
Physics 411: Homework 4

1. Gravitational pull of a uniform sheet: A uniform square sheet of metal is floating mo-

tionless in space:
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The sheet is 10 m on a side and of negligible thickness, and it has a mass of 10 metric

tonnes.

(a) Consider the gravitational force due to the plate felt by a point mass of 1 kg a dis-

tance z from the center of the square, in the direction perpendicular to the sheet, as

shown above. Show that the component of the force along the z-axis is

dFz = Gρz
∫∫ L/2

−L/2

dx dy

(x2 + y2 + z2)3/2
,

where G = 6.674× 10−11 m3 kg−1 s−2 is Newton’s gravitational constant and ρ is the

mass per unit area of the sheet.

(b) Write a program to calculate and plot the force as a function of z from z = 0 to

z = 10 m. For the double integral use (double) Gaussian quadrature, as in Eq. (5.78),

with 100 sample points along each axis.

(c) You should see a smooth curve, except at very small values of z, where the force

should drop off suddenly to zero. This drop is not a real effect, but an artifact of the

way we have done the calculation. Explain briefly where this artifact comes from

and suggest a strategy to remove it, or at least to decrease its size.

For full credit turn in a printout of your program and the graph that it produces,

along with your answer for part (c).

2. The gamma function: A commonly occurring function in physics calculations is the

gamma function Γ(a), which is defined by the integral

Γ(a) =
∫

∞

0
xa−1e−x dx.
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There is no closed-form expression for the gamma function, but one can calculate its value

for given a by performing the integral above numerically. You have to be careful how you

do it, however, if you wish to get an accurate answer.

(a) Write a program to make a graph of the value of the integrand xa−1e−x as a function

of x from x = 0 to x = 5, with three separate curves for a = 2, 3, and 4, all on the

same axes. You should find that the integrand starts at zero, rises to a maximum,

and then decays again for each curve.

(b) Show analytically that the maximum falls at x = a− 1.

(c) Most of the area under the integrand falls near the maximum, so to get an accurate

value of the gamma function we need to do a good job of this part of the integral.

We can change the integral from 0 to ∞ to one over a finite range from 0 to 1 using

the change of variables in Eq. (5.63), but this tends to squash the peak towards the

edge of the [0, 1] range and does a poor job of evaluating the integral accurately. We

can do a better job by making a different change of variables that puts the peak in

the middle of the integration range, around 1
2 . We will use the change of variables

given in Eq. (5.65), which we repeat here for convenience:

z =
x

c + x
.

For what value of x does this change of variables give z = 1
2? Hence what is the

appropriate choice of the parameter c that puts the peak of the integrand for the

gamma function at z = 1
2?

(d) Before we can calculate the gamma function, there is another detail we need to at-

tend to. The integrand xa−1e−x can be difficult to evaluate because the factor xa−1

can become very large and the factor e−x very small, causing numerical overflow or

underflow, or both, for some values of x. Write xa−1 = e(a−1) ln x to derive an alter-

native expression for the integrand that does not suffer from these problems (or at

least not so much). Explain why your new expression is better than the old one.

(e) Now, using the change of variables above and the value of c you have chosen, write

a user-defined function gamma(a) to calculate the gamma function for arbitrary argu-

ment a. Use whatever integration method you feel is appropriate. Test your function

by using it to calculate and print the value of Γ(3
2), which is known to be equal to

1
2

√
π ≃ 0.886.

For full credit turn in a printout of your final program and a printout showing it in

action calculating Γ(3
2), along with your graph from part (a) and your answers to parts (b),

(c), and (d).
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3. Diffraction gratings: Light with wavelength λ is incident on a diffraction grating of total

width w, gets diffracted, is focused with a lens of focal length f , and falls on a screen:
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Theory tells us that the intensity of the diffraction pattern on the screen, a distance x from

the central axis of the system, is given by

I(x) =

∣

∣

∣

∣

∫ w/2

−w/2

√

q(u) ei2πxu/λ f du

∣

∣

∣

∣

2

,

where q(u) is the intensity transmission function of the diffraction grating at a distance u

from the central axis.

(a) Consider a grating with transmission function q(u) = sin2 αu. What is the separation

of the “slits” in this grating, expressed in terms of α?

(b) Write a Python function q(u) that returns the transmission function q(u) = sin2 αu

as above at position u for a grating whose slits have separation 20 µm.

(c) Use your function in a program to calculate and graph the intensity of the diffraction

pattern produced by such a grating having ten slits in total, if the incident light has

wavelength λ = 500 nm. Assume the lens has a focal length of 1 meter and the

screen is 10 cm wide. You can use whatever method you think appropriate for doing

the integral. Once you’ve made your choice you’ll also need to decide the number

of sample points you’ll use. What criteria play into this decision?

Notice that the integrand in the equation for I(x) is complex, so you will have to

use complex variables in your program. As mentioned in Section 2.2.5 of the book,

there is a version of the math package for use with complex variables called cmath. In

particular you may find the exp function from cmath useful because it can calculate

the exponentials of complex arguments.

(d) Now modify your program to create a visualization of how the diffraction pattern

would look on the screen using a density plot. Your plot should look something like

this:

3



(e) Modify your program further to make pictures of the diffraction patterns produced

by gratings with the following profiles:

i. A transmission profile that obeys q(u) = sin2 αu sin2 βu, with α as before and

the same total grating width w, and β = 1
2 α.

ii. Two “square” slits, meaning slits with 100% transmission through the slit and

0% transmission everywhere else. Calculate the diffraction pattern for non-

identical slits, one 10 µm wide and the other 20 µm wide, with a 60 µm gap

between the two.

For full credit turn in a printout of your program from part (d), your graph from

part (c), and the three density plots from parts (d) and (e).

4. Image processing and the STM: When light strikes a surface, the amount falling per unit

area depends not only on the intensity of the light, but also on the angle of incidence. If

the light makes an angle θ to the normal, it only “sees” cos θ of area per unit of actual area

on the surface:

θ What the light sees

surface

light

So the intensity of illumination is a cos θ, if a is the raw intensity of the light. This simple

physical law is a central element of 3D computer graphics. It allows us to calculate how

light falls on three-dimensional objects and hence how they will look when illuminated

from various angles.

Suppose, for instance, that we are looking down on the Earth from above and we see

mountains. We know the height of the mountains w(x, y) as a function of position in

the plane, so the equation for the Earth’s surface is simply z = w(x, y), or equivalently

w(x, y) − z = 0, and the normal vector v to the surface is given by the gradient of

w(x, y)− z thus:

v = ∇[w(x, y)− z] =





∂/∂x

∂/∂y

∂/∂z



 [w(x, y)− z] =





∂w/∂x

∂w/∂y

−1



 .

Now suppose we have light coming in represented by a vector a with magnitude equal

to the intensity of the light. Then the dot product of the vectors a and v is

a · v = |a| |v| cos θ,
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where θ is the angle between the vectors. Thus the intensity of illumination of the surface

of the mountains is

I = |a| cos θ =
a · v
|v| =

ax(∂w/∂x) + ay(∂w/∂y)− az
√

(∂w/∂x)2 + (∂w/∂y)2 + 1
.

Let’s take a simple case where the light is shining horizontally with unit intensity, along

a line an angle φ counter-clockwise from the east-west axis, so that a = (cos φ, sin φ, 0).

Then our intensity of illumination simplifies to

I =
cos φ (∂w/∂x) + sin φ (∂w/∂y)
√

(∂w/∂x)2 + (∂w/∂y)2 + 1
.

If we can calculate the derivatives of the height w(x, y) and we know φ we can calculate

the intensity at any point.

(a) In the on-line resources you’ll find a file called altitude.txt, which contains the

altitude w(x, y) in meters above sea level (or depth below sea level) of the surface of

the Earth, measured on a grid of points (x, y). Write a program that reads this file

and stores the data in an array. Then calculate the derivatives ∂w/∂x and ∂w/∂y at

each grid point. Explain what method you used to calculate them and why. (Hint:

You’ll probably have to use more than one method to get every grid point, because

awkward things happen at the edges of the grid.) To calculate the derivatives you’ll

need to know the value of h, the distance in meters between grid points, which

is about 30 000 m in this case. (It’s actually not precisely constant because we are

representing the spherical Earth on a flat map, but h = 30 000 m will give reasonable

results.)

(b) Now, using your values for the derivatives, calculate the intensity for each grid

point, with φ = 45◦, and make a density plot of the resulting values in which the

brightness of each dot depends on the corresponding intensity value. If you get it

working right, the plot should look like a relief map of the world—you should be

able to see the continents and mountain ranges in 3D. (Common problems include a

map that is upside-down or sideways, or a relief map that is “inside-out,” meaning

the high regions look low and vice versa. Work with the details of your program until

you get a map that looks right to you.)

(c) There is another file in the on-line resources called stm.txt, which contains a grid of

values from scanning tunneling microscope (STM) measurements of the (111) sur-

face of silicon—the same file that you used in Homework 2. The grid of values in

this file represents the height of the silicon surface as a function of position. Modify

the program you just wrote to visualize the STM data and hence create a 3D picture

of what the silicon surface looks like. The value of h for the derivatives in this case

is around h = 2.5 (in arbitrary units).

For full credit turn in your explanation from part (a), copies of your two density

plots, from parts (b) and (c), and your final program from part (c).
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