to deter-

mine whether the cannonball travels further if it is heavier or lighter. You could, for

instance, plot a series of trajectories for cannonballs of different masses, or you could

make a graph of distance traveled as a function of mass. Describe briefly what you

discover.

For full credit turn a printout of your derivations from parts (a) and (b), your pro-

gram and plot from part (b), and your answers to part (c).

5. Cometary orbits: Many comets travel in highly elongated orbits around the Sun. For

much of their lives they are far out in the solar system, moving very slowly, but on rare

occasions their orbit brings them close to the Sun for a fly-by and for a brief period of

time they move very fast indeed:

Sun

Comet

slow herefast here

This is a classic example of a system for which an adaptive step-size method is useful,

because for the large periods of time when the comet is moving slowly we can use long

time-steps, so that the program runs quickly, but short time-steps are crucial in the brief

but fast-moving period close to the Sun.

The differential equation obeyed by a comet is straightforward to derive. The force be-

tween the Sun, with mass M at the origin, and a comet of mass m with position vector r
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is GMm/r2 in direction −r/r (i.e., the direction towards the Sun), and hence Newton’s

second law tells us that

m
d2r

dt2
= −

(

GMm

r2

)

r

r
.

Cancelling the m and taking the x component we have

d2x

dt2
= −GM

x

r3
,

and similarly for the other two coordinates. We can, however, throw out one of the coor-

dinates because the comet stays in a single plane as it orbits. If we orient our axes so that

this plane is perpendicular to the z-axis, we can forget about the z coordinate and we are

left with just two second-order equations to solve:

d2x

dt2
= −GM

x

r3
,

d2y

dt2
= −GM

y

r3
,

where r =
√

x2 + y2.

(a) Turn these two second-order equations into four first-order equations, using the

methods you have learned.

(b) Write a program to solve your equations using the fourth-order Runge–Kutta method

with a fixed step size. You will need to look up the mass of the Sun and New-

ton’s gravitational constant G. As an initial condition, take a comet at coordinates

x = 4 billion kilometers and y = 0 (which is somewhere out around the orbit of

Neptune) with initial velocity vx = 0 and vy = 500 m s−1. Make a graph showing

the trajectory of the comet (i.e., a plot of y against x).

Choose a fixed step size h that allows you to accurately calculate at least two full

orbits of the comet. Since orbits are periodic, a good indicator of an accurate calcu-

lation is that successive orbits of the comet lie on top of one another on your plot.

If they do not then you need a smaller value of h. Give a short description of your

findings. What value of h did you use? What did you observe in your simulation?

How long did the calculation take?

(c) Make a copy of your program and modify the copy to do the calculation using an

adaptive step size. Set a target accuracy of δ = 1 kilometer per year in the position

of the comet and again plot the trajectory. What do you see? How do the speed,

accuracy, and step size of the calculation compare with those in part (b)?

(d) Modify your program to place dots on your graph showing the position of the comet

at each Runge–Kutta step around a single orbit. You should see the steps getting

closer together when the comet is close to the Sun and further apart when it is far

out in the solar system.

For full credit turn in your answers to the questions in parts (b) and (c), and printouts

of out of your final program and figure from part (d).

6


