
Physics 411: Homework 3

1. Quadratic equations:

(a) Write a program that takes as input three numbers, a, b, and c, and prints out the

two solutions to the quadratic equation ax2 + bx+ c = 0 using the standard formula

x =
−b±

√
b2 − 4ac

2a
.

Use your program to compute the solutions of 0.001x2 + 1000x + 0.001 = 0.

(b) There is another way to write the solutions to a quadratic equation. Multiplying top

and bottom of the solution above by −b ∓
√
b2 − 4ac, show that the solutions can

also be written as

x =
2c

−b∓
√
b2 − 4ac

.

Add further lines to your program to print out these values in addition to the earlier

ones and again use the program to solve 0.001x2 + 1000x + 0.001 = 0. What do you

see? How do you explain it?

(c) Using what you have learned, modify your program so that it calculates both roots

of a quadratic equation accurately in all cases.

For full credit turn in your answers to part (b), a copy of your final program, and a

printout of it in action, showing the solution of the equation 0.001x2 + 1000x + 0.001 = 0.

This is a good example of how computers don’t always work the way you expect them

to. If you simply apply the standard formula for the quadratic equation, the computer

will sometimes get the answer wrong. In practice the method you have worked out here

is the correct way to solve a quadratic equation on a computer, even though it’s more

complicated than the standard formula. If you were writing a program that involved

solving many quadratic equations this method might be a good candidate for a user-

defined function.

2. Calculating derivatives: Suppose we have a function f (x) and we want to calculate its

derivative at a point x. We can do that with pen and paper if we know the mathematical

form of the function, or we can do it on the computer by making use of the definition of

the derivative:
d f

dx
= lim

δ→0

f (x + δ) − f (x)

δ
.

On the computer we can’t actually take the limit as δ goes to zero, but we can get a

reasonable approximation just by making δ small.

(a) Write a program that defines a function f(x) returning the value x(x− 1), then cal-

culates and prints the derivative of the function at the point x = 1 using the formula

above with δ = 10−2. Calculate the true value of the same derivative analytically

and compare with the answer your program gives. The two will not agree perfectly.

Why not?
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(b) Repeat the calculation for δ = 10−4, 10−6, 10−8, 10−10, 10−12, and 10−14. You should

see that the accuracy of the calculation initially gets better as δ gets smaller, but then

gets worse again. Why is this?

For full credit, turn in a printout of your program, the results from the various cal-

culations, and your answer to the question in part (b).

We will look at numerical derivatives in more detail later in the course, when we will

study techniques for dealing with these issues.

3. Simpson’s rule:

(a) Write a program to calculate an approximate value for the integral
∫ 2
0 (x4− 2x+ 1)dx

from Example 5.1, but using Simpson’s rule with 10 slices instead of the trapezoidal

rule.

(b) Run the program and compare your result to the known correct value of 4.4. What

is the fractional error on your calculation?

(c) Modify the program to use a hundred slices instead, then a thousand. Note the

improvement in the result. How do the results compare with those from Example 5.1

for the trapezoidal rule with the same number of slices?

For full credit turn in a printout of your program, plus your results and a brief dis-

cussion of how they compare with the trapezoidal rule.

4. Adaptive integration: Write a program that uses the adaptive trapezoidal rule method

of Section 5.3 and Eq. (5.30) to calculate the value of the integral

I =
∫ 1

0
sin2

√
100x dx

to an approximate accuracy of ǫ = 10−6 (i.e., correct to six digits after the decimal point).

Start with one single integration slice and work up from there to two, four, eight, and so

forth. Have your program print out the number of slices, its estimate of the integral, and

its estimate of the error on the integral, for each value of the number of slices N, until the

target accuracy is reached. (Hint: You should find the result is around I = 0.45.)

Extra credit: This part of the problem is optional, for extra credit. Modify your program to

evaluate the same integral using the Romberg integration technique described in Sec-

tion 5.4, for the same series of values of N. Have your program print out a triangular

table of values, as on page 157, of all the Romberg estimates of the integral.

For full credit turn in a printout of your program and a printout of it in action, clearly

showing the output values. If you did the extra credit part, turn in that program too, plus

a printout of it in action.

5. The diffraction limit of a telescope: Our ability to resolve detail in astronomical obser-

vations is limited by the diffraction of light in our telescopes. Light from stars can be
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treated effectively as coming from a point source at infinity. When such light, with wave-

length λ, passes through the circular aperture of a telescope (which we’ll assume to have

unit radius) and is focused by the telescope in the focal plane, it produces not a single

dot, but a circular diffraction pattern consisting of central spot surrounded by a series of

concentric rings. The intensity of the light in this diffraction pattern is given by

I(r) =

(

J1(kr)

kr

)2

,

where r is the distance in the focal plane from the center of the diffraction pattern, k =
2π/λ, and J1(x) is a Bessel function. The Bessel functions Jm(x) are given by

Jm(x) =
1

π

∫ π

0
cos(mθ − x sin θ) dθ,

where m is a nonnegative integer and x ≥ 0.

(a) Write a Python function J(m,x) that calculates the value of Jm(x) using Simpson’s

rule with N = 1000 points. Use your function in a program to make a plot, on a

single graph, of the Bessel functions J0, J1, and J2 as a function of x from x = 0 to

x = 20.

(b) Make a second program that makes a density plot of the intensity of the circular

diffraction pattern of a point light source with λ = 500 nm, in a square region of the

focal plane, using the formula given above. Your picture should cover values of r

from zero up to about 1 µm.

Hint 1: You may find it useful to know that limx→0 J1(x)/x = 1
2 .

Hint 2: If you have a variable in your program that represents the wavelength λ, do not

call it “lambda”. If you do you will get an error message and the program will not run,

because the word “lambda” has a special meaning in the Python language and cannot

be used as a variable name, just as words like “for” and “if” cannot be used as variable

names. (See footnote 5 on page 13 of the book.) The names of other Greek letters—alpha,

beta, gamma, and so on—are allowed as variable names.

Hint 3: The central spot in the diffraction pattern is so bright that it may be difficult to

see the rings around it on the computer screen. If you run into this problem a simple

way to deal with it is to use one of the other color schemes for density plots described in

Section 3.3 of the book. The “hot” scheme works well. For a more sophisticated solution

to the problem, the imshow function has an additional argument vmax that allows you

to set the value that corresponds to the brightest point in the plot. For instance, if you

say “imshow(x,vmax=0.1)”, then elements in x with value 0.1, or any greater value, will

produce the brightest (most positive) color on the screen. By lowering the vmax value, you

can reduce the total range of values between theminimum andmaximumbrightness, and

hence increase the sensitivity of the plot, making subtle details visible. For this exercise

I found that a value vmax=0.01worked well for me.

For full credit turn in a printout of your final program from part (b) and printouts of

your two figures.
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