
Physics 411: Homework 1

You have one week to do the homework. It is due, in class, on Thursday, January 24. For each

problem, the materials you are required to turn in are indicated next to the check symbol:

Many people find it convenient to create a document using Word (or any other word pro-

cessor) and then copy and paste programs, output, figures, and so forth into the document.

When you’re finished, you can print out the document and hand it in.

1. Altitude of a satellite: A satellite is to be launched into a circular orbit around the Earth

so that it orbits the planet once every T seconds.

(a) Treating the Earth as a perfect sphere (which is only approximately correct), show

that the altitude h above the Earth’s surface that the satellite must have is

h =

(

GMT2

4π
2

)1/3

− R,

where G = 6.67× 10−11m3 kg−1 s−2 is Newton’s gravitational constant, M = 5.97×
1024 kg is the mass of the Earth, and R = 6371 km is its radius.

(b) Write a program that asks the user to enter the desired value of T and then calculates

and prints out the corresponding altitude in meters.

(c) Use your program to calculate the altitudes of satellites that orbit the Earth once a

day (so-called “geosynchronous” orbit), once every 90 minutes, and once every 45

minutes. What do you conclude from the last of these calculations?

For full credit turn in a printout of your finished program, a printout of the three

runs of the program showing the three answers it produces, and your answer to the

question in part (c).

2. Special relativity: A spaceship travels from Earth in a straight line at a speed v to an-

other planet x light years away. Write a program to ask the user for the value of x and

the speed v as a fraction of the speed of light, then print out the time in years that the

spaceship takes to reach its destination (a) in the rest frame of an observer on Earth and

(b) as perceived by a passenger on board the ship. Use your program to calculate the

answers for a planet 10 light years away with v = 0.99c.

For full credit turn in a printout of your program plus a printout of the program in

action showing the answers it produces.

3. The Madelung constant: In condensed matter physics the Madelung constant gives the

total electric potential felt by an atom in a solid. It depends on the charges on the other

atoms nearby and their locations. Consider for instance solid sodium chloride—table salt.

The sodium chloride crystal has atoms arranged on a cubic lattice, but with alternating

sodium and chlorine atoms, the sodium ones having a positive charge+e and the chlorine

ones a negative charge −e, where e is the charge on the electron. If we label each position

1



on the lattice by three integer coordinates (i, j, k), then the sodium atoms fall at positions

where i + j + k is even, and the chlorine atoms at positions where i + j + k is odd.

Consider a sodium atom at the origin, i = j = k = 0, and let us calculate the Madelung

constant. If the spacing of atoms on the lattice is a, then the distance from the origin to

the atom at position (i, j, k) is
√

(ia)2 + (ja)2 + (ka)2 = a
√

i2 + j2 + k2,

and the electric potential at the origin created by such an atom is

V(i, j, k) = ± e

4πǫ0a
√

i2 + j2 + k2
,

with ǫ0 being the permittivity of the vacuum and the sign of the expression depending

on whether i+ j+ k is even or odd. The total potential felt by the sodium atom is then the

sum of this quantity over all other atoms. Let us assume a cubic box around the sodium

at the origin, extending L atoms in all directions. Then

Vtotal =
L

∑
i,j,k=−L

not i=j=k=0

V(i, j, k) =
e

4πǫ0a
M,

where M is the Madelung constant. Technically, in fact, the Madelung constant is the

value of M when L → ∞, but one can get a good approximation just by using a large

value of L.

Write a program to calculate and print the Madelung constant for sodium chloride. Use

as large a value of L as you can, while still having your program run in reasonable time—

say in a minute or less.

For full credit turn in a printout of your finished program plus a printout of the

program in action showing the answer it produces.

4. Prime numbers: Example 2.8 in the book gives a program for finding prime numbers but

that program is not particularly efficient: it checks each number to see if it is divisible by

any number less than itself. We can develop a much faster program for prime numbers

by making use of the following observations:

(a) A number n is prime if it has no prime factors less than n. Hence we only need to

check if it is divisible by other primes.

(b) If a number n is non-prime, having a factor r, then n = rs, where s is also a factor. If

r ≥
√
n then n = rs ≥

√
ns, which implies that s ≤

√
n. In other words, any non-

prime must have factors (and hence also prime factors) less than or equal to
√
n.

Thus to determine if a number is prime we have to check its prime factors only up to and

including
√
n—if there are none then the number is prime.

Write a Python program that prints all the primes up to 10 000. Create a list to store the

primes, which starts out with just the one prime number 2 in it, then for each number n

2



from 3 to 10 000 check whether the number is divisible by any of the primes in the list up

to and including
√
n. As soon as you find a single prime factor you can stop checking the

rest of them—you know n is not a prime. If you find no prime factors
√
n or less, then n

is prime and you should add it to the list. You can print out the list all in one go at the

end of the program, or you can print out the individual numbers as you find them.

For full credit turn in a copy of your program alongwith the last five (largest) primes

it finds. No need to turn in a printout of the whole list of primes—it would be very long.

5. The semi-empirical mass formula: In nuclear physics, the semi-empirical mass formula

is a formula for calculating the approximate nuclear binding energy B of an atomic nu-

cleus with atomic number Z and mass number A:

B = a1A− a2A
2/3 − a3

Z2

A1/3
− a4

(A− 2Z)2

A
+

a5
A1/2

,

where, in units of millions of electron volts, the constants are a1 = 15.67, a2 = 17.23,

a3 = 0.75, a4 = 93.2, and

a5 =







0 if A is odd,

12.0 if A and Z are both even,

−12.0 if A is even and Z is odd.

(a) Write a program that takes as its input the values of A and Z, and prints out the

binding energy for the corresponding atom. Use your program to find the binding

energy of an atom with A = 58 and Z = 28. (Hint: The correct answer is around

490MeV.)

(b) Modify your program to print out not the total binding energy B, but the binding

energy per nucleon, which is B/A.

(c) Now modify your program so that it takes as input just a single value of the atomic

number Z and then goes through all values of A from A = Z to A = 3Z, to find the

one that has the largest binding energy per nucleon. This is the most stable nucleus

with the given atomic number. Have your program print out the value of A for this

most stable nucleus and the value of the binding energy per nucleon.

(d) Modify your program again so that, instead of taking Z as input, it runs through all

values of Z from 1 to 100 and prints out the most stable value of A for each one. At

what value of Z does the maximum binding energy occur? (The true answer, in real

life, is Z = 26, which is iron. You should find that the semi-empirical mass formula

gets the answer roughly right, but not exactly.)

For full credit turn in a printout of your final program from part (d), a printout of

the program in action showing the output it produces, and your answer to the question

in part (d).

3


