
Physics 411: Homework 2

1. Plotting experimental data:

(a) In the on-line resources you will find a file called sunspots.dat, which contains the

observed number of sunspots on the Sun for each month since January 1749. The file

contains two columns of numbers, the first being the month and the second being

the sunspot number. Write a program that reads in the data and makes a graph of

sunspots as a function of time.

(b) The file stm.dat contains a grid of values from scanning tunneling microscope mea-

surements of the (111) surface of silicon. A scanning tunneling microscope (STM) is

a device that measures the surface of a solid at the atomic level by tracking a sharp

tip over the surface and measuring quantum tunneling current as a function of posi-

tion. The end result is a grid of values that represent the height of the surface and the

file stm.dat contains just such a grid of values. Write a program that reads the data

contained in the file and makes a density plot of the values. Use the various options

and variants you have learned about to make a picture that shows the structure of

the silicon surface clearly.

For full credit turn in printouts of your two programs and printouts of your plots.

2. Visualizing lattices: Example 4.2 in the book gives a program that creates a computer

visualization of a simple cubic lattice. Using that program as a starting point, or starting

from scratch if you prefer, do the following.

(a) A sodium chloride crystal has sodium and chlorine atoms arranged on a cubic lat-

tice but the atoms alternate between sodium and chlorine, so that each sodium is

surrounded by six chlorines and each chlorine is surrounded by six sodiums. Create

a visualization of the sodium chloride lattice using two different colors to represent

the two types of atoms. (If you print out the result in black-and-white, make sure to

use colors that are clearly distinguishable.)

(b) The face-centered cubic (fcc) lattice, which is the most common lattice in naturally

occurring monatomic crystals, consists of a cubic lattice with atoms positioned not

only at the corners of each cube but also at the center of each face, like this:

Create a visualization of an fcc lattice with a single species of atom (such as occurs

in metallic iron, for instance).

For full credit turn in a printout of your program for part (b) and printouts of the

two pictures you created.
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Hint: Printing out 3D graphics is a little tricky. The simplest way to do it is to run the

program and then take a screenshot of the window containing the graphics. On a PC

running Windows hold down ALT and then press the “Print Screen” button to take a

screenshot of the current active window. On a Mac hold down Command and Shift and

press the number 4, then press the space bar, then click on a window to take a screenshot

of that window. Once you have your screenshot you can paste it into a document and

print it out.

3. Visualization of the solar system: The innermost six planets of our solar system revolve

around the Sun in roughly circular orbits that all lie approximately in the same (ecliptic)

plane. Here are some basic parameters:

Radius of object Radius of orbit Period of orbit

Object (km) (millions of km) (days)

Mercury 2440 57.9 88.0

Venus 6052 108.2 224.7

Earth 6371 149.6 365.3

Mars 3386 227.9 687.0

Jupiter 69173 778.5 4331.6

Saturn 57316 1433.4 10759.2

(a) Write down equations for the coordinates x, y of a planet in the plane of the ecliptic

at time t, assuming that it lies on the x-axis at t = 0 and travels in a circular orbit

with radius R.

(b) Using the facilities provided by the visual package, create an animation of the solar

system that shows the following:

i. The Sun and planets as spheres in their appropriate positions and with sizes

proportional to their actual sizes. Because the radii of the planets are tiny com-

pared to the distances between them, represent the planets by spheres with radii

c1 times larger than their correct proportionate values, so that you can see them

clearly. Find a good value for c1 that makes the planets visible. You’ll also need

to find a good radius for the Sun. Choose any value that gives a clear visualiza-

tion. (It doesn’t work to scale the real radius of the Sun by the same factor as

you use for the planets, because it’ll come out looking way too large. So just use

whatever works.) For added realism, you may also want to make your spheres

different colors. For instance, Earth could be blue and the Sun could be yellow.

ii. The motion of the planets as they move around the Sun (by making the spheres

of the planets move). In the interests of alleviating boredom, construct your

program so that time in the animation runs a factor of c2 faster than actual time.

Find a value of c2 that makes the motion of the orbits easily visible but not un-

reasonably fast. Use the rate function to make your animation run smoothly.

For full credit turn in a copy of your program and a snapshot showing the animation

it produces.
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4. Deterministic chaos and the Feigenbaum plot: One of the most famous examples of the

phenomenon of chaos is the logistic map, defined by the equation

x′ = rx(1− x). (1)

For a given value of the constant r you take a value of x—say x = 1
2—and you feed it into

the right-hand side of this equation, which gives you a value of x′. Then you take that

value and feed it back in on the right-hand side again, which gives you another value,

and so forth. This is a iterative map. You keep doing the same operation over and over on

your value of x, and one of three things happens:

(a) The value settles down to a fixed number and stays there. This is called a fixed point.

For instance, x = 0 is always a fixed point of the logistic map. (You put x = 0 on the

right-hand side and you get x′ = 0 on the left.)

(b) It doesn’t settle down to a single value, but it settles down into a periodic pattern,

rotating around a set of values, such as say four values, repeating them in sequence

over and over. This is called a limit cycle.

(c) It goes crazy. It generates a seemingly random sequence of numbers that appear to

have no rhyme or reason to them at all. This is deterministic chaos. “Chaos” because

it really does look chaotic, and “deterministic” because even though the values look

random, they’re not. They’re clearly entirely predictable, because they are given to

you by one simple equation. The behavior is determined, although it may not look

like it.

Write a program that calculates and displays the behavior of the logistic map. Here’s

what you need to do.

For a given value of r, start with x = 1
2 , and iterate the logistic map equation a thousand

times. That will give it a chance to settle down to a fixed point or limit cycle if it’s going

to. Then run for another thousand iterations and plot the points (r, x) on a graph where

the horizontal axis is r and the vertical axis is x. You can either use the plot function with

the options "ko" or "k." to draw a graph with dots, one for each point, of you can use

the scatter function to draw a scatter plot (which always uses dots). Repeat the whole

calculation for values of r from 1 to 4 in steps of 0.01, plotting the dots for all values of r

on the same figure and then finally using the function show once to display the complete

figure.1

Your program should generate a distinctive plot that looks like a tree bent over onto

its side. This famous picture is called the Feigenbaum plot, after its discoverer Mitchell

Feigenbaum, or sometimes the figtree plot, a play on the fact that it looks like a tree and

Feigenbaum means “figtree” in German.

1There is another approach for computing the Feigenbaum plot, which is neater and faster, making use of
Python’s ability to perform arithmetic with entire arrays. You could create an array rwith one element containing
each distinct value of r you want to investigate: [1.0, 1.01, 1.02, ... ]. Then create another array x of the
same size to hold the corresponding values of x, which should all be initially set to 0.5. Then an iteration of the
logistic map can be performed for all values of r at once with a statement of the form x = r*x*(1-x). Because of
the speed with which Python can perform calculations on arrays, this method should be significantly faster than
the more basic method above.
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Give answers to the following questions:

(a) For a given value of r what would a fixed point look like on the Feigenbaum plot?

How about a limit cycle? And what would chaos look like?

(b) Based on your plot, at what value of r does the system move from orderly behavior

(fixed points or limit cycles) to chaotic behavior? This point is sometimes called the

“edge of chaos.”

The logistic map is a very simple mathematical system, but deterministic chaos is seen

in many more complex physical systems also, including especially fluid dynamics and

the weather. Because of its apparently random nature, the behavior of chaotic systems

is difficult to predict and strongly affected by small perturbations in outside conditions.

You’ve probably heard of the classic exemplar of chaos in weather systems, the butterfly

effect, which was popularized by physicist Edward Lorenz in 1972 when he gave a lecture

to the American Association for the Advancement of Science entitled, “Does the flap of a

butterfly’s wings in Brazil set off a tornado in Texas?”

For full credit turn in a copy of your program and a printout of the figure it produces,

along with your answers to questions (a) and (b) above.
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